1
|
Reynes J, Leon F, García F. Mechanochemistry for Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2024; 4:432-470. [PMID: 39371328 PMCID: PMC11450734 DOI: 10.1021/acsorginorgau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.
Collapse
Affiliation(s)
- Javier
F. Reynes
- Departamento
de Química Orgánica e Inorgánica. Facultad de
Química. Universidad de Oviedo. Ave. Julián Clavería
8, 33006 Oviedo, Asturias Spain
| | - Felix Leon
- Instituto
de Investigaciones Químicas (IIQ), Departamento de Química
Inorgánica and Centro de Innovación en Química
Avanzada (ORFEO−CINQA), Consejo Superior de Investigaciones, Científicas (CSIC) and Universidad de Sevilla, Avenida Américo Vespucio
49, 41092 Sevilla, Spain
| | - Felipe García
- School
of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
2
|
Budny-Godlewski K, Piekarski DG, Justyniak I, Leszczyński MK, Nawrocki J, Kubas A, Lewiński J. Uncovering Factors Controlling Reactivity of Metal-TEMPO Reaction Systems in the Solid State and Solution. Chemistry 2024; 30:e202401968. [PMID: 38801170 DOI: 10.1002/chem.202401968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Nitroxides find application in various areas of chemistry, and a more in-depth understanding of factors controlling their reactivity with metal complexes is warranted to promote further developments. Here, we report on the effect of the metal centre Lewis acidity on both the distribution of the O- and N-centered spin density in 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and turning TEMPO from the O- to N-radical mode scavenger in metal-TEMPO systems. We use Et(Cl)Zn/TEMPO model reaction system with tuneable reactivity in the solid state and solution. Among various products, a unique Lewis acid-base adduct of Cl2Zn with the N-ethylated TEMPO was isolated and structurally characterised, and the so-called solid-state 'slow chemistry' reaction led to a higher yield of the N-alkylated product. The revealed structure-activity/selectivity correlations are exceptional yet are entirely rationalised by the mechanistic underpinning supported by theoretical calculations of studied model systems. This work lays a foundation and mechanistic blueprint for future metal/nitroxide systems exploration.
Collapse
Affiliation(s)
- Krzysztof Budny-Godlewski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Dariusz G Piekarski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Iwona Justyniak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Michał K Leszczyński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - Jan Nawrocki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Adam Kubas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Janusz Lewiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| |
Collapse
|
3
|
Zupanc A, Install J, Weckman T, Melander MM, Heikkilä MJ, Kemell M, Honkala K, Repo T. Sequential Selective Dissolution of Coinage Metals in Recyclable Ionic Media. Angew Chem Int Ed Engl 2024; 63:e202407147. [PMID: 38742485 DOI: 10.1002/anie.202407147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Coinage metals Cu, Ag, and Au are essential for modern electronics and their recycling from waste materials is becoming increasingly important to guarantee the security of their supply. Designing new sustainable and selective procedures that would substitute currently used processes is crucial. Here, we describe an unprecedented approach for the sequential dissolution of single metals from Cu, Ag, and Au mixtures using biomass-derived ionic solvents and green oxidants. First, Cu can be selectively dissolved in the presence of Ag and Au with a choline chloride/urea/H2O2 mixture, followed by the dissolution of Ag in lactic acid/H2O2. Finally, the metallic Au, which is not soluble in either solution above, is dissolved in choline chloride/urea/Oxone. Subsequently, the metals were simply and quantitatively recovered from dissolutions, and the solvents were recycled and reused. The applicability of the developed approach was demonstrated by recovering metals from electronic waste substrates such as printed circuit boards, gold fingers, and solar panels. The dissolution reactions and selectivity were explored with different analytical techniques and DFT calculations. We anticipate our approach will pave a new way for the contemporary and sustainable recycling of multi-metal waste substrates.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Joseph Install
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Timo Weckman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Mikko J Heikkilä
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014, Jyväskylä, Finland
| | - Timo Repo
- Department of Chemistry, Faculty of Science, University of Helsinki, A. I. Virtasen aukio 1, 00014, Helsinki, Finland
| |
Collapse
|
4
|
Pietras N, Frąckowiak D, Kownacki I. Ball-Milling toward Nickel(II) Diphosphine Complexes for Direct Use in Catalysis. CHEMSUSCHEM 2024:e202400545. [PMID: 38860859 DOI: 10.1002/cssc.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
Mechanochemistry turned out to be a powerful synthetic tool enabling the first efficient synthesis of nickel(II) complexes with diphosphines. It has been demonstrated that solventless ball-milling of nickel(II) halides with diphosphines leads to the [NiX2(diphosphine)] type compounds, which can be directly used in catalysis without any purification. Moreover, it was confirmed that despite the presence of impurities in the resulting complexes, their catalytic activity remains identical to those obtained via traditional solvent-based methods.
