1
|
Ogawa M, Usami S, Takahama R, Iwamoto K, Nabeta T, Kawashima S, Kojima R, Ohyama J, Hayakawa T, Nabae Y, Moriya M. One-pot gram-scale rapid synthesis of MN 4 complexes with 14-membered ring macrocyclic ligand as a precursor for carbon-based ORR and CO 2RR catalysts. Dalton Trans 2024; 53:4426-4431. [PMID: 38318980 DOI: 10.1039/d3dt04129h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Herein, CoN4, CuN4, and NiN4 complexes with a 14-membered ring hexaazamacrocycle ligand H2HAM were synthesised as precursors for ORR and CO2RR catalysts via a one-pot, gram-scale synthesis procedure, which involved microwave heating for only 10 min. Detailed structures of the obtained 14MR-MN4 complex were revealed by single-crystal X-ray diffraction measurements.
Collapse
Affiliation(s)
- Mana Ogawa
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Sayaka Usami
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Ryo Takahama
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Kazuko Iwamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Tomomi Nabeta
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
| | - Shin Kawashima
- Corporate Research & Development, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama 711-8510, Japan
| | - Ryoichi Kojima
- Corporate Research & Development, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama 711-8510, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Yuta Nabae
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 S8-26, Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
| | - Makoto Moriya
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.
- College of Science, Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
2
|
Zhu Z, Qian W, Shang Z, Ma X, Wang Z, Lu W, Chen W. Efficient elimination of carbamazepine using polyacrylonitrile-supported pyridine bridged iron phthalocyanine nanofibers by activating peroxymonosulfate in dark condition. J Environ Sci (China) 2024; 137:224-236. [PMID: 37980010 DOI: 10.1016/j.jes.2022.10.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/20/2023]
Abstract
The monoaminotrinitro iron phthalocyanine (FeMATNPc) is used to connect with isonicotinic acid (INA) for amide bonding and axial coordination to synthetic a unique catalyst FeMATNPc-INA, which is loaded in polyacrylonitrile (PAN) nanofibers by electrospinning. The introduction of INA destroys the π-π conjugated stack structure in phthalocyanine molecules and exposes more active sites. The FeMATNPc-INA structure is characterized by X-ray photoelectron spectroscopy and UV-visible absorption spectrum, and the FeMATNPc-INA/PAN structure is characterized by Fourier transform infrared spectroscopy and X-ray diffraction. The FeMATNPc-INA/PAN can effectively activate peroxymonosulfate (PMS) to eliminate carbamazepine (CBZ) within 40 minutes (PMS 1.5 mmol/L) in the dark. The effects of catalyst dosage, PMS concentration, pH and inorganic anion on the degradation of CBZ are investigated. It has been confirmed by electron paramagnetic resonance, gas chromatography-mass spectroscopy and free radical capture experiments that the catalytic system is degraded by •OH, SO4•- and Fe (IV) = O are the major active species, the singlet oxygen (1O2) is the secondary active species. The degradation process of CBZ is analyzed by ultra-high performance liquid chromatography-mass spectrometry and the aromatic compounds have been degraded to small molecular acids.
Collapse
Affiliation(s)
- Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenjie Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiguo Shang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoji Ma
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhendong Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
3
|
Liu D, Ma H, Zhu C, Qiu F, Yu W, Ma LL, Wei XW, Han YF, Yuan G. Molecular Co-Catalyst Confined within a Metallacage for Enhanced Photocatalytic CO 2 Reduction. J Am Chem Soc 2024; 146:2275-2285. [PMID: 38215226 DOI: 10.1021/jacs.3c14254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The construction of structurally well-defined supramolecular hosts to accommodate catalytically active species within a cavity is a promising way to address catalyst deactivation. The resulting supramolecular catalysts can significantly improve the utilization of catalytic sites, thereby achieving a highly efficient chemical conversion. In this study, the Co-metalated phthalocyanine (Pc-Co) was successfully confined within a tetragonal prismatic metallacage, leading to the formation of a distinctive type of supramolecular photocatalyst (Pc-Co@Cage). The host-guest architecture of Pc-Co@Cage was unambiguously elucidated by single-crystal X-ray diffraction (SCXRD), NMR, and ESI-TOF-MS, revealing that the single cobalt active site can be thoroughly isolated within the space-restricted microenvironment. In addition, we found that Pc-Co@Cage can serve as a homogeneous supramolecular photocatalyst that displays high CO2 to CO conversion in aqueous media under visible light irradiation. This supramolecular photocatalyst exhibits an obvious improvement in activity (TONCO = 4175) and selectivity (SelCO = 92%) relative to the nonconfined Pc-Co catalyst (TONCO = 500, SelCO = 54%). The present strategy provided a rare example for the construction of a highly active, selective, and stable photocatalyst for CO2 reduction through a cavity-confined molecular catalyst within a discrete metallacage.
