1
|
Alfonso I. Supramolecular chemical biology: designed receptors and dynamic chemical systems. Chem Commun (Camb) 2024; 60:9692-9703. [PMID: 39129537 DOI: 10.1039/d4cc03163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Supramolecular chemistry focuses on the study of species joined by non-covalent interactions, and therefore on dynamic and relatively ill-defined structures. Despite being a well-developed field, it has to face important challenges when dealing with the selective recognition of biomolecules in highly competitive biomimetic media. However, supramolecular interactions reside at the core of chemical biology systems, since many processes in nature are governed by weak, non-covalent, strongly dynamic contacts. Therefore, there is a natural connection between these two research fields, which are not frequently related or share interests. In this feature article, I will highlight our most recent results in the molecular recognition of biologically relevant species, following different conceptual approaches from the most conventional design of elaborated receptors to the less popular dynamic combinatorial chemistry methodology. Selected illustrative examples from other groups will be also included. The discussion has been focused mainly on systems with potential biomedical applications.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC), The Spanish National Research Council (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
2
|
Rivero DS, Pérez-Pérez Y, Perretti MD, Santos T, Scoccia J, Tejedor D, Carrillo R. Kinetic Control of Complexity in Multiple Dynamic Libraries. Angew Chem Int Ed Engl 2024; 63:e202406654. [PMID: 38660925 DOI: 10.1002/anie.202406654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
Multiple dynamic libraries of compounds are generated when more than one reversible reaction comes into play. Commonly, two or more orthogonal reversible reactions are used, leading to non-communicating dynamic libraries which share no building blocks. Only a few examples of communicating libraries have been reported, and in all those cases, building blocks are reversibly exchanged from one library to the other, constituting an antiparallel dynamic covalent system. Herein we report that communication between two different dynamic libraries through an irreversible process is also possible. Indeed, alkyl amines cancel the dynamic regime on the nucleophilic substitution of tetrazines, generating kinetically inert compounds. Interestingly, such amine can be part of another dynamic library, an imine-amine exchange. Thus, both libraries are interconnected with each other by an irreversible process which leads to kinetically inert structures that contain parts from both libraries, causing a collapse of the complexity. Additionally, a latent irreversible intercommunication could be developed. In such a way, a stable molecular system with specific host-guest and fluorescence properties, could be irreversibly transformed when the right stimulus was applied, triggering the cancellation of the original supramolecular and luminescent properties and the emergence of new ones.
Collapse
Affiliation(s)
- David S Rivero
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Yaiza Pérez-Pérez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Marcelle D Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Tanausú Santos
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006, Logroño, Spain
| | - Jimena Scoccia
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - David Tejedor
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), Avda. Astrofísico Fco. Sánchez 3, 38206, La Laguna, Spain
| |
Collapse
|
3
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
4
|
Marić I, Yang L, Li X, Santiago GM, Pappas CG, Qiu X, Dijksman JA, Mikhailov K, van Rijn P, Otto S. Tailorable and Biocompatible Supramolecular-Based Hydrogels Featuring two Dynamic Covalent Chemistries. Angew Chem Int Ed Engl 2023; 62:e202216475. [PMID: 36744522 DOI: 10.1002/anie.202216475] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
Dynamic covalent chemistry (DCC) has proven to be a valuable tool in creating fascinating molecules, structures, and emergent properties in fully synthetic systems. Here we report a system that uses two dynamic covalent bonds in tandem, namely disulfides and hydrazones, for the formation of hydrogels containing biologically relevant ligands. The reversibility of disulfide bonds allows fiber formation upon oxidation of dithiol-peptide building block, while the reaction between NH-NH2 functionalized C-terminus and aldehyde cross-linkers results in a gel. The same bond-forming reaction was exploited for the "decoration" of the supramolecular assemblies by cell-adhesion-promoting sequences (RGD and LDV). Fast triggered gelation, cytocompatibility and ability to "on-demand" chemically customize fibrillar scaffold offer potential for applying these systems as a bioactive platform for cell culture and tissue engineering.