Collapse
Affiliation(s)
- Natalia Pietras
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Dawid Frąckowiak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| |
Collapse
|
5
|
Kubota K, Endo T, Ito H. Solid-state mechanochemistry for the rapid and efficient synthesis of tris-cyclometalated iridium(iii) complexes. Chem Sci 2024; 15:3365-3371. [PMID: 38425515 PMCID: PMC10901499 DOI: 10.1039/d3sc05796h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Tris-cyclometalated iridium(iii) complexes have received widespread attention as attractive prospective materials for e.g., organic light-emitting diodes (OLEDs), photoredox catalysts, and bioimaging probes. However, their preparation usually requires prolonged reaction times, significant amounts of high-boiling solvents, multistep synthesis, and inert-gas-line techniques. Unfortunately, these requirements represent major drawbacks from both a production-cost and an environmental perspective. Herein, we show that a two-step mechanochemical protocol using ball milling enables the rapid and efficient synthesis of various tris-cyclometalated iridium(iii) complexes from relatively cheap iridium(iii) chloride hydrate without the use of significant amounts of organic solvent in air. Notably, a direct one-pot procedure is also demonstrated. The present solid-state approach can be expected to inspire the development of cost-effective and timely production methods for these valuable iridium-based complexes, as well as the discovery of new phosphorescent materials, sensors, and catalysts.
Collapse
Affiliation(s)
- Koji Kubota
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| | - Tsubura Endo
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
| | - Hajime Ito
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University Sapporo Hokkaido Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University Sapporo Hokkaido Japan
| |
Collapse
|
6
|
Wang H, Ding W, Zou G. Mechanoredox/Nickel Co-Catalyzed Cross Electrophile Coupling of Benzotriazinones with Alkyl (Pseudo)halides. J Org Chem 2023; 88:12891-12901. [PMID: 37615491 DOI: 10.1021/acs.joc.3c00681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An air-tolerant mechanoredox/nickel cocatalyzed cross electrophile coupling of benzotriazinones with alkyl (pseudo)halides is developed by liquid-assisting grinding in the presence of manganese powders and strontium titanate as a reductant and a cocatalyst, respectively. Mechanical activation of metal surfaces via ball milling eliminates the chemical activator for manganese, while mechanoredox cocatalysis of strontium titanate remarkably improves the aryl/alkyl cross electrophile coupling via piezoelectricity-mediated radical generation from alkyl halides. Both benzotriazinones and alkyl (pseudo)halides display reactivities in the mechanoredox/nickel cocatalysis different from those of conventional thermal chemistry in solution. The scope of the reaction is demonstrated with 26 examples, showing a high chemoselectivity of bromides vs chlorides.
Collapse
Affiliation(s)
- Huimin Wang
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| | - Wenbin Ding
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| | - Gang Zou
- School of Chemistry & Molecular Engineering, East China University of Science & Technology, 130 Meilong Rd, Shanghai 200237, P.R. China
| |
Collapse
|
7
|
Luciani L, Sargentoni N, Graiff C, Monge M, Rodríguez-Castillo M, López-de-Luzuriaga JM, Galassi R. Mechanochemical preparation of strongly emissive monosubstituted triarylphosphane gold(i) compounds activated by hydrogen bonding driven aggregations. RSC Adv 2023; 13:25425-25436. [PMID: 37636510 PMCID: PMC10448354 DOI: 10.1039/d3ra03681b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Gold(i) triarylphosphane compounds are a well-known class of coordination compounds displaying from mild to strong emissive properties. Mechanochemical approaches to the preparation, spectroscopic characterization, X-ray diffraction structural determination, and photophysical studies of green emissive neutral linear monophosphane or neutral pseudo-T-shaped or cationic bis-phosphane gold(i) compounds, are herein discussed. The mechanochemical approach to the preparation of gold(i) derivatives was particularly successful for ligands bearing the carboxylic group, while the preparation with esterified ligands yields better results with solvent-mediated methods. The introduction of carboxyl or ester substituents in one aryl group favors the ligand-centered emissions. The analysis of the origin of the emissions was elucidated on the basis of DFT calculations, addressing the emissive behavior to ligand-centered excited states, strongly affected by supramolecular reversible hydrogen bonding aggregation. The study indicates that the ligand with the carboxylic group is particularly suitable for the mechanochemical preparation of emissive gold(i) complexes for material science applications.