Collapse
Affiliation(s)
- Dongdong Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Huirong Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Chao Zhu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Fengyi Qiu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Weibin Yu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Li-Li Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Xian-Wen Wei
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Guozan Yuan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, P. R. China
| |
Collapse
|
4
|
Pan JB, Wang BH, Shen S, Chen L, Yin SF. Introducing Bidirectional Axial Coordination into BiVO 4 @Metal Phthalocyanine Core-Shell Photoanodes for Efficient Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202307246. [PMID: 37488928 DOI: 10.1002/anie.202307246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/09/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm-2 at 1.23 VRHE . This study introduces a new approach for constructing core-shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.
Collapse
Affiliation(s)
- Jin-Bo Pan
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082, P. R. China
- College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249, P. R. China
| | - Bing-Hao Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082, P. R. China
| | - Sheng Shen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082, P. R. China
| | - Lang Chen
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082, P. R. China
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
5
|
Octafluoro-Substituted Phthalocyanines of Zinc, Cobalt, and Vanadyl: Single Crystal Structure, Spectral Study and Oriented Thin Films. Int J Mol Sci 2023; 24:ijms24032034. [PMID: 36768358 PMCID: PMC9917058 DOI: 10.3390/ijms24032034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In this work, octafluoro-substituted phthalocyanines of zinc, vanadyl, and cobalt (MPcF8, M = Zn(II), Co(II), VO) were synthesized and studied. The structures of single crystals of the obtained phthalocyanines were determined. To visualize and compare intermolecular contacts in MPcF8, an analysis of Hirshfeld surfaces (HS) was performed. MPcF8 nanoscale thickness films were deposited by organic molecular beam deposition technique and their structure and orientation were studied using X-ray diffraction. Comparison of X-ray diffraction patterns of thin films with the calculated diffractograms showed that all three films consisted of a single crystal phase, which corresponded to a phase of single crystals. Only one strong diffraction peak corresponding to the plane (001) was observed on the diffraction pattern of each film, which indicated a strong preferred orientation with the vast majority of crystallites oriented with a (001) crystallographic plane parallel to the substrate surface. The effect of the central metals on the electronic absorption and vibrational spectra of the studied phthalocyanines as well as on the electrical conductivity of their films is also discussed.
Collapse
|
6
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating Unexpected High Charge-Carrier Mobility and Low-Threshold Lasing Action in an Organic Semiconductor. Angew Chem Int Ed Engl 2022; 61:e202200791. [PMID: 35298062 DOI: 10.1002/anie.202200791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/17/2022]
Abstract
Integrating high charge-carrier mobility and low-threshold lasing action in an organic semiconductor is crucial for the realization of an electrically pumped laser, but remains a great challenge. Herein, we present an organic semiconductor, named as 2,7-di(2-naphthyl)-9H-fluorene (LD-2), which shows an unexpected high charge-carrier mobility of 2.7 cm2 V-1 s-1 and low-threshold lasing characteristic of 9.43 μJ cm-2 and 9.93 μJ cm-2 and high-quality factor (Q) of 2131 and 1684 at emission peaks of 420 and 443 nm, respectively. Detailed theoretical calculations and photophysical data analysis demonstrate that a large intermolecular transfer integral of 10.36-45.16 meV together with a fast radiative transition rate of 8.0×108 s-1 are responsible for the achievement of the superior integrated optoelectronic properties in the LD-2 crystal. These optoelectronic performances of LD-2 are among the highest reported low-threshold lasing organic semiconductors with efficient charge transport, suggesting its promise for research of electrically pumped organic lasers (EPOLs).