Collapse
Affiliation(s)
- Ivana Marić
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
- Dutch Polymer Institute, P. O. Box 902, 5600 AX, Eindhoven (The, Netherlands
| | - Liangliang Yang
- University Medical Center Groningen, Department of Biomedical Engineering-FB40 and W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen (The, Netherlands
| | - Xiufeng Li
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen (The, Netherlands
| | - Guillermo Monreal Santiago
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
| | - Charalampos G Pappas
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
| | - Xinkai Qiu
- Stratingh Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE, Wageningen (The, Netherlands
| | - Kirill Mikhailov
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
| | - Patrick van Rijn
- University Medical Center Groningen, Department of Biomedical Engineering-FB40 and W. J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, A. Deusinglaan 1, 9713 AV, Groningen (The, Netherlands
| | - Sijbren Otto
- Stratingh Institute, Centre for Systems Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen (The, Netherlands
| |
Collapse
|
5
|
Xu H, Guo J, Zhao J, Gao Z, Song YY. Target Recognition-Triggered Peroxidase-Mimicking Activity Depression in Homochiral Nanochannels for Identifying Cystine Enantiomers. Anal Chem 2023; 95:5436-5442. [PMID: 36922731 DOI: 10.1021/acs.analchem.3c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Enantioselective identification of chiral molecules is of paramount importance in medical science, biochemistry, and pharmaceutics owing to the configuration-dependent activities of enantiomers. However, the identical physicochemical properties of enantiomers remain challenging in chiral sensing. In this study, inspired by the peroxidase-mimicking activity of Fe(III)-based nanomaterials, an enantioselective artificial architecture is constructed on TiO2 nanochannels. Homochiral Ti-based metal-organic frameworks (MOFs) use a 2,2'-bipyridine-5,5'-dicarboxylic acid ligand as the artificial enzyme skeleton, Fe(III) as peroxidase-mimicking centers, and l-tartaric acid (TA) as a chiral recognition selector. Using l-/d-cystine as model enantiomers, the chiral moieties of l-TA on Ti-MOFs allow stereoselective recognition of guest molecules through hydrogen bonds formed between chiral cystine and the host. In a tris(2-carboxyethyl)phosphine hydrochloride-containing environment, the disulfide bonds in cystine molecules are further cleaved, and the HS-tails react with Fe(III) active sites, causing the loss of peroxidase-like performance of nanochannels. Benefitting from the nanochannel architecture's current-potential (I-V) properties, the selective recognition of cystine enantiomers is directly monitored through the peroxidase-like activity change-induced ionic current signatures. This study provides a new and universal strategy for distinguishing disulfide- and thiol-containing chiral molecules.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
6
|
Borodin O, Shchukin Y, Schmid J, von Delius M. Anion-assisted amidinium exchange and metathesis. Chem Commun (Camb) 2022; 58:10178-10181. [PMID: 35997205 PMCID: PMC9469691 DOI: 10.1039/d2cc03425e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Dynamic covalent chemistry has become an invaluable tool for the design and preparation of adaptable yet robust molecular systems. Herein we explore the scope of a largely overlooked dynamic covalent reaction - amidinium exchange - and report on conditions that allow formal amidinium metathesis reactions.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Yevhenii Shchukin
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Jonas Schmid
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
7
|
She Z, Zou H, You L. Tuning the selectivity of amino acid recognition with dynamic covalent bond constrained fluorophores in aqueous media. Org Biomol Chem 2022; 20:6897-6904. [PMID: 35972458 DOI: 10.1039/d2ob01361d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recognition and discrimination of amino acids are generating continuous interest due to their importance. Herein we developed a series of dynamic covalent reaction constrained aldehyde-derived fluorescent probes for the binding of amino acids with tunable selectivity. Diverse emission behaviors were obtained via pH triggered movement of ring-chain tautomerization equilibrium of aldehyde probes. By taking advantage of the distinct pKa and reactivity of aldehyde probes and amino acids, unique fluorescence signaling patterns were generated, and the selectivity for amino acid recognition was further modulated. The selective recognition of Cys/Hcy was attained at pH 7.4 as a result of thiazolidine formation. The manipulation of the reactivity at pH 10 enabled the realization of high selectivity for His and Cys, respectively. Moreover, pH and redox stimuli-responsive dynamic covalent networks were constructed for the regulation of amino acid recognition. The strategies and results described should be appealing in many aspects, including dynamic assemblies, molecular sensing, biological labeling, and smart materials.
Collapse
Affiliation(s)
- Zijian She
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Lei You
- College of Chemistry and Material Science, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
8
|
Harrison EE, Waters ML. Application of an Imprint‐and‐Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N‐Oxide and Its Precursors in Complex Mixtures. Angew Chem Int Ed Engl 2022; 61:e202205193. [DOI: 10.1002/anie.202205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Emily E. Harrison
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Marcey L. Waters
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
9
|
Pérez‐Márquez LA, Perretti MD, García‐Rodríguez R, Lahoz F, Carrillo R. A Fluorescent Cage for Supramolecular Sensing of 3-Nitrotyrosine in Human Blood Serum. Angew Chem Int Ed Engl 2022; 61:e202205403. [PMID: 35511212 PMCID: PMC9401051 DOI: 10.1002/anie.202205403] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/26/2022]
Abstract
3-Nitrotyrosine (NT) is generated by the action of peroxynitrite and other reactive nitrogen species (RNS), and as a consequence it is accumulated in inflammation-associated conditions. This is particularly relevant in kidney disease, where NT concentration in blood is considerably high. Therefore, NT is a crucial biomarker of renal damage, although it has been underestimated in clinical diagnosis due to the lack of an appropriate sensing method. Herein we report the first fluorescent supramolecular sensor for such a relevant compound: Fluorescence by rotational restriction of tetraphenylethenes (TPE) in a covalent cage is selectively quenched in human blood serum by 3-nitrotyrosine (NT) that binds to the cage with high affinity, allowing a limit of detection within the reported physiological concentrations of NT in chronic kidney disease.