Collapse
Affiliation(s)
- Lorenzo Luciani
- University of Camerino, School of Science and Technology, Chemistry Division c/o ChIP, Via Madonna delle Carceri, 10 Camerino I-62032 Italy
| | - Nicola Sargentoni
- University of Camerino, School of Science and Technology, Chemistry Division c/o ChIP, Via Madonna delle Carceri, 10 Camerino I-62032 Italy
| | - Claudia Graiff
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma Parco Area delle Scienze 17/A Parma I-43124 Italy
| | - Miguel Monge
- Universidad de La Rioja, Departamento de Química, Área de Química Inorgánica, Centro de Investigación en Síntesis Química, Complejo Científico-Tecnológico Madre de Dios, 53 26004 Logroño La Rioja Spain
| | - María Rodríguez-Castillo
- Universidad de La Rioja, Departamento de Química, Área de Química Inorgánica, Centro de Investigación en Síntesis Química, Complejo Científico-Tecnológico Madre de Dios, 53 26004 Logroño La Rioja Spain
| | - José M López-de-Luzuriaga
- Universidad de La Rioja, Departamento de Química, Área de Química Inorgánica, Centro de Investigación en Síntesis Química, Complejo Científico-Tecnológico Madre de Dios, 53 26004 Logroño La Rioja Spain
| | - Rossana Galassi
- University of Camerino, School of Science and Technology, Chemistry Division c/o ChIP, Via Madonna delle Carceri, 10 Camerino I-62032 Italy
| |
Collapse
|
8
|
Deák A, Szabó PT, Bednaříková V, Cihlář J, Demeter A, Remešová M, Colacino E, Čelko L. The first solid-state route to luminescent Au(I)-glutathionate and its pH-controlled transformation into ultrasmall oligomeric Au 10-12(SG) 10-12 nanoclusters for application in cancer radiotheraphy. Front Chem 2023; 11:1178225. [PMID: 37342159 PMCID: PMC10277803 DOI: 10.3389/fchem.2023.1178225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 06/22/2023] Open
Abstract
There is still a need for synthetic approaches that are much faster, easier to scale up, more robust and efficient for generating gold(I)-thiolates that can be easily converted into gold-thiolate nanoclusters. Mechanochemical methods can offer significantly reduced reaction times, increased yields and straightforward recovery of the product, compared to the solution-based reactions. For the first time, a new simple, rapid and efficient mechanochemical redox method in a ball-mill was developed to produce the highly luminescent, pH-responsive Au(I)-glutathionate, [Au(SG)]n. The efficient productivity of the mechanochemical redox reaction afforded orange luminescent [Au(SG)]n in isolable amounts (mg scale), usually not achieved by more conventional methods in solution. Then, ultrasmall oligomeric Au10-12(SG)10-12 nanoclusters were prepared by pH-triggered dissociation of [Au(SG)]n. The pH-stimulated dissociation of the Au(I)-glutathionate complex provides a time-efficient synthesis of oligomeric Au10-12(SG)10-12 nanoclusters, it avoids high-temperature heating or the addition of harmful reducing agent (e.g., carbon monoxide). Therefore, we present herein a new and eco-friendly methodology to access oligomeric glutathione-based gold nanoclusters, already finding applications in biomedical field as efficient radiosensitizers in cancer radiotherapy.
Collapse
Affiliation(s)
- Andrea Deák
- Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Pál T. Szabó
- Centre for Structure Study, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vendula Bednaříková
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jaroslav Cihlář
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Attila Demeter
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Michaela Remešová
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | | | - Ladislav Čelko
- High-Performance Materials and Coatings for Industry Research Group, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| |
Collapse
|
9
|
Zupanc A, Install J, Jereb M, Repo T. Sustainable and Selective Modern Methods of Noble Metal Recycling. Angew Chem Int Ed Engl 2023; 62:e202214453. [PMID: 36409274 PMCID: PMC10107291 DOI: 10.1002/anie.202214453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
Noble metals exhibit broad arrange of applications in industry and several aspects of human life which are becoming more and more prevalent in modern times. Due to their limited sources and constantly and consistently expanding demand, recycling of secondary and waste materials must accompany the traditional mineral extractions. This Minireview covers the most recent solvometallurgical developments in regeneration of Pd, Pt, Rh, Ru, Ir, Os, Ag and Au with emphasis on sustainability and selectivity. Processing-by selective oxidative dissolution, reductive precipitation, solvent extraction, co-precipitation, membrane transfer and trapping to solid media-of eligible multi-metal substrates for recycling from waste printed circuit boards to end-of-life automotive catalysts are discussed. Outlook for possible future direction for noble metal recycling is proposed with emphasis on sustainable approaches.
Collapse
Affiliation(s)
- Anže Zupanc
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Joseph Install
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| | - Marjan Jereb
- Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaVečna pot 1131000LjubljanaSlovenia
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiP.O. Box 55 (A. I. Virtasen aukio 1)00014HelsinkiFinland
| |
Collapse
|
10
|
Auvray T, Friščić T. Shaking Things from the Ground-Up: A Systematic Overview of the Mechanochemistry of Hard and High-Melting Inorganic Materials. Molecules 2023; 28:897. [PMID: 36677953 PMCID: PMC9865874 DOI: 10.3390/molecules28020897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
We provide a systematic overview of the mechanochemical reactions of inorganic solids, notably simple binary compounds, such as oxides, nitrides, carbides, sulphides, phosphides, hydrides, borides, borane derivatives, and related systems. Whereas the solid state has been traditionally considered to be of little synthetic value by the broader community of synthetic chemists, the solid-state community, and in particular researchers focusing on the reactions of inorganic materials, have thrived in building a rich and dynamic research field based on mechanically-driven transformations of inorganic substances typically seen as inert and high-melting. This review provides an insight into the chemical richness of such mechanochemical reactions and, at the same time, offers their tentative categorisation based on transformation type, resulting in seven distinct groupings: (i) the formation of adducts, (ii) the reactions of dehydration; (iii) oxidation-reduction (redox) reactions; (iv) metathesis (or exchange) reactions; (v) doping and structural rearrangements, including reactions involving the reaction vessel (the milling jar); (vi) acid-base reactions, and (vii) other, mixed type reactions. At the same time, we offer a parallel description of inorganic mechanochemical reactions depending on the reaction conditions, as those that: (i) take place under mild conditions (e.g., manual grinding using a mortar and a pestle); (ii) proceed gradually under mechanical milling; (iii) are self-sustained and initiated by mechanical milling, i.e., mechanically induced self-propagating reactions (MSRs); and (iv) proceed only via harsh grinding and are a result of chemical reactivity under strongly non-equilibrium conditions. By elaborating on typical examples and general principles in the mechanochemistry of hard and high-melting substances, this review provides a suitable complement to the existing literature, focusing on the properties and mechanochemical reactions of inorganic solids, such as nanomaterials and catalysts.
