1
|
Wendt P, Bader J, Waltersmann PL, Wendt P, Schröder JH, Keßler M, Stammler HG, Neumann B, Delp A, Paesler F, Schulte M, Hoge B. Halogen Bonding in N-Alkyl-Bromo-/Lodo-Pyridinium Salts and its Application in Chromatography. Chemistry 2024; 30:e202403062. [PMID: 39316035 DOI: 10.1002/chem.202403062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024]
Abstract
The alkylation of 3-/4-bromo- and -iodopyridine with methyl triflate smoothly affords the corresponding N-methylpyridinium triflate salts. An anion exchange with NaI or [PPh4]Y (Y=Cl, Br, I) yields the corresponding halide salts. Most of them could be structurally characterized and their strong halogen bonds were investigated. While the halogen atom of 4-halogenopyridinium is susceptible to nucleophilic substitution, 3-halogenopyridinium ions are far more stable against nucleophilic attacks. Due to the comparable interaction strength of halogen bonds and hydrogen bonds, the latter of which is widely used in chromatography, the potential of 3-halogenopyridinium moieties for an application in chromatography is obvious and was successfully employed in affinity chromatography of different proteins.
Collapse
Affiliation(s)
- Peter Wendt
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Julia Bader
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Paul L Waltersmann
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Peter Wendt
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Jan-Hendrik Schröder
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Mira Keßler
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Axel Delp
- Chromatography & Porous Materials, Merck KgaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Franziska Paesler
- Chromatography & Porous Materials, Merck KgaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Michael Schulte
- Chromatography & Porous Materials, Merck KgaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Berthold Hoge
- Center for Molecular Materials, Inorganic Chemistry and Structural Chemistry Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| |
Collapse
|
2
|
Mondal H. Halogen and Chalcogen Activation by Nucleophilic Catalysis. Chemistry 2024; 30:e202402261. [PMID: 39039960 DOI: 10.1002/chem.202402261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/04/2024] [Accepted: 07/21/2024] [Indexed: 07/24/2024]
Abstract
The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents. With the emergence of solid halogen carriers such as N-halosuccinimides, and halohydantoins as popular sources of halonium ions, the past decade has witnessed enormous growth in the development of new catalytic strategies for halofunctionalization. This review aims to provide a nuanced perspective on nucleophilic activators and their roles in halogen activation. It will highlight critical discoveries in effecting racemic and asymmetric variants of these reactions, driven by the development of new catalysts, activation modes, and improved understanding of chemical reactivity and reaction kinetics.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
3
|
Shi H, Zhang J, Li X, He J, Sun Y, Wu J, Du Y. Thianthrene/TfOH-catalyzed electrophilic halogenations using N-halosuccinimides as the halogen source. Chem Sci 2024; 15:13058-13067. [PMID: 39148788 PMCID: PMC11323329 DOI: 10.1039/d4sc04461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Organohalides are vital organic building blocks with applications spanning various fields. However, direct halogenation of certain neutral or unreactive substrates by using solely the regular halogenating reagents has proven challenging. Although various halogenation approaches via activating halogenating reagents or substrates have emerged, a catalytic system enabling broad substrate applicability and diverse halogenation types remains relatively underexplored. Inspired by the halogenation of arenes via thianthrenation of arenes, here we report that thianthrene, in combined use with trifluoromethanesulfonic acid (TfOH), could work as an effective catalytic system to activate regular halogenating reagents (NXS). This new protocol could accomplish multiple types of halogenation of organic compounds including aromatics, olefins, alkynes and ketones. The mechanism study indicated that a highly reactive electrophilic halogen thianthrenium species, formed in situ from the reaction of NXS with thianthrene in the presence of TfOH, was crucial for the efficient halogenation process.
Collapse
Affiliation(s)
- Haofeng Shi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jingran Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Xuemin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jiaxin He
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yuli Sun
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Jialiang Wu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University Tianjin 300072 China
| |
Collapse
|
4
|
Liu J, Deng R, Liang X, Zhou M, Zheng P, Chi YR. Carbene-Catalyzed and Pnictogen Bond-Assisted Access to P III-Stereogenic Compounds. Angew Chem Int Ed Engl 2024; 63:e202404477. [PMID: 38669345 DOI: 10.1002/anie.202404477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 04/28/2024]
Abstract
Intermolecular pnictogen bonding (PnB) catalysis has received increased interest in non-covalent organocatalysis. It has been demonstrated that organic electron-deficient pnictogen atoms can act as prospective Lewis acids. Here, we present a catalytic approach for the asymmetric synthesis of chiral PIII compounds by combining intramolecular PnB interactions and carbene catalysis. Our design features a pre-chiral phosphorus molecule bearing two electron-withdrawing benzoyl groups, resulting in the formation of a σ-hole at the P atom. X-ray and non-covalent interaction (NCI) analysis indicate that the model substrates exhibit intrinsic PnB interaction between the oxygen atom of the formyl group and the phosphorus atom. This induces a conformational locking effect, leading to the crystallization of the phosphorus substrate in a preferred conformation (P212121 chiral group). Under the catalysis of N-heterocyclic carbene, the aldehyde moiety activated by the pnictogen bond selectively reacts with an alcohol to yield the corresponding chiral monoester/phosphorus product with excellent enantioselectivity. This Lewis acidic phosphorus center, aroused by the non-polarized intramolecular pnictogen bond interaction, assists in conformational and selective regulations, providing unique opportunities for catalysis and beyond.