Collapse
Affiliation(s)
- Lidia A. Pérez‐Márquez
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Marcelle D. Perretti
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Raúl García‐Rodríguez
- GIR MIOMeT-IU Cinquima-Química InorgánicaFacultad de CienciasCampus Miguel DelibesUniversidad de Valladolid47011ValladolidSpain
| | - Fernando Lahoz
- Departamento de Física, IUdEAUniversidad de La Laguna38200San Cristóbal de La LagunaTenerifeSpain
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| |
Collapse
|
10
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
11
|
Harrison EE, Waters ML. Application of an Imprint‐and‐Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N‐Oxide and Its Precursors in Complex Mixtures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Emily E. Harrison
- University of North Carolina at Chapel Hill Kenan Science Library: The University of North Carolina at Chapel Hill Chemistry UNITED STATES
| | - Marcey L. Waters
- UNC Chapel Hill Dept. of Chemistry CB 3290 27599 Chapel Hill UNITED STATES
| |
Collapse
|
12
|
Qin S, Zou H, Hai Y, You L. Aggregation-induced emission luminogens and tunable multicolor polymer networks modulated by dynamic covalent chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Begato F, Penasa R, Licini G, Zonta C. Chiroptical Enhancement of Chiral Dicarboxylic Acids from Confinement in a Stereodynamic Supramolecular Cage. ACS Sens 2022; 7:1390-1394. [PMID: 35472260 PMCID: PMC9150167 DOI: 10.1021/acssensors.2c00038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The fundamental implications
that chirality has in science and
technology require continuous efforts for the development of fast,
economic, and reliable quantitative methods for enantiopurity assessment.
Among the different analytical approaches, chiroptical techniques
in combination with supramolecular methodologies have shown promising
results in terms of both costs and time analysis. In this article,
a tris(2-pyridylmethyl)amines (TPMA)-based supramolecular
cage is able to amplify the circular dichroism (CD) signal of a series
of chiral dicarboxylic acids also in the presence of a complex mixture.
This feature has been used to quantify tartaric acid in wines and
to discriminate different matrixes using principal component analysis
(PCA) of the raw CD data.
Collapse
Affiliation(s)
- Federico Begato
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Roberto Penasa
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Giulia Licini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Cristiano Zonta
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
14
|
Pérez-Márquez LA, Perretti MD, García-Rodríguez R, Lahoz F, Carrillo R. A Fluorescent Cage for Supramolecular Sensing of 3‐Nitrotyrosine in Human Blood Serum. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lidia Ana Pérez-Márquez
- Instituto de Productos Naturales y Agrobiología: Instituto de Productos Naturales y Agrobiologia Molecular Sciences SPAIN
| | - Marcelle Dayana Perretti
- Instituto de Productos Naturales y Agrobiología: Instituto de Productos Naturales y Agrobiologia Molecular Sciences SPAIN
| | | | - Fernando Lahoz
- Universidad de La Laguna Facultad de Física: Universidad de La Laguna Facultad de Fisica Departamento de Física SPAIN
| | - Romen Carrillo
- Instituto de Productos Naturales y Agrobiología: Instituto de Productos Naturales y Agrobiologia Ciencias Moleculares Avda. Astrofísico Francisco Sánchez 3 38206 La Laguna SPAIN
| |
Collapse
|
15
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
16
|
He W, Wang S, Li M, Wang X, Tao Y. Iterative Synthesis of Stereo- and Sequence-Defined Polymers via Acid-Orthogonal Deprotection Chemistry. Angew Chem Int Ed Engl 2022; 61:e202112439. [PMID: 34981638 DOI: 10.1002/anie.202112439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/15/2022]
Abstract
Absolute control over polymer stereo- and sequence structure is highly challenging in polymer chemistry. Here, an acid-orthogonal deprotection strategy is proposed for the iterative synthesis of a family of unimolecular polymers starting with enantiopure serines, featuring precise sequence, stereoconfiguration and side-chain functionalities that cannot be achieved using traditional polymerization techniques. Acid-orthogonal deprotections proceed independently of one another by the selection of protecting groups that feature the respective acid-lability. Under p-toluenesulfonic acid, acidolysis of tert-butyloxycarbonyl can proceed exclusively, while low-dosage trifluoroacetic acid and low temperature only trigger the selective and quantitative cleavage of trityl. The pioneering use of this acid-orthogonal deprotection chemistry increases the compatibility with otherwise sensitive groups and opens up pathways to facilely introduce structural and functional diversity into stereo- and sequence-defined polymers, thus imparting their unique properties beyond natural biopolymers.