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianxin Wu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng, 475004, China
| | - Yingshuang Zheng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Yang Li
- Normal College, Shenyang University, Shenyang, 110044, China
| | - Ziyi Xie
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Xinfeng Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.,CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Liqiang Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), Tianjin, 300072, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
7
|
Jiang H, Zhu S, Cui Z, Li Z, Liang Y, Zhu J, Hu P, Zhang HL, Hu W. High-performance five-ring-fused organic semiconductors for field-effect transistors. Chem Soc Rev 2022; 51:3071-3122. [PMID: 35319036 DOI: 10.1039/d1cs01136g] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Organic molecular semiconductors have been paid great attention due to their advantages of low-temperature processability, low fabrication cost, good flexibility, and excellent electronic properties. As a typical example of five-ring-fused organic semiconductors, a single crystal of pentacene shows a high mobility of up to 40 cm2 V-1 s-1, indicating its potential application in organic electronics. However, the photo- and optical instabilities of pentacene make it unsuitable for commercial applications. But, molecular engineering, for both the five-ring-fused building block and side chains, has been performed to improve the stability of materials as well as maintain high mobility. Here, several groups (thiophenes, pyrroles, furans, etc.) are introduced to design and replace one or more benzene rings of pentacene and construct novel five-ring-fused organic semiconductors. In this review article, ∼500 five-ring-fused organic prototype molecules and their derivatives are summarized to provide a general understanding of this catalogue material for application in organic field-effect transistors. The results indicate that many five-ring-fused organic semiconductors can achieve high mobilities of more than 1 cm2 V-1 s-1, and a hole mobility of up to 18.9 cm2 V-1 s-1 can be obtained, while an electron mobility of 27.8 cm2 V-1 s-1 can be achieved in five-ring-fused organic semiconductors. The HOMO-LUMO levels, the synthesis process, the molecular packing, and the side-chain engineering of five-ring-fused organic semiconductors are analyzed. The current problems, conclusions, and perspectives are also provided.
Collapse
Affiliation(s)
- Hui Jiang
- School of Materials Science and Engineering, Tianjin University, 300072, China. .,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhenduo Cui
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Zhaoyang Li
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Yanqin Liang
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Jiamin Zhu
- School of Materials Science and Engineering, Tianjin University, 300072, China.
| | - Peng Hu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Hao-Li Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|
8
|
Neven L, Barich H, Ching HYV, Khan SU, Colomier C, Patel HH, Gorun SM, Verbruggen S, Van Doorslaer S, De Wael K. Correlation between the Fluorination Degree of Perfluorinated Zinc Phthalocyanines, Their Singlet Oxygen Generation Ability, and Their Photoelectrochemical Response for Phenol Sensing. Anal Chem 2022; 94:5221-5230. [PMID: 35316027 DOI: 10.1021/acs.analchem.1c04357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electron-withdrawing perfluoroalkyl peripheral groups grafted on phthalocyanine (Pc) macrocycles improve their single-site isolation, solubility, and resistance to self-oxidation, all beneficial features for catalytic applications. A high degree of fluorination also enhances the reducibility of Pcs and could alter their singlet oxygen (1O2) photoproduction. The ethanol/toluene 20:80 vol % solvent mixture was found to dissolve perfluorinated FnPcZn complexes, n = 16, 52, and 64, and minimize the aggregation of the sterically unencumbered F16PcZn. The 1O2 production ability of FnPcZn complexes was examined using 9,10-dimethylanthracene (DMA) and 2,2,6,6-tetramethylpiperidine (TEMP) in combination with UV-vis and electron paramagnetic resonance (EPR) spectroscopy, respectively. While the photoreduction of F52PcZn and F64PcZn in the presence of redox-active TEMP lowered 1O2 production, DMA was a suitable 1O2 trap for ranking the complexes. The solution reactivity was complemented by solid-state studies via the construction of photoelectrochemical sensors based on TiO2-supported FnPcZn, FnPcZn|TiO2. Phenol photo-oxidation by 1O2, followed by its electrochemical reduction, defines a redox cycle, the 1O2 production having been found to depend on the value of n and structural features of the supported complexes. Consistent with solution studies, F52PcZn was found to be the most efficient 1O2 generator. The insights on reactivity testing and structural-activity relationships obtained may be useful for designing efficient and robust sensors and for other 1O2-related applications of FnPcZn.