Collapse
Affiliation(s)
- Jianjian Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Rui Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Xuyang Liang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Mali Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 550025, Guiyang, China
- School of chemistry, chemical engineering, and biotechnology, Nanyang Technological University, 637371, Singapore, Singapore
| |
Collapse
|
5
|
Yang X, Gao H, Yan J, Zhou J, Shi L. Intramolecular chaperone-assisted dual-anchoring activation (ICDA): a suitable preorganization for electrophilic halocyclization. Chem Sci 2024; 15:6130-6140. [PMID: 38665529 PMCID: PMC11041335 DOI: 10.1039/d4sc00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The halocyclization reaction represents one of the most common methodologies for the synthesis of heterocyclic molecules. Many efforts have been made to balance the relationship between structure, reactivity and selectivity, including the design of new electrophilic halogenation reagents and the utilization of activating strategies. However, discovering universal reagents or activating strategies for electrophilic halocyclization remains challenging due to the case-by-case practice for different substrates or different cyclization models. Here we report an intramolecular chaperone-assisted dual-anchoring activation (ICDA) model for electrophilic halocyclization, taking advantage of the non-covalent dual-anchoring orientation as the driving force. This protocol allows a practical, catalyst-free and rapid approach to access seven types of small-sized, medium-sized, and large-sized heterocyclic units and to realize polyene-like domino halocyclizations, as exemplified by nearly 90 examples, including a risk-reducing flow protocol for gram-scale synthesis. DFT studies verify the crucial role of ICDA in affording a suitable preorganization for transition state stabilization and X+ transfer acceleration. The utilization of the ICDA model allows a spatiotemporal adjustment to straightforwardly obtain fast, selective and high-yielding synthetic transformations.
Collapse
Affiliation(s)
- Xihui Yang
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Haowei Gao
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Jiale Yan
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| | - Jia Zhou
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
- Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
| | - Lei Shi
- School of Science (Shenzhen), School of Chemistry and Chemical Engineering, Harbin Institute of Technology Shenzhen 518055 China
| |
Collapse
|
6
|
Grödler D, Burguera S, Frontera A, Strub E. Investigating Recurrent Matere Bonds in Pertechnetate Compounds. Chemistry 2024; 30:e202400100. [PMID: 38385852 DOI: 10.1002/chem.202400100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
In this manuscript we evaluate the X-ray structure of five new pertechnetate derivatives of general formula [M(H2O)4(TcO4)2], M=Mg, Co, Ni, Cu, Zn (compounds 1-5) and one perrhenate compound Zn(H2O)4(ReO4)2 (6). In these complexes the metal center exhibits an octahedral coordination with the pertechnetate units as axial ligands. All compounds exhibit the formation of directional Tc⋅⋅⋅O Matere bonds (MaBs) that propagate the [M(H2O)4(TcO4)2], into 1D supramolecular polymers in the solid state. Such 1D polymers are linked, generating 2D layers, by combining additional MaBs and hydrogen bonds (HBs). Such concurrent motifs have been analyzed theoretically, suggesting the noncovalent σ-hole nature of the MaBs. The interaction energies range from weak (~ -2 kcal/mol) for the MaBs to strong (~ -30 kcal/mol) for the MaB+HB assemblies, where HB dominates. In case of M=Zn, the corresponding perrhenate Zn(H2O)4(ReO4)2 complex, has been also synthesized for comparison purposes, resulting in the formation of an isostructural X-ray structure, corroborating the structure-directing role of Matere bonds.
Collapse
Affiliation(s)
- Dennis Grödler
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Sergi Burguera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN
| | - Erik Strub
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| |
Collapse
|
7
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
8
|
Wu HZ, Teng ZS, Ke YX, Zou Y, Gao P, Li Y, Zhou CH, Zang ZL. Electrochemical trifluoroalkylation/annulation for the synthesis of CF 3-functionalized tetrahydroquinolines and dihydroquinolinones. Org Biomol Chem 2023; 21:8579-8583. [PMID: 37853839 DOI: 10.1039/d3ob00987d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Tuning the electronic structure of protecting groups on the nitrogen atom of substrates has emerged as an effective strategy to achieve the tandem trifluoromethylation/C(sp2)-H annulation using Langlois' reagent as the CF3 source for the electrochemical synthesis of functionalized tetrahydroquinolines and dihydroquinolinones.
Collapse
Affiliation(s)
- Hao-Zeng Wu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Shan Teng
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu-Xin Ke
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yu Zou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Ping Gao
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Yue Li
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
9
|
Choudhary K, Biswas RG, Manna A, Singh VK. Kinetic Resolution of Electron-Deficient Bromohydrins via Copper(II)-Catalyzed C-C Bond Cleavage. J Org Chem 2023; 88:12041-12053. [PMID: 37533192 DOI: 10.1021/acs.joc.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we report a nonenzymatic kinetic resolution (KR) of α,β-unsaturated ketone-derived bromohydrins (up to s = 211) with N-bromosuccinimide (NBS) in the presence of a chiral Cu(II)-Box catalyst via the C-C bond cleavage of the fast reacting enantiomer. A one-pot synthesis-KR approach of the same has also been realized with excellent enantioselectivities (up to 99% ee). Both protocols are found to be effective for a variety of substrates, leading to enantioenriched bromohydrins. The synthetic utility of this process has been demonstrated by exploring a new strategy to convert the resolved enantiomer to an optically active epoxide.
Collapse
Affiliation(s)
- Kavita Choudhary
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Rayhan G Biswas
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Abhijit Manna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
10
|
Panda J, Sahoo J, Dutta J, Biswal HS, Sahoo G. Spectroscopic and Computational Study of the Organocatalytic Umpolung of Bromocations: An Accelerated Stereoselective Dibromination Protocol. Chemistry 2023; 29:e202300675. [PMID: 37276362 DOI: 10.1002/chem.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Herein, organocatalytically achieved polarity reversal of cationic bromine is presented. The proven bromocation source N-bromosuccinimide (NBS) was converted to a superior bromoanion reagent by H/Br exchange with a secondary amine, substantiated with spectroscopic and computational evidence. The concept has further been used in a successfully accelerated organocatalyzed dibromination of olefins in a non-hazardous, commercially viable process with a wide range of substrate scope. The reactivity of key entities observed through NMR kinetics and reaction acceleration using only 10 mol % of catalyst account for its major success. The nucleophilicity of the bromoanion was found to be superior in comparison to other nucleophiles such as MeOH and H2 O also the protocol dominates over the competing allylic bromination reaction.