Collapse
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P.R. China.,University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
17
|
He W, Wang S, Li M, Wang X, Tao Y. Iterative Synthesis of Stereo‐ and Sequence‐Defined Polymers
via
Acid‐Orthogonal Deprotection Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenjing He
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| | - Shixue Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P.R. China
- University of Science and Technology of China Hefei 230026 P.R. China
| |
Collapse
|
18
|
Jiang G, Hai Y, Ye H, You L. Dynamic Covalent Chemistry Constrained Diphenylethenes: Control over Reactivity and Luminescence in both Solution and Solid State. Org Chem Front 2022. [DOI: 10.1039/d2qo00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diarylethenes (DAEs) are an important class of building blocks in chemistry and materials science, and hence, their modulation and functionalization are of critical significance. Here we demonstrate a general strategy...
Collapse
|
19
|
Harrison EE, Carpenter BA, St Louis LE, Mullins AG, Waters ML. Development of "Imprint-and-Report" Dynamic Combinatorial Libraries for Differential Sensing Applications. J Am Chem Soc 2021; 143:14845-14854. [PMID: 34463091 DOI: 10.1021/jacs.1c07068] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sensor arrays using synthetic receptors have found great utility in analyte detection, resulting from their ability to distinguish analytes based on differential signals via indicator displacement. However, synthesis and characterization of receptors for an array remain a bottleneck in the field. Receptor discovery has been streamlined using dynamic combinatorial libraries (DCLs), but the resulting receptors have primarily been utilized in isolation rather than as part of the entire library, with only a few examples that make use of the complexity of a library of receptors. Herein, we demonstrate a unique sensor array approach using "imprint-and-report" DCLs that obviates the need for receptor synthesis and isolation. This strategy leverages information stored in DCLs in the form of differential library speciation to provide a high-throughput method for both developing a sensor array and analyzing data for analyte differentiation. First, each DCL is templated with analyte to give an imprinted library, followed by in situ fluorescent indicator displacement analysis. We further demonstrate that the reverse strategy, imprinting with the fluorescent reporter followed by displacement with each analyte, provides a more sensitive method for differentiating analytes. We describe the development of this differential sensing system using the methylated Arg and Lys post-translational modifications (PTMs). Altogether, 19 combinations of 3-5 DCL data sets that discriminate all 7 PTMs were identified. Thus, a comparable sensor array workflow results in a larger payoff due to the immense information stored within multiple noncovalent networks.
Collapse
Affiliation(s)
- Emily E Harrison
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Benjamin A Carpenter
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lauren E St Louis
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexandria G Mullins
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcey L Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
20
|
Miao X, Paikar A, Lerner B, Diskin‐Posner Y, Shmul G, Semenov SN. Kinetic Selection in the Out‐of‐Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoming Miao
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Arpita Paikar
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| | - Yael Diskin‐Posner
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Guy Shmul
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 7610001 Israel
| | - Sergey N. Semenov
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
21
|
Santos T, Rivero DS, Pérez‐Pérez Y, Martín‐Encinas E, Pasán J, Daranas AH, Carrillo R. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angew Chem Int Ed Engl 2021; 60:18783-18791. [PMID: 34085747 PMCID: PMC8457238 DOI: 10.1002/anie.202106230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 12/13/2022]
Abstract
A dynamic nucleophilic aromatic substitution of tetrazines (SN Tz) is presented herein. It combines all the advantages of dynamic covalent chemistry with the versatility of the tetrazine moiety. Indeed, libraries of compounds or sophisticated molecular structures can be easily obtained, which are susceptible to post-functionalization by inverse electron demand Diels-Alder (IEDDA) reaction, which also locks the exchange. Additionally, the structures obtained can be disassembled upon the application of the right stimulus, either UV irradiation or a suitable chemical reagent. Moreover, SN Tz is compatible with the imine chemistry of anilines. The high potential of this methodology has been proved by building two responsive supramolecular systems: A macrocycle that displays a light-induced release of acetylcholine; and a truncated [4+6] tetrahedral shape-persistent fluorescent cage, which is disassembled by thiols unless it is post-stabilized by IEDDA.