Collapse
Affiliation(s)
- Liselotte Neven
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Hanan Barich
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - H Y Vincent Ching
- BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Shahid U Khan
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Christopher Colomier
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Hemantbhai H Patel
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Sergiu M Gorun
- Department of Chemistry and Biochemistry and the Centre for Functional Materials, Seton Hall University, 400 South Orange Ave, New Jersey 07079, United States
| | - Sammy Verbruggen
- DuEL Research Group, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Sabine Van Doorslaer
- BIMEF Research Group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
9
|
Liu D, Wu X, Gao C, Li C, Zheng Y, Li Y, Xie Z, Ji D, Liu X, Zhang X, Li L, Peng Q, Hu W, Dong H. Integrating unexpected high charge‐carrier mobility and low‐threshold lasing action in an organic semiconductor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Liu
- Institute of Chemistry Chinese Academy of Sciences Key laboratory of organic solids CHINA
| | - Xianxin Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Can Gao
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Chenguang Li
- Henan University Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering ,Collaborative Innovation Centre of Nano Functional Materials and Applications CHINA
| | - yingshuang Zheng
- tian jin da xue: Tianjin University Tian jin Key Laboratory of Molecular Optoelectronic Department of Chemistry, Insititue of Molecular Aggregation Science CHINA
| | - Yang Li
- Shenyang University Normal College CHINA
| | - Ziyi Xie
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Organic Solids CHINA
| | - Deyang Ji
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectrinic Sciences, Department of Chemistry, Institute of Molecular Aggregation Sciencs CHINA
| | - Xinfeng Liu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechlolgy CHINA
| | - Xiaotao Zhang
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry,Institute of Molecular Aggregation Science CHINA
| | - Liqiang Li
- Tianjin University Tianjin Key Laboratory of Mecular Optoelectronic Sciences,Deportment of Chemistry, Institute of Melecular Aggregation Science CHINA
| | - Qian Peng
- University of Chinese Academy of Sciences School of Computer and Control Engineering: University of the Chinese Academy of Sciences School of Computer Science and Technology School of Chemical Science CHINA
| | - Wenping Hu
- Tianjin University Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University &Collaborative Innovation Center od Chemical Science and Enginering CHINA
| | - Huanli Dong
- Institute of Chemistry, Chinese Academy of Sciences Key laboratory of organic solids zhongguancun 100190 Beijing CHINA
| |
Collapse
|
10
|
Cao K, Yin S, Wang Y. Insightful understanding of charge transfer processes in metalated phthalocyanines. Phys Chem Chem Phys 2022; 24:7635-7641. [DOI: 10.1039/d2cp00680d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marcus electron transfer theory coupling with quantum-mechanics (QM) calculations was applied to study the hole mobilities of a series of metalated phthalocyanine molecular crystals. The effect of metal on the...