Collapse
Affiliation(s)
| | - Tomislav Friščić
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Liu X, Li Y, Zeng L, Li X, Chen N, Bai S, He H, Wang Q, Zhang C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108327. [PMID: 35015320 DOI: 10.1002/adma.202108327] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mechanochemistry with solvent-free and environmentally friendly characteristics is one of the most promising alternatives to traditional liquid-phase-based reactions, demonstrating epoch-making significance in the realization of different types of chemistry. Mechanochemistry utilizes mechanical energy to promote physical and chemical transformations to design complex molecules and nanostructured materials, encourage dispersion and recombination of multiphase components, and accelerate reaction rates and efficiencies via highly reactive surfaces. In particular, mechanochemistry deserves special attention because it is capable of endowing energy materials with unique characteristics and properties. Herein, the latest advances and progress in mechanochemistry for the preparation and modification of energy materials are reviewed. An outline of the basic knowledge, methods, and characteristics of different mechanochemical strategies is presented, distinguishing this review from most mechanochemistry reviews that only focus on ball-milling. Next, this outline is followed by a detailed and insightful discussion of mechanochemistry-involved energy conversion and storage applications. The discussion comprehensively covers aspects of energy transformations from mechanical/optical/chemical energy to electrical energy. Finally, next-generation advanced energy materials are proposed. This review is intended to bring mechanochemistry to the frontline and guide this burgeoning field of interdisciplinary research for developing advanced energy materials with greener mechanical force.
Collapse
Affiliation(s)
- Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Li Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xi Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shibing Bai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
12
|
Gavrilov GA, Kinzhalov MA. Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Resistance to Ligand Disproportionation Reactions. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Kraus FJL, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki-Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022; 61:e202205003. [PMID: 35638133 PMCID: PMC9543434 DOI: 10.1002/anie.202205003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/23/2022]
Abstract
The molecular Suzuki cross-coupling reaction was conducted mechanochemically, without solvents, ligands, or catalyst powders. Utilizing one catalytically active palladium milling ball, products could be formed in quantitative yield in as little as 30 min. In contrast to previous reports, the adjustment of milling parameters led to the complete elimination of abrasion from the catalyst ball, thus enabling the first reported systematic catalyst analysis. XPS, in situ XRD, and reference experiments provided evidence that the milling ball surface was the location of the catalysis, allowing a mechanism to be proposed. The versatility of the approach was demonstrated by extending the substrate scope to deactivated and even sterically hindered aryl iodides and bromides.
Collapse
Affiliation(s)
- Wilm Pickhardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Claudio Beaković
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maike Mayer
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Maximilian Wohlgemuth
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | | | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY)Notkestraße 8522607HamburgGermany
| | - Sven Grätz
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| | - Lars Borchardt
- Inorganic Chemistry IRuhr-Universität BochumUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
14
|
Eco-friendly and rapid extraction of gold by in-situ catalytic oxidation with N-bromosuccinimide. Heliyon 2022; 8:e09706. [PMID: 35756117 PMCID: PMC9213721 DOI: 10.1016/j.heliyon.2022.e09706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Gold is a valued, critical element whose chemical activation or extraction is challenging. Non-cyanide extraction of gold is now the focus, and N-bromosuccinimide(NBS) is attracting attention. Herein, new insights into the possible mechanism are deeply revealed through comprehensive analysis and detection of the reaction by using elementary gold and gold bearing ore. Experiments on gold foil indicate that Au can be activated in NBS solution to perform a satisfactory dissolution. Application of NBS in gold extraction from ore show a high yield of 86.24% under optimal conditions of NBS dosage 0.05 M, liquid-solid ratio 4:1, stirring speed 400 rpm, pH 8, 25 °C and leaching for 20 h, while yields of other coexisting metals are nearly negligible. The process leads to direct, efficient, one-pot conversion of gold, into simple water-soluble salts. Characterizations show that the framework of NBS are not destroyed, only bromine separates from the framework. The oxidation of neutral gold atom to trivalent Au(III) occurs in a mild, clean and room-temperature chemistry, which converts gold to [AuBr4]-, and the framework to succinimide. The active bromine and radical Br (Br•) generated from in-situ autocatalysis of NBS are responsible for this. The systematic results herald a green procedure for preparation of gold derivatives and gold extraction industry. Utilizing nitrogen heterocyclic to carry bromine and sustainably release Br• to in situ catalytically oxidize gold. One-pot conversion and high-efficient option to extract gold in a mild, clean and room-temperature chemistry. Bromine separates from NBS skeleton to generate Br• and active Br2 and rapidly oxidized Au0 to Au3+ to form stable complex compound [AuBr4]-. High Au leaching selectivity with 86.24% yield by 0.05 M NBS and nearly negligible yields of other coexisting metals.