Collapse
Affiliation(s)
- Tanausú Santos
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - David S. Rivero
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Yaiza Pérez‐Pérez
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Endika Martín‐Encinas
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL)Departamento de FísicaUniversidad de La Laguna (ULL)38206La LagunaTenerifeSpain
| | - Antonio Hernández Daranas
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| | - Romen Carrillo
- Functional Molecular Systems GroupInstituto de Productos Naturales y Agrobiología (IPNA-CSIC)Avda. Astrofísico Fco. Sánchez 338206La LagunaSpain
| |
Collapse
|
22
|
Miao X, Paikar A, Lerner B, Diskin-Posner Y, Shmul G, Semenov SN. Kinetic Selection in the Out-of-Equilibrium Autocatalytic Reaction Networks that Produce Macrocyclic Peptides. Angew Chem Int Ed Engl 2021; 60:20366-20375. [PMID: 34144635 DOI: 10.1002/anie.202105790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Autocatalytic reaction networks are instrumental for validating scenarios for the emergence of life on Earth and for synthesizing life de novo. Here, we demonstrate that dimeric thioesters of tripeptides with the general structure (Cys-Xxx-Gly-SEt)2 form strongly interconnected autocatalytic reaction networks that predominantly generate macrocyclic peptides up to 69 amino acids long. Some macrocycles of 6-12 amino acids were isolated from the product pool and were characterized by NMR spectroscopy and single-crystal X-ray analysis. We studied the autocatalytic formation of macrocycles in a flow reactor in the presence of acrylamide, whose conjugate addition to thiols served as a model "removal" reaction. These results indicate that even not template-assisted autocatalytic production combined with competing removal of molecular species in an open compartment could be a feasible route for selecting functional molecules during the pre-Darwinian stages of molecular evolution.
Collapse
Affiliation(s)
- Xiaoming Miao
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Arpita Paikar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Benjamin Lerner
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Guy Shmul
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sergey N Semenov
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
23
|
Santos T, Rivero DS, Pérez‐Pérez Y, Martín‐Encinas E, Pasán J, Daranas AH, Carrillo R. Dynamic Nucleophilic Aromatic Substitution of Tetrazines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanausú Santos
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - David S. Rivero
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Yaiza Pérez‐Pérez
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Endika Martín‐Encinas
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Jorge Pasán
- Laboratorio de Materiales para Análisis Químicos (MAT4LL) Departamento de Física Universidad de La Laguna (ULL) 38206 La Laguna Tenerife Spain
| | - Antonio Hernández Daranas
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| | - Romen Carrillo
- Functional Molecular Systems Group Instituto de Productos Naturales y Agrobiología (IPNA-CSIC) Avda. Astrofísico Fco. Sánchez 3 38206 La Laguna Spain
| |
Collapse
|
24
|
Komáromy D, Tiemersma-Wegman T, Kemmink J, Portale G, Adamski PR, Blokhuis A, Aalbers FS, Marić I, Santiago GM, Ottelé J, Sood A, Saggiomo V, Liu B, van der Meulen P, Otto S. Stoichiometry alone can steer supramolecular systems on complex free energy surfaces with high selectivity. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Cao Y, Yang J, Eichin D, Zhao F, Qi D, Kahari L, Jia C, Peurla M, Rosenholm JM, Zhao Z, Jalkanen S, Li J. Self‐Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu Cao
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine Tianjin International Joint Academy of Biotechnology & Medicine Tianjin P. R. China
- Research and Development Center of Tianjin University of Traditional Chinese Medicine Tianjin International Joint Academy of Biotechnology & Medicine Tianjin P. R. China
| | - Dominik Eichin
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
| | - Fangzhe Zhao
- State Key Laboratory of Component-based Chinese Medicine Tianjin International Joint Academy of Biotechnology & Medicine Tianjin P. R. China
- Research and Development Center of Tianjin University of Traditional Chinese Medicine Tianjin International Joint Academy of Biotechnology & Medicine Tianjin P. R. China
| | - Dawei Qi
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
| | - Laura Kahari
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
| | - Chunman Jia
- Hainan Provincial Key Lab of Fine Chem Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education Hainan University Haikou 570228 P. R. China
| | - Markus Peurla
- Institute of Biomedicine and FICAN West Cancer Research Laboratories University of Turku Kiinamyllynkatu 10 20520 Turku Finland
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory Faculty of Science and Engineering Åbo Akademi University Tykistökatu 6 20520 Turku Finland
| | - Zhao Zhao
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
| | - Jianwei Li
- MediCity Research Laboratory University of Turku Tykistökatu 6 20520 Turku Finland
- Hainan Provincial Key Lab of Fine Chem Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education Hainan University Haikou 570228 P. R. China
| |
Collapse
|
26
|
Sattar F, Feng Z, Zou H, Ye H, Zhang Y, You L. Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Org Chem Front 2021. [DOI: 10.1039/d1qo00500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of organic ureas and dynamic covalent chemistry was demonstrated for multistate switching, thermally induced fluorescence, and signaling cascades.