Collapse
|
11
|
Zhao Y, Jiang WJ, Zhang J, Lovell EC, Amal R, Han Z, Lu X. Anchoring Sites Engineering in Single-Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102801. [PMID: 34477254 DOI: 10.1002/adma.202102801] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/09/2021] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) have been at the frontier of research field in catalysis owing to the maximized atomic utilization, unique structures and properties. The atomically dispersed and catalytically active metal atoms are necessarily anchored by surrounding atoms. As such, the structure and composition of anchoring sites significantly influence the catalytic performance of SACs even with the same metal element. Significant progress has been made to understand structure-activity relationships at an atomic level, but in-depth understanding in precisely designing highly efficient SACs for the targeted reactions is still required. In this review, various anchoring sites in SACs are summarized and classified into five different types (doped heteroatoms, defect sites, surface atoms, metal sites, and cavity sites). Then, their impacts on catalytic performance are elucidated for electrochemical reactions based on their distance from the metal center (first coordination shell and beyond). Further, SACs anchored on two typical types of hosts, carbon- and metal-based materials, are highlighted, and the effects of anchoring points on achieving the desirable atomic structure, catalytic performance, and reaction pathways are elaborated. At last, insights and outlook to the SAC field based on current achievements and challenges are presented.
Collapse
Affiliation(s)
- Yufei Zhao
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wen-Jie Jiang
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jinqiang Zhang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Emma C Lovell
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical and Manufacturing Engineering, The University of New South Wales Sydney, Sydney, NSW, 2052, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, Sydney, NSW, 2070, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Laboratory, School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
12
|
McArdle P. Pixel calculations using Orca or GAUSSIAN for electron density automated within the Oscail package. J Appl Crystallogr 2021; 54:1535-1541. [PMID: 34667454 PMCID: PMC8493623 DOI: 10.1107/s1600576721008529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Many discussions of the intermolecular interactions in crystal structures concentrate almost exclusively on an analysis of hydrogen bonding. A simple analysis of atom-atom distances is all that is required to detect and analyse hydrogen bonding. However, for typical small-molecule organic crystal structures, hydrogen-bonding interactions are often responsible for less than 50% of the crystal lattice energy. It is more difficult to analyse intermolecular interactions based on van der Waals interactions. The Pixel program can calculate and partition intermolecular energies into Coulombic, polarization, dispersion and repulsion energies, and help put crystal structure discussions onto a rational basis. This Windows PC implementation of Pixel within the Oscail package requires minimal setup and can automatically use GAUSSIAN or Orca for the calculation of electron density.
Collapse
Affiliation(s)
- Patrick McArdle
- School of Chemistry, National University of Ireland, Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
13
|
Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. High Mobility Organic Lasing Semiconductor with Crystallization‐Enhanced Emission for Light‐Emitting Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Qian Peng
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haikuo Gao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qi Sun
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Can Gao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Zhagen Miao
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jiaxin Yang
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices Department of Chemistry Capital Normal University Beijing 100048 China
| | - Zhigang Shuai
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Huanli Dong
- National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry, School of Sciences Tianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin 300072 China
| |
Collapse
|
14
|
Liu D, Liao Q, Peng Q, Gao H, Sun Q, De J, Gao C, Miao Z, Qin Z, Yang J, Fu H, Shuai Z, Dong H, Hu W. High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. Angew Chem Int Ed Engl 2021; 60:20274-20279. [PMID: 34278668 DOI: 10.1002/anie.202108224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 11/12/2022]
Abstract
The development of high mobility organic laser semiconductors with strong emission is of great scientific and technical importance, but challenging. Herein, we present a high mobility organic laser semiconductor, 2,7-diphenyl-9H-fluorene (LD-1) showing unique crystallization-enhanced emission guided by elaborately modulating its crystal growth process. The obtained one-dimensional nanowires of LD-1 show outstanding integrated properties including: high absolute photoluminescence quantum yield (PLQY) approaching 80 %, high charge carrier mobility of 0.08 cm2 V-1 s-1 , Fabry-Perot lasing characters with a low threshold of 86 μJ cm-2 and a high-quality factor of ≈2400. Furthermore, electrically induced emission was obtained from an individual LD-1 crystal nanowire-based light-emitting transistor due to the recombination of holes and electrons simultaneously injected into the nanowire, which provides a good platform for the study of electrically pumped organic lasers and other related ultrasmall integrated electrical-driven photonic devices.