Collapse
|
15
|
Pickhardt W, Beaković C, Mayer M, Wohlgemuth M, Leon Kraus FJ, Etter M, Grätz S, Borchardt L. The Direct Mechanocatalytic Suzuki‐Miyaura Reaction of Small Organic Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wilm Pickhardt
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Claudio Beaković
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Maike Mayer
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | | | | | - Martin Etter
- DESY Accelerator Centre: Deutsches Elektronen-Synchrotron DESY GERMANY
| | - Sven Grätz
- Ruhr-Universität Bochum: Ruhr-Universitat Bochum Inorganic Chemistry GERMANY
| | - Lars Borchardt
- Ruhr-Universitat Bochum Inorganic Chemistry Universitätsstraße 150 44801 Bochum GERMANY
| |
Collapse
|
16
|
Vethacke V, Claus V, Dietl MC, Ehjeij D, Meister A, Huber JF, Paschai Darian LK, Rudolph M, Rominger F, Hashmi ASK. Access to Unsymmetrically Substituted Diaryl Gold N‐Acyclic Carbene (NAC) and N‐Heterocyclic Carbene (NHC) Complexes via the Isonitrile Route. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vanessa Vethacke
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Vanessa Claus
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Martin C. Dietl
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Daniel Ehjeij
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Arne Meister
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Jonas F. Huber
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Leon K. Paschai Darian
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
17
|
Deák A, Jobbágy C, Demeter A, Čelko L, Cihlář J, Szabó PT, Ábrányi-Balogh P, Crawford DE, Virieux D, Colacino E. Mechanochemical synthesis of mononuclear gold(I) halide complexes of diphosphine ligands with tuneable luminescent properties. Dalton Trans 2021; 50:13337-13344. [PMID: 34608904 DOI: 10.1039/d1dt01751a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanochemical method is reported for the synthesis of Au(diphos)X complexes of diphosphine (diphos = XantPhos and N-XantPhos) ligands and halide ions (X = Cl and I). The Au(XantPhos)X (1: X = Cl; 2: X = I) and Au(N-XantPhos)Cl (3) complexes exhibited either yellowish green (1) or bluish green (2) emission, whereas 3 was seemingly non-emissive in the solid state at room temperature. Blue- (2B) and bluish green (2G) luminescent concomitant solvates of 2 were obtained by recrystallization. Luminescent colour changes from blue (2B) or bluish green (2G) to yellow were observed when these forms were subjected to mechanical stimulus, while the original emission colour can be recovered in the presence of solvent vapours. Moreover, the luminescence of 2B can be reversibly altered between blue and yellow by heating/cooling-cycles. These results demonstrate the power of mechanochemistry in the rapid (4 min reaction time), efficient (up to 98% yield) and greener synthesis of luminescent and stimuli-responsive gold(I) complexes.
Collapse
Affiliation(s)
- Andrea Deák
- Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Csaba Jobbágy
- Supramolecular Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, 1117 Budapest, Hungary.
| | - Attila Demeter
- Renewable Energy Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), Magyar Tudósok körútja 2, 1117 Budapest, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Jaroslav Cihlář
- Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Pál T Szabó
- Centre for Structure Study, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), 1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network (ELKH), 1117 Budapest, Magyar Tudósok körútja 2, Hungary
| | - Deborah E Crawford
- School of Chemistry and Biosciences, University of Bradford Richmond Road, BD7 1DP, Bradford, UK
| | - David Virieux
- ICGM, Univ Montpellier CNRS, ENSCM, Montpellier, France.
| | | |
Collapse
|
18
|
|
19
|
Heliövaara E, Liljeqvist H, Muuronen M, Eronen A, Moslova K, Repo T. Cooperative Ligands in Dissolution of Gold. Chemistry 2021; 27:8668-8672. [PMID: 33881191 PMCID: PMC8251914 DOI: 10.1002/chem.202101028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Development of new, environmentally benign dissolution methods for metallic gold is driven by needs in the circular economy. Gold is widely used in consumer electronics, but sustainable and selective dissolution methods for Au are scarce. Herein, we describe a quantitative dissolution of gold in organic solution under mild conditions by using hydrogen peroxide as an oxidant. In the dissolution reaction, two thiol ligands, pyridine-4-thiol and 2-mercaptobenzimidazole, work in a cooperative manner. The mechanistic investigations suggest that two pyridine-4-thiol molecules form a complex with Au0 that can be oxidized, whereas the role of inexpensive 2-mercaptobenzimidazole is to stabilize the formed AuI species through a ligand exchange process. Under optimized conditions, the reaction proceeds vigorously and gold dissolves quantitatively in two hours. The demonstrated ligand-exchange mechanism with two thiols allows to drastically reduce the thiol consumption and may lead to even more effective gold dissolution methods in the future.
Collapse
Affiliation(s)
- Eeva Heliövaara
- Department of ChemistryUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
| | - Henri Liljeqvist
- Department of ChemistryUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
| | - Mikko Muuronen
- Department of ChemistryUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
- BASF SECarl-Bosch-Strasse 3867056LudwigshafenGermany)y
| | - Aleksi Eronen
- Department of ChemistryUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
| | - Karina Moslova
- Department of ChemistryUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
| | - Timo Repo
- Department of ChemistryUniversity of HelsinkiP.O. Box 55Helsinki00014Finland
| |
Collapse
|
20
|
Ardila-Fierro KJ, Hernández JG. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. CHEMSUSCHEM 2021; 14:2145-2162. [PMID: 33835716 DOI: 10.1002/cssc.202100478] [Citation(s) in RCA: 179] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Indexed: 05/22/2023]
Abstract
In recent years, mechanochemistry has been growing into a widely accepted alternative for chemical synthesis. In addition to their efficiency and practicality, mechanochemical reactions are also recognized for their sustainability. The association between mechanochemistry and Green Chemistry often originates from the solvent-free nature of most mechanochemical protocols, which can reduce waste production. However, mechanochemistry satisfies more than one of the Principles of Green Chemistry. In this Review we will present a series of examples that will clearly illustrate how mechanochemistry can significantly contribute to the fulfillment of Green Chemistry in a more holistic manner.