Collapse
Affiliation(s)
- Jeetendra Panda
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Jigyansa Sahoo
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Himansu Sekhar Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Gokarneswar Sahoo
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| |
Collapse
|
11
|
Li Y, Ge Y, Sun R, Yang X, Huang S, Dong H, Liu Y, Xue H, Ma X, Fu H, Chen Z. Balancing Activity and Stability in Halogen-Bonding Catalysis: Iodopyridinium-Catalyzed One-Pot Synthesis of 2,3-Dihydropyridinones. J Org Chem 2023; 88:11069-11082. [PMID: 37458502 DOI: 10.1021/acs.joc.3c01028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A one-pot cascade reaction for 2,3-dihydropyridinone synthesis was accomplished with 3-fluoro-2-iodo-1-methylpyridinium triflate as the halogen bond catalyst. The desired [4+2] cycloaddition products, bearing aryl, heteroaryl, alkyl, and alicyclic substituents, were successfully furnished in 28-99% yields. Mechanistic investigations proved that a strong halogen-bonding interaction forged between the iodopyridinium catalyst and imine intermediate was essential to dynamically masking the vulnerable C-I bond on the catalyst and accelerating the following aza-Diels-Alder reaction.
Collapse
Affiliation(s)
- Yi Li
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Rui Sun
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Xiao Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shipeng Huang
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Huajian Dong
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Yunyao Liu
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Haodan Xue
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Xiaoyan Ma
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zeqin Chen
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China
| |
Collapse
|
12
|
Braddock DC, Lancaster BMJ, Tighe CJ, White AJP. Surmounting Byproduct Inhibition in an Intermolecular Catalytic Asymmetric Alkene Bromoesterification Reaction as Revealed by Kinetic Profiling. J Org Chem 2023. [PMID: 37327488 DOI: 10.1021/acs.joc.3c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Kinetic profiling has shown that a (DHQD)2PHAL-catalyzed intermolecular asymmetric alkene bromoesterification reaction is inhibited by primary amides, imides, hydantoins, and secondary cyclic amides, which are byproducts of common stoichiometric bromenium ion sources. Two approaches to resolving the inhibition are presented, enabling the (DHQD)2PHAL loading to be dropped from 10 to 1 mol % while maintaining high bromoester conversions in 8 h or less. Iterative post-reaction recrystallizations enabled a homochiral bromonaphthoate ester to be synthesized using only 1 mol % (DHQD)2PHAL.
Collapse
Affiliation(s)
- D Christopher Braddock
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Ben M J Lancaster
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| | - Christopher J Tighe
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, Imperial College Road, London SW7 2AZ, U.K
| | - Andrew J P White
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, 82 Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
13
|
Moradkhani M, Naghipour A, Tyula YA, Abbasi S. Competition of hydrogen, tetrel, and halogen bonds in COCl 2-HOX (X=F, Cl, Br, I) complexes. J Mol Graph Model 2023; 122:108482. [PMID: 37058996 DOI: 10.1016/j.jmgm.2023.108482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
The present study investigates the competition between hydrogen, halogen, and tetrel bonds from the interaction of COCl2 with HOX using quantum chemistry simulations at the MP2/aug-cc-pVTZ computational level, in which five configurations were optimized, including adducts I -V. Two hydrogen bonds, two halogen bonds, and two tetrel bonds were obtained for five forms of adducts. The compounds were investigated using spectroscopic, geometry, and energy properties. Adduct I complexes are more stable than others, and adduct V halogen bonded complexes are more stable than adduct II complexes. These results are in agreement with their NBO and AIM results. The stabilization energy of the XB complexes depends on the nature of both the Lewis acid and base. The stretching frequency of the O-H bond in adducts I, II, III, and IV displayed a redshift, and a blue shift was observed in adduct V. The results for the O-X bond showed a blue shift in adducts I and III and a red shift in adducts II, IV, and V. The nature and characteristics of three types of interactions are investigated via NBO analysis and atoms in molecules (AIM).
Collapse
Affiliation(s)
| | - Ali Naghipour
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, 69315-516, Iran.
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, 69315-516, Iran
| | - Shahryar Abbasi
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, 69315-516, Iran
| |
Collapse
|
14
|
Iodomethane as an organocatalyst for the aerobic ortho-selective trifluoromethylation of pyridines. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Xia N, Han J, Xie F, Gong G, Wang L, Wang J, Chen S. Construction of Halogen-Bonded Organic Frameworks (XOFs) as Novel Efficient Iodinating Agents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43621-43627. [PMID: 36099250 DOI: 10.1021/acsami.2c11598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The structural diversity and the various applications of organic frameworks have attracted much attention in recent years. Recently, halogen-bonded organic frameworks (XOFs) became a novel member of these materials, thereby facilitating the exploration of the interesting structures as well as functions. Here we present two types of [N···I+···N] connected XOFs (XOF-TPy and XOF-TPEB) with two tridentate ligands as building blocks. XOF-TPy and XOF-TPEB were characterized by 1H NMR, UV-vis, X-ray photoelectron spectroscopy (XPS), IR, SEM, and HR-TEM. Two-dimensional (2D) structural models were established based on powder X-ray diffraction (PXRD) data and theoretical simulations. Further experiment showed that these XOFs were excellent iodinating agents for the substituted arylboronic acids with either the electron-donating or electron-withdrawing groups upon heating without any catalyst. This research not only brings further understanding to the XOFs but also extends the applications of XOFs.