Collapse
Affiliation(s)
- Dan Liu
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qian Peng
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haikuo Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jianbo De
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Can Gao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhagen Miao
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengsheng Qin
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaxin Yang
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Zhigang Shuai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huanli Dong
- National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University&Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
15
|
Civati F, O’Malley C, Erxleben A, McArdle P. Factors Controlling Persistent Needle Crystal Growth: The Importance of Dominant One-Dimensional Secondary Bonding, Stacked Structures, and van der Waals Contact. CRYSTAL GROWTH & DESIGN 2021; 21:3449-3460. [PMID: 34267600 PMCID: PMC8273860 DOI: 10.1021/acs.cgd.1c00217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Indexed: 05/25/2023]
Abstract
Needle crystals can cause filtering and handling problems in industrial settings, and the factors leading to a needle crystal morphology have been investigated. The crystal growth of the amide and methyl, ethyl, isopropyl, and t-butyl esters of diflunisal have been examined, and needle growth has been observed for all except the t-butyl ester. Their crystal structures show that the t-butyl ester is the only structure that does not contain molecular stacking. A second polymorph of a persistent needle forming phenylsulfonamide with a block like habit has been isolated. The structure analysis has been extended to known needle forming systems from the literature. The intermolecular interactions in needle forming structures have been analyzed using the PIXEL program, and the properties driving needle crystal growth were found to include a 1D motif with interaction energy greater than -30 kJ/mol, at least 50% vdW contact between the motif neighbors, and a filled unit cell which is a monolayer. Crystal structures are classified into persistent and controllable needle formers. Needle growth in the latter class can be controlled by choice of solvent. The factors shown here to be drivers of needle growth will help in the design of processes for the production of less problematic crystal products.
Collapse
Affiliation(s)
- Francesco Civati
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94T9PX, Ireland
| | - Ciaran O’Malley
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
| | - Andrea Erxleben
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), Limerick V94T9PX, Ireland
| | - Patrick McArdle
- School
of Chemistry, National University of Ireland, Galway H91TK33, Ireland
| |
Collapse
|
16
|
Courté M, Ye J, Jiang H, Ganguly R, Tang S, Kloc C, Fichou D. Tuning the π-π overlap and charge transport in single crystals of an organic semiconductor via solvation and polymorphism. Phys Chem Chem Phys 2020; 22:19855-19863. [PMID: 32851393 DOI: 10.1039/d0cp03109g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymorphism is a central phenomenon in materials science that often results in important differences of the electronic properties of organic crystals due to slight variations in intermolecular distances and positions. Although a large number of π-conjugated organic compounds can grow as polymorphs, it is necessary to have at disposal a series of several polymorphs of the same molecule to establish clear and predictive structure-property relationships. We report here on the occurrence of two solvates and three polymorphs in single crystalline form of the organic p-type semiconductor 2,2',6,6'-tetraphenyldipyranylidene (DIPO). When grown from chlorobenzene or toluene, the DIPO crystals spontaneously capture solvent molecules to form two pseudopolymorphic 1 : 1 binary solvates. Independently, three solvent-free DIPO polymorphs are obtained either from the vapor phase or from acetonitrile and benzene. Surprisingly, single crystal field-effect transistors (SC-FETs) reveal that the DIPO 1 : 1 binary solvate grown from chlorobenzene possesses a higher hole mobility (1.1 cm2 V-1 s-1) than the three solvent-free polymorphs (0.02-0.64 cm2 V-1 s-1). A refined crystallographic analysis combined with a theoretical transport model clearly shows that the higher mobility of the solvate results from an improved π-π overlap. Our observations demonstrate that solvation allows to tune the π-π overlap and transport properties of organic semiconductors by selecting appropriate solvents.