Collapse
Affiliation(s)
- Karen J Ardila-Fierro
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| | - José G Hernández
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička c. 54, 10000, Zagreb, Croatia
| |
Collapse
|
21
|
Fiss BG, Richard AJ, Douglas G, Kojic M, Friščić T, Moores A. Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chem Soc Rev 2021; 50:8279-8318. [DOI: 10.1039/d0cs00918k] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For inorganic metathesis and reduction reactivity, mechanochemistry is demonstrating great promise towards both nanoparticles and organometallics syntheses.
Collapse
Affiliation(s)
- Blaine G. Fiss
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Austin J. Richard
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Georgia Douglas
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Monika Kojic
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Tomislav Friščić
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
22
|
Wu S, Shi W, Zou G. Mechanical metal activation for Ni-catalyzed, Mn-mediated cross-electrophile coupling between aryl and alkyl bromides. NEW J CHEM 2021. [DOI: 10.1039/d1nj01732b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liquid-assisted grinding enables nickel-catalyzed, manganese-mediated cross-electrophile coupling between aryl and alkyl bromides under chemical activator-free and non-anhydrous conditions.
Collapse
Affiliation(s)
- Sisi Wu
- School of Chemistry & Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Weijia Shi
- School of Chemistry & Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| | - Gang Zou
- School of Chemistry & Molecular Engineering
- East China University of Science & Technology
- Shanghai
- China
| |
Collapse
|
23
|
Stirring or milling? First synthesis of Rh(I)-(di-N-heterocyclic carbene) complexes both in solution and in a ball mill. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
A substituted tricyclohexylphosphane with “conformational lock”. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Oestreicher V, García CS, Soler-Illia GJAA, Angelomé PC. Gold Recycling at Laboratory Scale: From Nanowaste to Nanospheres. CHEMSUSCHEM 2019; 12:4882-4888. [PMID: 31424166 DOI: 10.1002/cssc.201901488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Indexed: 06/10/2023]
Abstract
The market for products based on nanotechnology, and with it the use of nanomaterials and the generation of nanowaste, increases day by day. Among the vast variety of nanomaterials available, gold nanoparticles (AuNPs) are among the most studied and applied in commercial products. This current situation requires both the development of recovery methods to reduce the amount of nanowaste produced, and new synthetic methods that allow the reuse of recovered gold for new nanomaterial production, keeping in mind both economical and ecological considerations. In this work, a methodology to recover gold from aqueous laboratory nanowaste and transform it into an aqueous HAuCl4 solution was developed, using extremely simple procedures and readily available chemical reagents (NaCl, HCl, H2 O2 ) and allowing the recovery of more than 99 % of the original gold. The experiments were performed by using both simulated and real laboratory nanowastes, and practically the same results were obtained. Moreover, the subsequent use of the obtained aqueous HAuCl4 solution from the recovered gold to produce spherical AuNPs through a seed-mediated approach was demonstrated. Thus, this work presents for the first time a complete recycling cycle from nanowaste to the reagent and back to the nanomaterial.
Collapse
Affiliation(s)
- Víctor Oestreicher
- Instituto de Nanosistemas, UNSAM, CONICET, 25 de mayo 1021, San Martín, 1650), Buenos Aires, Argentina
- Gerencia Química Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, San Martín, 1650), Buenos Aires, Argentina
- Current address: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Betrán 2, 46980, Paterna, Valencia, Spain
| | - Carolina S García
- Gerencia Química Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, San Martín, 1650), Buenos Aires, Argentina
- Investigación, Desarrollo e Innovación, Benito Roggio Ambiental, Jerónimo Salguero 3800, 1425), Buenos Aires, Argentina
| | - Galo J A A Soler-Illia
- Instituto de Nanosistemas, UNSAM, CONICET, 25 de mayo 1021, San Martín, 1650), Buenos Aires, Argentina
| | - Paula C Angelomé
- Gerencia Química Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, San Martín, 1650), Buenos Aires, Argentina
| |
Collapse
|
26
|
Affiliation(s)
- Thomas E. Shaw
- Department of Chemistry and the Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
| | - Logesh Mathivathanan
- Department of Chemistry & Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Titel Jurca
- Department of Chemistry and the Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
27
|
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
28
|
Friščić T, Mottillo C, Titi HM. Mechanochemistry for Synthesis. Angew Chem Int Ed Engl 2019; 59:1018-1029. [DOI: 10.1002/anie.201906755] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Tomislav Friščić
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
- Laboratoire SPCMIB, CNRS UMR 5068 Université de Toulouse UPS 118 Route de Narbonne 31062 Toulouse Cedex 09 France
| | - Cristina Mottillo
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| | - Hatem M. Titi
- Department of Chemistry McGill University 801 Sherbrooke St. W. H3A 0B8 Montreal Canada
| |
Collapse
|
29
|
Holthoff JM, Engelage E, Kowsari AB, Huber SM, Weiss R. Noble Metal Corrosion: Halogen Bonded Iodocarbenium Iodides Dissolve Elemental Gold-Direct Access to Gold-Carbene Complexes. Chemistry 2019; 25:7480-7484. [PMID: 30994943 DOI: 10.1002/chem.201901583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 01/13/2023]
Abstract
A common method to dissolve elemental gold involves the combination of an oxidant with a Lewis base that coordinates to the gold surface, thus lowering the metal's redox potential. Herein we report the usage of organic iodide salts, which provide both oxidative power and a coordinating ligand, to dissolve gold under formation of organo-gold complexes. The obtained products were identified as AuIII complexes, all featuring Au-C bonds, as shown by X-ray single-crystal analysis, and can be isolated in good yields. Additionally, our method provides direct access to N-heterocyclic carbene (NHC-type) complexes and avoids costly organometallic precursors. The investigated complexes show dynamic behavior in acetonitrile and in the case of the NHC(-type) complexes, the involved species could be identified as a monocarbene [AuI3 (carbene)] and biscarbene complex [AuI2 (carbene)2 ]+ .