Collapse
Affiliation(s)
- Ning Xia
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jixin Han
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Fei Xie
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Guanfei Gong
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Jike Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| |
Collapse
|
16
|
Bera SK, Maharana RR, Samanta K, Mal P. CBr 4 catalyzed activation of α,β-unsaturated ketones. Org Biomol Chem 2022; 20:7085-7091. [PMID: 36039810 DOI: 10.1039/d2ob01223e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have shown here that weak interactions such as halogen bonding (XB) can be used to activate the carbonyl group of α,β-unsaturated ketones. Carbon tetrabromide (CBr4) has been used as the sole reagent for the selective synthesis of flavanones and aza-flavanones from the corresponding 2'-hydroxy- and 2'-aminochalcones under metal-free and additive-free conditions. DFT calculations support the catalytic role of XB between the oxygen of chalcones and CBr4 in these reactions.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Rajat Rajiv Maharana
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India.
| | - Kousik Samanta
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
17
|
Liu J, Zhou M, Deng R, Zheng P, Chi YR. Chalcogen bond-guided conformational isomerization enables catalytic dynamic kinetic resolution of sulfoxides. Nat Commun 2022; 13:4793. [PMID: 35970848 PMCID: PMC9378665 DOI: 10.1038/s41467-022-32428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Conformational isomerization can be guided by weak interactions such as chalcogen bonding (ChB) interactions. Here we report a catalytic strategy for asymmetric access to chiral sulfoxides by employing conformational isomerization and chalcogen bonding interactions. The reaction involves a sulfoxide bearing two aldehyde moieties as the substrate that, according to structural analysis and DFT calculations, exists as a racemic mixture due to the presence of an intramolecular chalcogen bond. This chalcogen bond formed between aldehyde (oxygen atom) and sulfoxide (sulfur atom), induces a conformational locking effect, thus making the symmetric sulfoxide as a racemate. In the presence of N-heterocyclic carbene (NHC) as catalyst, the aldehyde moiety activated by the chalcogen bond selectively reacts with an alcohol to afford the corresponding chiral sulfoxide products with excellent optical purities. This reaction involves a dynamic kinetic resolution (DKR) process enabled by conformational locking and facile isomerization by chalcogen bonding interactions.
Collapse
Affiliation(s)
- Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
18
|
Kato N, Nanjo T, Takemoto Y. A Pyridine-Based Donor–Acceptor Molecule: A Highly Reactive Organophotocatalyst That Enables the Reductive Cleavage of C–Br Bonds through Halogen Bonding. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natsuki Kato
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
19
|
Davis J, Gharaee M, Karunaratne CV, Cortes Vazquez J, Haynes M, Luo W, Nesterov VN, Cundari T, Wang H. Asymmetric Synthesis of Chromans Through Bifunctional Enamine-Metal Lewis Acid Catalysis. Chemistry 2022; 28:e202200224. [PMID: 35298095 DOI: 10.1002/chem.202200224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 11/09/2022]
Abstract
Cooperative enamine-metal Lewis acid catalysis has emerged as a powerful tool to construct carbon-carbon and carbon-heteroatom bond forming reactions. A concise synthetic method for asymmetric synthesis of chromans from cyclohexanones and salicylaldehydes has been developed to afford tricyclic chromans containing three consecutive stereogenic centers in good yields (up to 87 %) and stereoselectivity (up to 99 % ee and 11 : 1 : 1 dr). This difficult organic transformation was achieved through bifunctional enamine-metal Lewis acid catalysis. It is believed that the strong activation of the salicylaldehydes through chelating to the metal Lewis acid and the bifunctional nature of the catalyst accounts for the high yields and enantioselectivity of the reaction. The absolute configurations of the chroman products were established through X-ray crystallography. DFT calculations were conducted to understand the mechanism and stereoselectivity of this reaction.
Collapse
Affiliation(s)
- Jacqkis Davis
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Mojgan Gharaee
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | | | | | - Mikayla Haynes
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Weiwei Luo
- School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | | | - Thomas Cundari
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| | - Hong Wang
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
20
|
|
21
|
Li Y, Sun Y, Meng L, Li Q, Zeng Y. Halogen Bond Catalysis on Carbonyl–Olefin
Ring‐Closing
Metathesis Reaction: Comparison with Lewis Acid Catalysis. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| | - Yuanyuan Sun
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| | - Lingpeng Meng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, College of Chemistry& Chemical Engineering Yantai University Yantai China 264005
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nano‐materials Hebei Normal University Shijiazhuang China 050024
| |
Collapse
|
22
|
Wang L, Zhai L, Chen J, Gong Y, Wang P, Li H, She X. Catalyst-Free 1,2-Dibromination of Alkenes Using 1,3-Dibromo-5,5-dimethylhydantoin (DBDMH) as a Bromine Source. J Org Chem 2022; 87:3177-3183. [PMID: 35133816 DOI: 10.1021/acs.joc.1c02906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A direct 1,2-dibromination method of alkenes is realized using 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) as a bromine source. This reaction proceeds under mild reaction conditions without the use of a catalyst and an external oxidant. Various sorts of alkene substrates are transformed into the corresponding 1,2-dibrominated products in good to excellent yields with broad substrate scope and exclusive diastereoselectivity. This method offers a green and practical approach to synthesize vicinal dibromide compounds.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Lele Zhai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Jinyan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Yulin Gong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Peng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Huilin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| | - Xuegong She
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
23
|
Zhang H, Wang W, Wang B, Tan H, Jiao N, Song S. Electrophilic amidomethylation of arenes with DMSO/MeCN reagents. Org Chem Front 2022. [DOI: 10.1039/d2qo00181k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient electrophilic amidomethylation of aromatics was described with DMSO as the CH2 source and nitrile as the nitrogen source.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Bingding Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Hui Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Jiangsu 210023, China
| |
Collapse
|
24
|
Zhang K, Wang Y, He C, Zhou Y, Wang D, Hu M, Duan XH, Liu L. Halogen bond promoted aryl migration of allylic alcohols under visible light irradiation. Org Chem Front 2022. [DOI: 10.1039/d2qo01035f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and catalyst-free radical addition/1,2-aryl migration cascade process of ally alcohol driven by halogen bond was developed under visible light irradiation, featuring mild conditions, practical procedures, and broad substrate scope.
Collapse
Affiliation(s)
- Keyuan Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yulong Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chonglong He
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youkang Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Danning Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
25
|
Shukla PM, Bhattacharya A, Pratap A, Pradhan A, Sinha P, Soni T, Maji B. HFIP-promoted halo-carbocyclizations of N- and O-tethered arene–alkene substrates to access all halo (X = Br, I, Cl)-functionalized tetrahydroquinoline and chroman cores. Org Biomol Chem 2022; 20:8136-8144. [DOI: 10.1039/d2ob01597h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Herein, a HFIP-promoted mild and efficient method for the synthesis of all halo (X = Br, I, Cl)-functionalized tetrahydroquinoline and chroman building blocks is disclosed.