Collapse
Affiliation(s)
- Marc Courté
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | | | | | | | | | | | | |
Collapse
|
17
|
Semushkina GI, Mazalov LN, Lavrukhina SA, Gulyaev RV, Klyamer DD, Basova TV. Experimental and Theoretical Study of Electronic Structure of Zinc Phthalocyanines ZnPc and ZnPcF16. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620030051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kataeva O, Metlushka K, Ivshin K, Nikitina K, Alfonsov V, Vandyukov A, Khrizanforov M, Budnikova Y, Sinyashin O, Krupskaya Y, Kataev V, Büchner B, Knupfer M. An unusual donor-acceptor system Mn IIPc-TCNQ/F 4-TCNQ and the properties of the mixed single crystals of metal phthalocyanines with organic acceptor molecules. Dalton Trans 2019; 48:17252-17257. [PMID: 31660555 DOI: 10.1039/c9dt03642c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interaction of manganese(ii) phthalocyanine with 7,7,8,8-tetracyanoquinodimethane and its perfluoro derivative proceeds with the oxidation of Mn and the reduction of the acceptor molecules to give the first mixed single crystals of manganese(iii) phthalocyanine with TCNQ/F4-TCNQ radical anions. The crystals have unusual structures with C-Hπ interactions between the ions and their orthogonal arrangement, as well as remarkable redox properties. The charge transfer was proved by spectroscopic and magnetic studies.
Collapse
Affiliation(s)
- Olga Kataeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jiang H, Hu W. The Emergence of Organic Single-Crystal Electronics. Angew Chem Int Ed Engl 2019; 59:1408-1428. [PMID: 30927312 DOI: 10.1002/anie.201814439] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Organic semiconducting single crystals are perfect for both fundamental and application-oriented research due to the advantages of free grain boundaries, few defects, and minimal traps and impurities, as well as their low-temperature processability, high flexibility, and low cost. Carrier mobilities of greater than 10 cm2 V-1 s-1 in some organic single crystals indicate a promising application in electronic devices. The progress made, including the molecular structures and fabrication technologies of organic single crystals, is introduced and organic single-crystal electronic devices, including field-effect transistors, phototransistors, p-n heterojunctions, and circuits, are summarized. Organic two-dimensional single crystals, cocrystals, and large single crystals, together with some potential applications, are introduced. A state-of-the-art overview of organic single-crystal electronics, with their challenges and prospects, is also provided.
Collapse
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore, Singapore
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University, No. 92#, Weijin Road, Tianjin, 300072, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
20
|
Affiliation(s)
- Hui Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- School of Materials Science and Engineering Nanyang Technological University 639798 Singapore Singapur
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Sciences Tianjin University No. 92#, Weijin Road Tianjin 300072 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
21
|
Deng W, Lu B, Mao J, Lu Z, Zhang X, Jie J. Precise Positioning of Organic Semiconductor Single Crystals with Two-Component Aligned Structure through 3D Wettability-Induced Sequential Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36205-36212. [PMID: 31469274 DOI: 10.1021/acsami.9b10089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Highly ordered organic semiconductor single-crystal (OSSC) arrays are ideal building blocks for functional organic devices. However, most of the current methods are only applicable to fabricate OSSC arrays of a single component, which significantly hinders the application of OSSC arrays in integrated organic circuits. Here, we present a universal approach, termed three-dimensional (3D) wettability-induced sequential assembly that can programmatically and progressively manipulate the crystallization locations of different organic semiconductors at the same spatial position using a 3D microchannel template, for the fabrication of the two-component OSSC arrays. As an example, we successfully prepared two-component, bilayer structured OSSC arrays consisting of n-type N,N'-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide and p-type 6,13-bis(triisopropylsilylethynyl)pentacene microbelts. The bicomponent OSSCs show ambipolar carrier transport properties with hole and electron mobilities of 0.342 and 0.526 cm2 V-1 s-1, respectively. Construction of complementary inverters is further demonstrated based on the two-component OSSCs. The capability of integration of multicomponent OSSC arrays opens up unique opportunities for future high-performance organic complementary circuits.