Collapse
Affiliation(s)
- Fazli Sattar
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yi Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Lei You
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
27
|
Cao Y, Yang J, Eichin D, Zhao F, Qi D, Kahari L, Jia C, Peurla M, Rosenholm JM, Zhao Z, Jalkanen S, Li J. Self-Synthesizing Nanorods from Dynamic Combinatorial Libraries against Drug Resistant Cancer. Angew Chem Int Ed Engl 2020; 60:3062-3070. [PMID: 33112477 DOI: 10.1002/anie.202010937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/06/2020] [Indexed: 01/25/2023]
Abstract
Molecular self-assembly has been widely used to develop nanocarriers for drug delivery. However, most of them have unsatisfactory drug loading capacity (DLC) and the dilemma between stimuli-responsiveness and stability, stagnating their translational process. Herein, we overcame these drawbacks using dynamic combinatorial chemistry. A carrier molecule was spontaneously and quantitatively synthesized, aided by co-self-assembly with a template molecule and an anti-cancer drug doxorubicin (DOX) from a dynamic combinatorial library that was operated by disulfide exchange under thermodynamic control. The highly selective synthesis guaranteed a stable yet pH- and redox- responsive nanocarrier with a maximized DLC of 40.1 % and an enhanced drug potency to fight DOX resistance in vitro and in vivo. Our findings suggested that harnessing the interplay between synthesis and self-assembly in complex chemical systems could yield functional nanomaterials for advanced applications.
Collapse
Affiliation(s)
- Yu Cao
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Jian Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, P. R. China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, P. R. China
| | - Dominik Eichin
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Fangzhe Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, P. R. China.,Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, P. R. China
| | - Dawei Qi
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Laura Kahari
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Chunman Jia
- Hainan Provincial Key Lab of Fine Chem, Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, 570228, P. R. China
| | - Markus Peurla
- Institute of Biomedicine and FICAN West Cancer Research Laboratories, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Tykistökatu 6, 20520, Turku, Finland
| | - Zhao Zhao
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, 20520, Turku, Finland.,Hainan Provincial Key Lab of Fine Chem, Key laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
28
|
Ortiz-Gomez I, Ortega-Muñoz M, Marín-Sánchez A, de Orbe-Payá I, Hernandez-Mateo F, Capitan-Vallvey LF, Santoyo-Gonzalez F, Salinas-Castillo A. A vinyl sulfone clicked carbon dot-engineered microfluidic paper-based analytical device for fluorometric determination of biothiols. Mikrochim Acta 2020; 187:421. [PMID: 32617684 DOI: 10.1007/s00604-020-04382-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
A microfluidic paper-based analytical device integrating carbon dot (CDs) is fabricated and used for a fluorometric off-on assay of biothiols. Vinyl sulfone (VS) click immobilization of carbon dots (CDs) on paper was accomplished by a one-pot simplified protocol that uses divinyl sulfone (DVS) as a homobifunctional reagent. This reagent mediated both the click oxa-Michael addition to the hydroxyl groups of cellulose and ulterior covalent grafting of the resulting VS paper to NH2-functionalized CDs by means of click aza-Michael addition. The resulting cellulose nanocomposite was used to engineer an inexpensive and robust microfluidic paper-based analytical device (μPAD) that is used for a reaction-based off-on fluorometric assay of biothiols (GSH, Cys, and Hcy). The intrinsic blue fluorescence of CDs (with excitation/emission maxima at 365/450 nm) is turned off via the heavy atom effect of an introduced iodo group. Fluorescence is turned on again due to the displacement of iodine by reaction with a biothiol. The increase in fluorescence is related to the concentration over a wide range (1 to 200 μM for GSH and 5-200 μM for Cys and Hcy, respectively), and the assay exhibits a low detection limit (0.3 μM for GSH and Cys and 0.4 μM for Hcy). The method allows for rapid screening and can also be used in combination with a digital camera readout. Graphical abstract Schematic representation of a μPAD based on click immobilized carbon dots and used for a reaction-based fluorometric off-on assay of biothiols. The intrinsic blue fluorescence of carbon dots is turned off via the heavy atom effect of an introduced iodo group and turned on by the displacement of this atom by reaction with a biothiol.