Collapse
Affiliation(s)
- Pushpendra Mani Shukla
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aditya Bhattacharya
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Aniruddh Pratap
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Akash Pradhan
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Puspita Sinha
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Tanishk Soni
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| | - Biswajit Maji
- Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak-484886, Madhya Pradesh, India
| |
Collapse
|
26
|
Menard T, Laverny A, Denmark SE. Synthesis of Enantioenriched 3,4-Disubstituted Chromans through Lewis Base Catalyzed Carbosulfenylation. J Org Chem 2021; 86:14290-14310. [PMID: 34672591 DOI: 10.1021/acs.joc.1c02290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method for the catalytic, enantioselective, carbosulfenylation of alkenes to construct 3,4-disubstituted chromans is described. Alkene activation proceeds through the intermediacy of enantioenriched, configurationally stable thiiranium ions generated from catalytic, Lewis base activation of an electrophilic sulfenylating agent. The transformation affords difficult-to-generate, enantioenriched, 3,4-disubstituted chromans in moderate to high yields and excellent enantioselectivities. A variety of substituents are compatible including electronically diverse functional groups as well as several functional handles such as aryl halides, esters, anilines, and phenols. The resulting thioether moiety is amenable to a number of functional group manipulations and transformations. Notably, the pendant sulfide was successfully cleaved to furnish a free thiol which readily provides access to most sulfur-containing functional groups which are present in natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Travis Menard
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Aragorn Laverny
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
27
|
Chen L, Dang J, Du J, Wang C, Mo Y. Hydrogen and Halogen Bonding in Homogeneous External Electric Fields: Modulating the Bond Strengths. Chemistry 2021; 27:14042-14050. [PMID: 34319620 DOI: 10.1002/chem.202102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/28/2022]
Abstract
Recent years have witnessed various fascinating phenomena arising from the interactions of noncovalent bonds with homogeneous external electric fields (EEFs). Here we performed a computational study to interpret the sensitivity of intrinsic bond strengths to EEFs in terms of steric effect and orbital interactions. The block-localized wavefunction (BLW) method, which combines the advantages of both ab initio valence bond (VB) theory and molecular orbital (MO) theory, and the subsequent energy decomposition (BLW-ED) approach were adopted. The sensitivity was monitored and analyzed using the induced energy term, which is the variation in each energy component along the EEF strength. Systems with single or multiple hydrogen (H) or halogen (X) bond(s) were also examined. It was found that the X-bond strength change to EEFs mainly stems from the covalency change, while generally the steric effect rules the response of H-bonds to EEFs. Furthermore, X-bonds are more sensitive to EEFs, with the key difference between H- and X-bonds lying in the charge transfer interaction. Since phenylboronic acid has been experimentally used as a smart linker in EEFs, switchable sensitivity was scrutinized with the example of the phenylboronic acid dimer, which exhibits two conformations with either antiparallel or parallel H-bonds, thereby, opposite or consistent responses to EEFs. Among the studied systems, the quadruple X-bonds in molecular capsules exhibit remarkable sensitivity, with its interaction energy increased by -95.2 kJ mol-1 at the EEF strength 0.005 a.u.
Collapse
Affiliation(s)
- Li Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jingshuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Juan Du
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA
| |
Collapse
|
28
|
Weiss R, Golisano T, Pale P, Mamane V. Insight into the Modes of Activation of Pyridinium and Bipyridinium Salts in Non‐Covalent Organocatalysis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robin Weiss
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Tamara Golisano
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Patrick Pale
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| | - Victor Mamane
- Institute of Chemistry of Strasbourg, UMR 7177 – LASYROC CNRS Strasbourg University 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
29
|
Bhattacharya A, mani Shukla P, Maji B. “Haliranium Ion”‐Induced Intermolecular Friedel‐Crafts Alkylation in HFIP: Synthesis of β,β‐Diaryl α‐Halo carbonyl Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Aditya Bhattacharya
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| | - Pushpendra mani Shukla
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| | - Biswajit Maji
- Department of Chemistry Indira Gandhi National Tribal University Amarkantak Anuppur-484886 India
| |
Collapse
|
30
|
Kuwano S, Ogino E, Arai T. Enantio- and diastereoselective double Mannich reaction of malononitrile with N-Boc imines using quinine-derived bifunctional organoiodine catalyst. Org Biomol Chem 2021; 19:6969-6973. [PMID: 34337640 DOI: 10.1039/d1ob00796c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A chiral quinine-derived organic base catalyst with halogen bond donor functionality was used to catalyze the asymmetric double Mannich reaction of malononitrile with N-Boc and N-Cbz imines to afford 1,3-diamines in excellent yields with high enantio- and diastereoselectivities. With 2.2 equiv. of a single imine electrophile, symmetrical 1,3-diamines were obtained, whereas, with two different imine partners, unsymmetrically substituted 1,3-diamine was obtained. The monohydration of the double Mannich product was also achieved.
Collapse
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
| | | | | |
Collapse
|
31
|
Bhattacharya A, Shukla PM, Maji B. Highly Selective and Catalytic C-N Bond Cleavage of Tertiary Sulfonamides: Scope and Mechanistic Insight. ACS OMEGA 2021; 6:18988-19005. [PMID: 34337238 PMCID: PMC8320137 DOI: 10.1021/acsomega.1c02276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
A highly chemoselective C-N bond cleavage reaction of p-methoxybenzyl- (PMB), 3,4-dimethoxybenzyl- (DMB), or cinnamyl-substituted tertiary sulfonamides in the presence of catalytic Bi(OTf)3 is presented. A wide range of sulfonamide substrates smoothly furnished the corresponding C-N bond cleavage products in good to excellent yields. Great efforts have been made to obtain insights into the reaction mechanism based on a series of control experiments and mass spectroscopy.