Collapse
Affiliation(s)
- Wei Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Bei Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Jian Mao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Zhengjun Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou , Jiangsu 215123 , P. R. China
| |
Collapse
|
22
|
Feng X, Liu C, Wang X, Jiang Y, Yang G, Wang R, Zheng K, Zhang W, Wang T, Jiang J. Functional Supramolecular Gels Based on the Hierarchical Assembly of Porphyrins and Phthalocyanines. Front Chem 2019; 7:336. [PMID: 31157209 PMCID: PMC6530257 DOI: 10.3389/fchem.2019.00336] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/25/2019] [Indexed: 11/13/2022] Open
Abstract
Supramolecular gels containing porphyrins and phthalocyanines motifs are attracting increased interests in a wide range of research areas. Based on the supramolecular gels systems, porphyrin or phthalocyanines can form assemblies with plentiful nanostructures, dynamic, and stimuli-responsive properties. And these π-conjugated molecular building blocks also afford supramolecular gels with many new features, depending on their photochemical and electrochemical characteristics. As one of the most characteristic models, the supramolecular chirality of these soft matters was investigated. Notably, the application of supramolecular gels containing porphyrins and phthalocyanines has been developed in the field of catalysis, molecular sensing, biological imaging, drug delivery and photodynamic therapy. And some photoelectric devices were also fabricated depending on the gelation of porphyrins or phthalocyanines. This paper presents an overview of the progress achieved in this issue along with some perspectives for further advances.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
23
|
Martynov AG, Mack J, May AK, Nyokong T, Gorbunova YG, Tsivadze AY. Methodological Survey of Simplified TD-DFT Methods for Fast and Accurate Interpretation of UV-Vis-NIR Spectra of Phthalocyanines. ACS OMEGA 2019; 4:7265-7284. [PMID: 31459828 PMCID: PMC6648833 DOI: 10.1021/acsomega.8b03500] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 05/14/2023]
Abstract
A methodological survey of density functional theory (DFT) methods for the prediction of UV-visible (vis)-near-infrared (NIR) spectra of phthalocyanines is reported. Four methods, namely, full time-dependent (TD)-DFT and its Tamm-Dancoff approximation (TDA), together with their simplified modifications (sTD-DFT and sTDA, respectively), were tested by using the examples of unsubstituted and alkoxy-substituted metal-free ligands and zinc complexes. The theoretical results were compared with experimental data derived from UV-visible absorption and magnetic circular dichroism spectroscopy. Seven popular exchange-correlation functionals (BP86, B3LYP, TPSSh, M06, CAM-B3LYP, LC-BLYP, and ωB97X) were tested within these four approaches starting at a relatively modest level using 6-31G(d) basis sets and gas-phase BP86/def2-SVP optimized geometries. A gradual augmentation of the computational levels was used to identify the influence of starting geometry, solvation effects, and basis sets on the results of TD-DFT and sTD-DFT calculations. It was found that although these factors do influence the predicted energies of the vertical excitations, they do not affect the trends predicted in the spectral properties across series of structurally related substituted free bases and metallophthalocyanines. The best accuracy for the gas-phase vertical excitations was observed in the lower-energy Q-band region for calculations that made use of range-separated hybrids for both full and simplified TD-DFT approaches. The CAM-B3LYP functional provided particularly accurate results in the context of the sTD-DFT approach. The description of the higher-energy B-band region is considerably less accurate, and this demonstrates the need for further advances in the accuracy of theoretical calculations. Together with a general increase in accuracy, the application of simplified TD-DFT methods affords a 2-3 orders of magnitude speedup of the calculations in comparison to the full TD-DFT approach. It is anticipated that this approach will be widely used on desktop computers during the interpretation of UV-vis-NIR spectra of phthalocyanines and related macrocycles in the years ahead.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- E-mail: (A.G.M.)
| | - John Mack
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
- E-mail: (J.M.)
| | - Aviwe K. May
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute
for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda 6140, South Africa
| | - Yulia G. Gorbunova
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| | - Aslan Yu Tsivadze
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr., 31, Building 4, 119071 Moscow, Russia
- N.S.
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr., 31, 119991 Moscow, Russia
| |
Collapse
|