Collapse
Affiliation(s)
- Inmaculada Ortiz-Gomez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain
| | - Mariano Ortega-Muñoz
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain.,Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Antonio Marín-Sánchez
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain
| | - Ignacio de Orbe-Payá
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain
| | - Fernando Hernandez-Mateo
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain.,Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Luis Fermin Capitan-Vallvey
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain
| | - Francisco Santoyo-Gonzalez
- Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain.,Department of Organic Chemistry, Biotechnology Institute, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Alfonso Salinas-Castillo
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain. .,Unit of Excellence in Chemistry Applied to Biomedicine and the Environment, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
29
|
Alfonso I, Solà J. Molecular Recognition of Zwitterions with Artificial Receptors. Chem Asian J 2020; 15:986-994. [PMID: 32017445 DOI: 10.1002/asia.201901789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Many biomolecules exist as internal ion pairs or zwitterions within a biologically relevant pH range. Despite their importance, the molecular recognition of this type of systems is specially challenging due to their strong solvation in aqueous media, and their trend to form folded or self-assembled structures by pairing of charges of different sign. In this Minireview, we will discuss the molecular recognition of zwitterions using non-natural, synthetic receptors. This contribution does not intend to make a full in-depth revision of the existing research in the field, but a personal overview with selected representative examples from the recent literature.
Collapse
Affiliation(s)
- Ignacio Alfonso
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia Jordi, Girona 18-26, 08034, Barcelona, Spain
| | - Jordi Solà
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia Jordi, Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
30
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Dai Y, Zheng Y, Xue T, He F, Ji H, Qi Z. A novel fluorescent probe for rapidly detection cysteine in cystinuria urine, living cancer/normal cells and BALB/c nude mice. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117490. [PMID: 31505388 DOI: 10.1016/j.saa.2019.117490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/13/2019] [Accepted: 08/25/2019] [Indexed: 05/22/2023]
Abstract
Cysteine (Cys), an important organic small molecule containing sulfhydryl groups, plays paramount functions in human pathologies and physiologies. The detection of Cys in living vivo is essential for studying its roles. Here, we designed and synthesized a novel red-emission fluorescent probe AXPI-Cys with highly sensitivity (LOD = 48.9 ± 0.23 nM), rapidly response (<7 min) and colorimetric for detection cysteine. More importantly, the AXPI-Cys was determined Cys in real cystinuria urine samples for the first time with the satisfactory results (92%-99.96%) and employed for specifically location of endogenous/exogenous Cys in living cancer/normal cells and almost non-toxic, that is very valuable for diagnosis of cystinuria and observation of the distribution of Cys in normal cells. Notably, the AXPI-Cys was applied to imaging Cys in BALB/c nude mice with good biocompatibility and desirable tissue-penetration depth. Owing to the superior capability of AXPI-Cys, it provided a desired method to detect Cys in urine samples and cells, and exhibited munificent potential usage in biosystems and imaging studies in vivo.
Collapse
Affiliation(s)
- Yanpeng Dai
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Yu Zheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Tianzi Xue
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Fangru He
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Hefang Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China
| | - Zhengjian Qi
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu 211189, PR China.
| |
Collapse
|
32
|
Mullins AG, St. Louis LE, Waters ML. Using changes in speciation in a dynamic combinatorial library as a fingerprint to differentiate the methylation states of arginine. Chem Commun (Camb) 2020; 56:3947-3950. [DOI: 10.1039/d0cc00415d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A dynamic combinatorial library was shown to provide a direct method of sensing methylated arginine and lysine due to differences in speciation. This provides the first sensor array for all the methylation states of arginine.
Collapse
Affiliation(s)
- Alexandria G. Mullins
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Lauren E. St. Louis
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Marcey L. Waters
- Department of Chemistry
- CB 3290
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
33
|
Zou H, Hai Y, Ye H, You L. Dynamic Covalent Switches and Communicating Networks for Tunable Multicolor Luminescent Systems and Vapor-Responsive Materials. J Am Chem Soc 2019; 141:16344-16353. [PMID: 31547653 DOI: 10.1021/jacs.9b07175] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular switches are an intensive area of research, and in particular, the control of multistate switching is challenging. Herein we introduce a general and versatile strategy of dynamic covalent switches and communicating networks, wherein distinct states of reversible covalent systems can induce addressable fluorescence switching. The regulation of intramolecular ring/chain equilibrium, intermolecular dynamic covalent reactions (DCRs) with amines, and both permitted the activation of optical switches. The variation in electron-withdrawing competition between the fluorophore and 2-formylbenzenesulfonyl unit afforded diverse signaling patterns. The combination of switches in situ further enabled the creation of communicating networks for multistate color switching, including white emission, through the delicate control of DCRs in complex mixtures. Finally, reversible and recyclable multiresponsive luminescent materials were achieved with molecular networks on the solid support, allowing visualization of different types of vapors and quantification of primary amine vapors with high sensitivity and wide detection range. The results reported herein should be appealing for future studies of dynamic assemblies, molecular sensing, intelligent materials, and biological labeling.