Collapse
|
32
|
Ueyama K, Hayakawa S, Nishio K, Sawaguchi D, Niitsuma K, Michii S, Tsuruoka R, Ozawa M, Torita K, Morita Y, Komatsu T, Haraguchi R, Fukuzawa S. Halogen‐Bonding‐Donor Catalyzed Cyanosilylation of Aldehydes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyohei Ueyama
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shunsuke Hayakawa
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Kazuhiro Nishio
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Daiki Sawaguchi
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Kenta Niitsuma
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shota Michii
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Ryoto Tsuruoka
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Miyuki Ozawa
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Koki Torita
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Yoshitsugu Morita
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Teruyuki Komatsu
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
- Department of Applied Chemistry, Faculty of Engineering Chiba Institute of Technology 2-17-1 Tsudanuma Narashino Chiba 275–0016 Japan
| | - Shin‐ichi Fukuzawa
- Department of Applied Chemistry, Institute of Science and Engineering Chuo University 1-13-27 Kasuga, Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
33
|
Wang W, Li X, Yang X, Ai L, Gong Z, Jiao N, Song S. Oxoammonium salts are catalysing efficient and selective halogenation of olefins, alkynes and aromatics. Nat Commun 2021; 12:3873. [PMID: 34162859 PMCID: PMC8222362 DOI: 10.1038/s41467-021-24174-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
Electrophilic halogenation reactions have been a reliable approach to accessing organohalides. During the past decades, various catalytic systems have been developed for the activation of haleniums. However, there is still a short of effective catalysts, which could cover various halogenation reactions and broad scope of unsaturated compounds. Herein, TEMPO (2,2,6,6-tetramethylpiperidine nitroxide) and its derivatives are disclosed as active catalysts for electrophilic halogenation of olefins, alkynes, and aromatics. These catalysts are stable, readily available, and reactive enough to activate haleniums including Br+, I+ and even Cl+ reagents. This catalytic system is applicable to various halogenations including haloarylation of olefins or dibromination of alkynes, which were rarely realized in previous Lewis base catalysis or Lewis acid catalysis. The high catalytic ability is attributed to a synergistic activation model of electrophilic halogenating reagents, where the carbonyl group and the halogen atom are both activated by present TEMPO catalysis. Organohalides are widely used as synthetic precursors and target products, but for various halogenation reactions there is a need for effective catalysts to activate commercially available haleniums. Here, the authors report that TEMPO and its derivatives are active catalysts for electrophilic halogenation of olefins, alkynes and aromatics, under mild reaction conditions and with good functional group tolerance.
Collapse
Affiliation(s)
- Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xinyao Li
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Lingsheng Ai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Zhiwen Gong
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China.
| |
Collapse
|
34
|
Momiyama N, Izumiseki A, Ohtsuka N, Suzuki T. Correlations between Substituent Effects and Catalytic Activities: A Quantitative Approach for the Development of Halogen-Bonding-Driven Anion-Binding Catalysts. Chempluschem 2021; 86:913-919. [PMID: 34145787 DOI: 10.1002/cplu.202100147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Indexed: 01/07/2023]
Abstract
A quantitative approach for the development of halogen-bonding-driven anion-binding catalysts was studied using 4-substituted perfluorinated iodobenzene. 19 F NMR titrations were used to determine the binding constants K for chloride, and their catalytic activities were evaluated in the allylation reaction of a N-activated pyridine. We discovered that the log K and product yields were linearly correlated, and that they were dependent on the Hammett substituent parameter, σmeta (r2 =0.99). This linear correlation provided a quantitative predictive model for both the binding constant and the reaction yield. Concomitantly, this efficiently permitted the development of a highly active anion-binding catalyst, namely 4-CNC6 F4 I (K=489±5 M-1 ). Additionally, the catalytic activity of 4-CNC6 F4 I was established in the allylation and crotylation of N-activated isoquinolines (7 examples). Overall, this approach highlights the value of quantitative analysis by exploring experimentally informed correlations in the development of halogen bond donor catalysts.
Collapse
Affiliation(s)
- Norie Momiyama
- Institute for Molecular Science, Okazaki, Aichi, 444-8787, Japan.,SOKENDAI, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Atsuto Izumiseki
- Institute for Molecular Science, Okazaki, Aichi, 444-8787, Japan.,SOKENDAI, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Naoya Ohtsuka
- Institute for Molecular Science, Okazaki, Aichi, 444-8787, Japan.,SOKENDAI, The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8787, Japan
| | - Toshiyasu Suzuki
- Institute for Molecular Science, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
35
|
Nishida Y, Suzuki T, Takagi Y, Amma E, Tajima R, Kuwano S, Arai T. A Hypervalent Cyclic Dibenzoiodolium Salt as a Halogen-Bond-Donor Catalyst for the [4+2] Cycloaddition of 2-Alkenylindoles. Chempluschem 2021; 86:741-744. [PMID: 33942571 DOI: 10.1002/cplu.202100089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Indexed: 12/11/2022]
Abstract
A stable, hypervalent cyclic dibenzoiodolium salt acted as a strong halogen bonding (XB)-donor catalyst for [4+2] cycloaddition of 2-alkenylindoles, and not as an oxidizing agent. The cross-[4+2] cycloaddition of 2-vinylindoles with 2-alkenylindoles was catalyzed smoothly by the hypervalent cyclic dibenzoiodolium triflate catalyst to give the tetrahydrocarbazoles in up to 99 % yield with 17 : 1 diastereoselectivity. The hypervalent cyclic dibenzoiodolium salt was also applicable to the Povarov reaction of 2-vinylindole with N-p-methoxyphenyl (PMP) imine to give the indolyl-tetrahydroquinoline in 83 % yield.
Collapse
Affiliation(s)
- Yuki Nishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Yuri Takagi
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Emi Amma
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Ryoya Tajima
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan
| |
Collapse
|
36
|
Yoshida Y, Ishikawa S, Mino T, Sakamoto M. Bromonium salts: diaryl-λ3-bromanes as halogen-bonding organocatalysts. Chem Commun (Camb) 2021; 57:2519-2522. [DOI: 10.1039/d0cc07733j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bromonium salts have been typically but infrequently used as good leaving groups owing to their high nucleofugality. Herein, we report the synthesis of stable bromonium salts and their first catalytic application, with excellent product yield.