Collapse
Affiliation(s)
- Jana M Holthoff
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Elric Engelage
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Alexander B Kowsari
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Stefan M Huber
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801, Bochum, Germany
| | - Robert Weiss
- Institut für Organische Chemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestrasse 42, 91054, Erlangen, Germany
| |
Collapse
|
30
|
Beillard A, Bantreil X, Métro TX, Martinez J, Lamaty F. Alternative Technologies That Facilitate Access to Discrete Metal Complexes. Chem Rev 2019; 119:7529-7609. [PMID: 31059243 DOI: 10.1021/acs.chemrev.8b00479] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Organometallic complexes: these two words jump to the mind of the chemist and are directly associated with their utility in catalysis or as a pharmaceutical. Nevertheless, to be able to use them, it is necessary to synthesize them, and it is not always a small matter. Typically, synthesis is via solution chemistry, using a round-bottom flask and a magnetic or mechanical stirrer. This review takes stock of alternative technologies currently available in laboratories that facilitate the synthesis of such complexes. We highlight five such technologies: mechanochemistry, also known as solvent-free chemistry, uses a mortar and pestle or a ball mill; microwave activation can drastically reduce reaction times; ultrasonic activation promotes chemical reactions because of cavitation phenomena; photochemistry, which uses light radiation to initiate reactions; and continuous flow chemistry, which is increasingly used to simplify scale-up. While facilitating the synthesis of organometallic compounds, these enabling technologies also allow access to compounds that cannot be obtained in any other way. This shows how the paradigm is changing and evolving toward new technologies, without necessarily abandoning the round-bottom flask. A bright future is ahead of the organometallic chemist, thanks to these novel technologies.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Campus Triolet, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
31
|
Robertson JC, Coote ML, Bissember AC. Synthetic applications of light, electricity, mechanical force and flow. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0094-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Fang S, Tao T, Cao H, He M, Zeng X, Ning P, Zhao H, Wu M, Zhang Y, Sun Z. Comprehensive characterization on Ga (In)-bearing dust generated from semiconductor industry for effective recovery of critical metals. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 89:212-223. [PMID: 31079734 DOI: 10.1016/j.wasman.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Gallium (indium)-bearing dust generated from semiconductor industry is an important secondary resource for critical metal recycling. However, the diverse and distinct physicochemical natures of such waste material have made its recycling less effective, e.g. low extraction rate and complex treatment procedures. This research is devoted to gaining in-depth knowledge of the physical and chemical properties of such waste, including the chemical composition, physical phases, particle size distribution and chemical-thermal properties with a series of technologies. As a consequence, the occurrence and distribution of GaN and metallic indium phases are found to be crucial to efficient metal recycling. The thermal-chemical behavior shows that continuous oxidation occurred in the air atmosphere, indicating that heat-treatment followed by acid leaching is feasible to improve their recycling efficiencies. This process is able to leach 80.35% of gallium and 95.78% of indium with one-step operation. Furthermore, different treatment strategies for the waste material are preliminarily evaluated and discussed for the aim of metal recovery. The results show that gallium can be selectively recycled with recycling rate of 89.59% using alkaline leaching. With this research, the understanding on the recyclability of different metals and possibilities of selective recovery can be improved. It provides guidelines during the stage of decision-making for critical metal recycling in order to achieve efficient resource circulation.
Collapse
Affiliation(s)
- Sheng Fang
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tianyi Tao
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongbin Cao
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingming He
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xianlai Zeng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Pengge Ning
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhao
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingtao Wu
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Zhang
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Sun
- Beijing Engineering Research Center of Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production & Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
33
|
Michalchuk AAL, Tumanov IA, Boldyreva EV. Ball size or ball mass – what matters in organic mechanochemical synthesis? CrystEngComm 2019. [DOI: 10.1039/c8ce02109k] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of milling ball mass, size and material are isolated for a model mechanochemical co-crystallisation.