Collapse
Affiliation(s)
- Hanxun Zou
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China
| | - Lei You
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
34
|
Cui R, Wan Y, Ji G, Liu Z. A highly selective and sensitive fluorescent sensor based on Tb 3+-functionalized MOFs to determine arginine in urine: a potential application for the diagnosis of cystinuria. Analyst 2019; 144:5875-5881. [PMID: 31486467 DOI: 10.1039/c9an01204d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A unique metal-organic framework with the formula [Cd4(H2L)2(L)·H2O]·3H2O (H4L = 5,5'-(1H-1,2,4-triazole-3,5-diyl)diisophthalic acid) was successfully constructed under solvothermal conditions. The frameworks with multiple free Lewis base sites and Lewis acid sites exhibited easily sensitized properties. After the encapsulation of Tb3+ cations, the as-synthesized Tb3+@Cd-MOF demonstrated strong luminescence induced by the efficient energy transfer from the bridging ligands to the Tb3+ cations, with the potential to serve as a chemical sensor. Interestingly, Tb3+@Cd-MOF was proven to be a very promising and highly selective and sensitive luminescent platform for the quantitative detection of arginine, which is the biomarker of cystinuria. The fluorescent probe presented high selectivity to arginine in urine with strong luminescence quenching. Furthermore, a convenient fluorescence-based test paper for the visual detection of arginine in applications was prepared. For the first time, arginine was quantified and monitored in urine by a highly efficient recyclable fluorescent sensor based on Tb3+-functionalized MOF hybrids, which may be a potential candidate for the further development of clinical diagnostic tools.
Collapse
Affiliation(s)
- Ruixue Cui
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Yongyan Wan
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Guanfeng Ji
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China.
| |
Collapse
|
35
|
Serra-Pont A, Alfonso I, Solà J, Jimeno C. An efficient dynamic asymmetric catalytic system within a zinc-templated network. Chem Commun (Camb) 2019; 55:7970-7973. [PMID: 31219483 DOI: 10.1039/c9cc03958a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Enhanced cooperativity leading to high catalytic activity and stereoselectivity has been achieved through a complex network of simple species interacting reversibly. This novel dynamic catalytic system relies on bipyridine-based organocatalytic ligands and zinc(ii) as the template. It demonstrates the effectiveness of dealing with mixtures rather than single species in asymmetric catalysis.
Collapse
Affiliation(s)
- Anna Serra-Pont
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E08034 Barcelona, Spain.
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E08034 Barcelona, Spain.
| | - Jordi Solà
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E08034 Barcelona, Spain.
| | - Ciril Jimeno
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E08034 Barcelona, Spain.
| |
Collapse
|
36
|
Lafuente M, Alfonso I, Solà J. Structurally Selective Assembly of a Specific Macrobicycle from a Dynamic Library of Pseudopeptidic Disulfides. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- María Lafuente
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia c/ Jordi Girona 18–26 Barcelona 08034 Spain
| | - Ignacio Alfonso
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia c/ Jordi Girona 18–26 Barcelona 08034 Spain
| | - Jordi Solà
- Department of Biological ChemistryInstitute for Advanced Chemistry of Catalonia c/ Jordi Girona 18–26 Barcelona 08034 Spain
| |
Collapse
|
37
|
Chen K, Zhang M, Qi Y, Fan J, Ma X, Zhu H, Qian Y. Imaging dynamic changes of an intracellular cysteine pool that responds to the stimulation of external oxidative stress. Analyst 2019; 144:2320-2326. [DOI: 10.1039/c8an02232a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A fluorescence-based probe (CyP) suitable for imaging the dynamic changes of endogenous cysteine activities under external oxidative stress in living cells, nematode, and Arabidopsis thaliana was developed.
Collapse
Affiliation(s)
- Kun Chen
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application
- School of Life Science
- Guangzhou University
- Guangzhou
- China
| | - Meng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Yalin Qi
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Jing Fan
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application
- School of Life Science
- Guangzhou University
- Guangzhou
- China
| | - Xiang Ma
- The Joint Research Center of Guangzhou University and Keele University for Gene Interference and Application
- School of Life Science
- Guangzhou University
- Guangzhou
- China
| | - Hailiang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- Nanjing University
- Nanjing 210023
- China
| | - Yong Qian
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
- China
| |
Collapse
|