Collapse
Affiliation(s)
- Yasushi Yoshida
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Seitaro Ishikawa
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Takashi Mino
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| | - Masami Sakamoto
- Molecular Chirality Research Center
- Graduate School of Engineering
- Chiba University
- 1-33, Yayoi-cho, Inage-ku
- Chiba-Shi
| |
Collapse
|
37
|
Deepa P, Thirumeignanam D. Understanding the impact of anticancer halogenated inhibitors and various functional groups (X = Cl, F, CF 3, CH 3, NH 2, OH, H) of casein kinase 2 (CK2). J Biomol Struct Dyn 2020; 40:5036-5052. [PMID: 33375908 DOI: 10.1080/07391102.2020.1866075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Main focus of study is to understand potency of halogen (X = Br) atom that exists in tetrabromobenzotriazole (TBB) derivatives of crystal CK2 ligand along with hinge region amino acids (VAL45, PHE113, GLU114, VAL116, ASN118) through interaction energy analysis. In turn to attain profound insight on nature of stabilization of core CK2 ligands: 1ZOE-L1, 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 2OXY-L5, 3KXG-L6, 3KXH-L7 -L7 and 3KXM-L8, having four bromine atoms, we attempted to mutate all bromine (X = Br) atoms by various functional groups (X = Cl, F, CF3, CH3, NH2, OH, H) and binding strength along with amino acids was calculated. Most stable ligands exist in mutated NH2 functional groups: 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 3KXM-L8 having interaction energy as -5.21, -14.87, -6.69 and -11.72 kcal/mol respectively, revealing strong binding strength. Second most stable mutated Cl functional group ligands also play a major role in 1ZOH-L3, 2OXX-L4 and 3KXM-L8 having interaction energy as -6.89, -5.37, and -10.48 kcal/mol respectively. Overall, this study will pave way for crystal growth and medicinal chemist to have cleared perceptive about structural properties of CK2 halogenated ligands with new insight on CK2 mutated functional group ligands. Further, it insists us to reuse existing CK2 crystal ligand with more preferable suggested binding contacts in course of new functional groups that lead to anticancer affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
38
|
Zhang H, Toy PH. Halogen Bond‐Catalyzed Friedel−Crafts Reactions of Furans Using a 2,2’‐Bipyridine‐Based Catalyst. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Huimiao Zhang
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong People's Republic of China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong People's Republic of China
| |
Collapse
|
39
|
Adolfsson DE, Tyagi M, Singh P, Deuschmann A, Ådén J, Gharibyan AL, Jayaweera SW, Lindgren AEG, Olofsson A, Almqvist F. Intramolecular Povarov Reactions for the Synthesis of Chromenopyridine Fused 2-Pyridone Polyheterocycles Binding to α-Synuclein and Amyloid-β Fibrils. J Org Chem 2020; 85:14174-14189. [PMID: 33099999 PMCID: PMC7660745 DOI: 10.1021/acs.joc.0c01699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 12/29/2022]
Abstract
A BF3·OEt2 catalyzed intramolecular Povarov reaction was used to synthesize 15 chromenopyridine fused thiazolino-2-pyridone peptidomimetics. The reaction works with several O-alkylated salicylaldehydes and amino functionalized thiazolino-2-pyridones, to generate polyheterocycles with diverse substitution. The synthesized compounds were screened for their ability to bind α-synuclein and amyloid β fibrils in vitro. Analogues substituted with a nitro group bind to mature amyloid fibrils, and the activity moreover depends on the positioning of this functional group.
Collapse
Affiliation(s)
| | - Mohit Tyagi
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | - Pardeep Singh
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | | | - Jörgen Ådén
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | | | | | | | - Anders Olofsson
- Umeå University, Department of Chemistry, 901 87 Umeå, Sweden
| | | |
Collapse
|
40
|
A robust and tunable halogen bond organocatalyzed 2-deoxyglycosylation involving quantum tunneling. Nat Commun 2020; 11:4911. [PMID: 32999276 PMCID: PMC7527348 DOI: 10.1038/s41467-020-18595-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
The development of noncovalent halogen bonding (XB) catalysis is rapidly gaining traction, as isolated reports documented better performance than the well-established hydrogen bonding thiourea catalysis. However, convincing cases allowing XB activation to be competitive in challenging bond formations are lacking. Herein, we report a robust XB catalyzed 2-deoxyglycosylation, featuring a biomimetic reaction network indicative of dynamic XB activation. Benchmarking studies uncovered an improved substrate tolerance compared to thiourea-catalyzed protocols. Kinetic investigations reveal an autoinductive sigmoidal kinetic profile, supporting an in situ amplification of a XB dependent active catalytic species. Kinetic isotopic effect measurements further support quantum tunneling in the rate determining step. Furthermore, we demonstrate XB catalysis tunability via a halogen swapping strategy, facilitating 2-deoxyribosylations of D-ribals. This protocol showcases the clear emergence of XB catalysis as a versatile activation mode in noncovalent organocatalysis, and as an important addition to the catalytic toolbox of chemical glycosylations. Halogen bonding (HB) catalysis is rapidly gaining momentum, however, cases of XB activation for challenging bonds formation are rare. Here, the authors show a robust XB catalyzed 2-deoxyglycosylation with broad scope and featuring a quantum tunneling phenomenon in the proton transfer rate determining step.
Collapse
|
41
|
Mondal H, Sk MR, Maji MS. Cooperativity within the catalyst: alkoxyamide as a catalyst for bromocyclization and bromination of (hetero)aromatics. Chem Commun (Camb) 2020; 56:11501-11504. [PMID: 32857067 DOI: 10.1039/d0cc04673f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Alkoxyamide has been reported as a catalyst for the activation of N-bromosuccinimide to perform bromocyclization and bromination of a wide range of substrates in a lipophilic solvent, where adequate suppression of the background reactions was observed. The key feature of the active site is the alkoxy group attached to the sulfonamide moiety, which facilitates the acceptance as well as the delivery of bromonium species from the bromine source to the substrates.