Collapse
Affiliation(s)
- Adam A. L. Michalchuk
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- EaStCHEM School of Chemistry
- University of Edinburgh
| | - Ivan A. Tumanov
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- Boreskov Institute of Catalysis
- Siberian Branch of the Russian Academy of Sciences
| | - Elena V. Boldyreva
- Novosibirsk State University
- Novosibirsk
- Russian Federation
- Boreskov Institute of Catalysis
- Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
34
|
Wang C, Hill M, Theard B, Mack J. A solvent-free mechanochemical synthesis of polyaromatic hydrocarbon derivatives. RSC Adv 2019; 9:27888-27891. [PMID: 35530502 PMCID: PMC9070754 DOI: 10.1039/c9ra04921e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/22/2019] [Indexed: 01/09/2023] Open
Abstract
Polyaromatic hydrocarbons are central molecules in the future of nanotechnology. However, the synthesis of these molecules is limited by their lack of solubility in solvents, especially green solvents, their ease of oxidation in solution and use of harmful reagents. Solvent-free mechanochemistry has been shown to have excellent potential for these types of molecules and should provide a much more environmentally benign approach for the synthesis of this very important class of molecules. This report details the use of mechanochemistry on an iterative strategy for the synthesis of polyaromatic hydrocarbon derivatives. A solvent-free use of mechanochemistry on an iterative strategy for the synthesis of polyaromatic hydrocarbon derivatives.![]()
Collapse
Affiliation(s)
- Cong Wang
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - Malik Hill
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - Brandon Theard
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| | - James Mack
- Department of Chemistry
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
35
|
Shaw TE, Shultz LR, Garayeva LR, Blair RG, Noll BC, Jurca T. Mechanochemical routes for the synthesis of acetyl- and bis-(imino)pyridine ligands and organometallics. Dalton Trans 2018; 47:16876-16884. [PMID: 30351333 DOI: 10.1039/c8dt03608j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Organometallic precatalysts play a pivotal role in organic synthesis. However, their preparation often relies on multiple time, energy, and solvent intensive steps, including the synthesis of supporting organic ligand structures, and finally installation on the desired metal centres. We report the sustainable mechanochemical synthesis of acetyl- and bis-(imino)pyridine pincer complexes, a ubiquitous ligand class for organometallic precatalysts. The approach is extended to the one-pot synthesis of acetyl(imino)pyridine-CoCl2, where the ligand is formed in situ.
Collapse
Affiliation(s)
- Thomas E Shaw
- Department of Chemistry and the Energy Conversion and Propulsion Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA.
| | - Lorianne R Shultz
- Department of Chemistry and the Energy Conversion and Propulsion Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA.
| | - Louiza R Garayeva
- Department of Chemistry and the Energy Conversion and Propulsion Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA.
| | - Richard G Blair
- Florida Space Institute, University of Central Florida, 12354 Research Parkway, Suite 214, Orlando, FL 32826, USA
| | - Bruce C Noll
- Bruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711, USA
| | - Titel Jurca
- Department of Chemistry and the Energy Conversion and Propulsion Cluster, University of Central Florida, 4353 Scorpius Street, Orlando, FL 32816, USA.
| |
Collapse
|
36
|
Hermann GN, Unruh MT, Jung S, Krings M, Bolm C. Mechanochemical Rhodium(III)‐ and Gold(I)‐Catalyzed C−H Bond Alkynylations of Indoles under Solventless Conditions in Mixer Mills. Angew Chem Int Ed Engl 2018; 57:10723-10727. [DOI: 10.1002/anie.201805778] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Gary N. Hermann
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marvin T. Unruh
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Se‐Hyeong Jung
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Maik Krings
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
37
|
Hermann GN, Unruh MT, Jung S, Krings M, Bolm C. Mechanochemical Rhodium(III)‐ and Gold(I)‐Catalyzed C−H Bond Alkynylations of Indoles under Solventless Conditions in Mixer Mills. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805778] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gary N. Hermann
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Marvin T. Unruh
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Se‐Hyeong Jung
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Maik Krings
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Carsten Bolm
- Institute of Organic ChemistryRWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
38
|
Liu W, Oliver AG, Smith BD. Macrocyclic Receptor for Precious Gold, Platinum, or Palladium Coordination Complexes. J Am Chem Soc 2018; 140:6810-6813. [PMID: 29787255 DOI: 10.1021/jacs.8b04155] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two macrocyclic tetralactam receptors are shown to selectively encapsulate anionic, square-planar chloride and bromide coordination complexes of gold(III), platinum(II), and palladium(II). Both receptors have a preorganized structure that is complementary to its precious metal guest. The receptors do not directly ligate the guest metal center but instead provide an array of arene π-electron donors that interact with the electropositive metal and hydrogen-bond donors that interact with the outer electronegative ligands. This unique mode of supramolecular recognition is illustrated by six X-ray crystal structures showing receptor encapsulation of AuCl4-, AuBr4-, PtCl4-2, or Pd2Cl6-2. In organic solution, the 1:1 association constants correlate with specific supramolecular features identified in the solid state. Technical applications using these receptors are envisioned in a wide range of fields that involve precious metals, including mining, recycling, catalysis, nanoscience, and medicine.
Collapse
Affiliation(s)
- Wenqi Liu
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame , Indiana 46556 , United States
| | - Allen G Oliver
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame , Indiana 46556 , United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry , University of Notre Dame , 236 Nieuwland Science Hall, Notre Dame , Indiana 46556 , United States
| |
Collapse
|