Collapse
Affiliation(s)
- Haripriyo Mondal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, WB, India.
| | | | | |
Collapse
|
42
|
Deepa P, Thirumeignanam D. Rising trend on the halogen and non-halogen derivatives (Br, Cl, CF 3, F, CH 3 and NH 2) in ruminal β-d-Xylopyranose - a quantum chemical perspective. J Biomol Struct Dyn 2020; 40:449-467. [PMID: 32880211 DOI: 10.1080/07391102.2020.1815577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The utmost aim of the current study is to find significance of the binding affinity in the halogen and non-halogen derivatives: Br, Cl, CF3, F, CH3 and NH2 of β-d-Xylopyranose with the hinge region amino acids of ruminant-β-glycosidase. The interaction energy analysis was carried out in detail through various density functional studies as M062X/def2-QZVP, M062X/LANL2DZ, B3LYP/LANL2DZ and M06HF/LANL2DZ level of theories. The total interaction energy of halogen derivatives: Br, Cl, F and CF3 are -618.21, -599.00, -720.45 and -553.08 kcal/mol respectively, and non-halogen derivative: amine group (NH2) is -87.96 kcal/mol at M062X/def2-QZVP level of theory, which exist with strong binding affinity. Ligand properties: dipole moment, polarizability, volume, molecular mass, electrostatic potential map was evaluated to understand its electrostatic and structural behavior. The nature of the bonds was inferred from the electrostatic potential map for all the halogen and non-halogen derivatives ligand. The stabilization energy from NBO analysis reveals the stability of single hydrogen and halogen bonds (N-H…Br, C-Br…O, N-H…Cl, C-Cl…O, O-H…F, C-H…F, N-H…F, C-F…O, N-H…O, O-H…O, N-H…N, O-H…N) in β-d-Xylopyranose and its derivatives. Overall, this study paves way for scientist and medicinal chemist in modelling new drugs. Further, it suggests mutations that increase the binding and may enhance the catalytic action and strengthen the complex diet in animals and hence recommended for experimental synthesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, TamilNadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
43
|
Chang YP, Tang T, Jagannathan JR, Hirbawi N, Sun S, Brown J, Franz AK. NMR Quantification of Halogen-Bonding Ability To Evaluate Catalyst Activity. Org Lett 2020; 22:6647-6652. [PMID: 32806211 DOI: 10.1021/acs.orglett.0c02427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantification of halogen-bonding abilities is described for a series of benzimidazolium-, imidazolium- and bis(imidazolium) halogen-bond donors (XBDs) using 31P NMR spectroscopy. The measured Δδ(31P) values correlate with calculated activation free energy ΔG‡ and catalytic activity for a Friedel-Crafts indole addition. This rapid method also serves as a sensitive indicator for Brønsted acid impurities.
Collapse
Affiliation(s)
- Yun-Pu Chang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Teresa Tang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Jake R Jagannathan
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Nadia Hirbawi
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Shaoming Sun
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Jonah Brown
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Annaliese K Franz
- Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
44
|
Affiliation(s)
- Xuelei Liu
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong People's Republic of China 28592167
| | - Patrick H. Toy
- Department of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong People's Republic of China 28592167
| |
Collapse
|
45
|
Suzuki T, Kuwano S, Arai T. Non‐Bonding Electron Pair versus π‐Electrons in Solution Phase Halogen Bond Catalysis: Povarov Reaction of 2‐Vinylindoles and Imines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000494] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
46
|
|
47
|
Ren J, Ban X, Zhang X, Tan SM, Lee R, Tan C. Kinetic and Dynamic Kinetic Resolution of Racemic Tertiary Bromides by Pentanidium‐Catalyzed Phase‐Transfer Azidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jingyun Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xu Ban
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xin Zhang
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Siu Min Tan
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Richmond Lee
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
48
|
Ren J, Ban X, Zhang X, Tan SM, Lee R, Tan C. Kinetic and Dynamic Kinetic Resolution of Racemic Tertiary Bromides by Pentanidium‐Catalyzed Phase‐Transfer Azidation. Angew Chem Int Ed Engl 2020; 59:9055-9058. [DOI: 10.1002/anie.202000138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jingyun Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xu Ban
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xin Zhang
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Siu Min Tan
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Richmond Lee
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
49
|
A Halogen Bonding Perspective on Iodothyronine Deiodinase Activity. Molecules 2020; 25:molecules25061328. [PMID: 32183289 PMCID: PMC7144113 DOI: 10.3390/molecules25061328] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Iodothyronine deiodinases (Dios) are involved in the regioselective removal of iodine from thyroid hormones (THs). Deiodination is essential to maintain TH homeostasis, and disruption can have detrimental effects. Halogen bonding (XB) to the selenium of the selenocysteine (Sec) residue in the Dio active site has been proposed to contribute to the mechanism for iodine removal. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known disruptors of various pathways of the endocrine system. Experimental evidence shows PBDEs and their hydroxylated metabolites (OH-BDEs) can inhibit Dio, while data regarding PCB inhibition are limited. These xenobiotics could inhibit Dio activity by competitively binding to the active site Sec through XB to prevent deiodination. XB interactions calculated using density functional theory (DFT) of THs, PBDEs, and PCBs to a methyl selenolate (MeSe−) arrange XB strengths in the order THs > PBDEs > PCBs in agreement with known XB trends. THs have the lowest energy C–X*-type unoccupied orbitals and overlap with the Se lp donor leads to high donor-acceptor energies and the greatest activation of the C–X bond. The higher energy C–Br* and C–Cl* orbitals similarly result in weaker donor-acceptor complexes and less activation of the C–X bond. Comparison of the I···Se interactions for the TH group suggest that a threshold XB strength may be required for dehalogenation. Only highly brominated PBDEs have binding energies in the same range as THs, suggesting that these compounds may inhibit Dio and undergo debromination. While these small models provide insight on the I···Se XB interaction itself, interactions with other active site residues are governed by regioselective preferences observed in Dios.
Collapse
|
50
|
Kuwano S, Nishida Y, Suzuki T, Arai T. Catalytic Asymmetric Mannich‐Type Reaction of Malononitrile with N‐Boc α‐Ketiminoesters Using Chiral Organic Base Catalyst with Halogen Bond Donor Functionality. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000092] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yuki Nishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|