1
|
Li J, Liu C, Han X, Tian M, Jiang B, Li W, Ou C, Dou N, Han Z, Ji T, Cao X, Zhong X, Zhang L. Supramolecular Electronics: Monolayer Assembly of Nonamphiphilic Molecules via Water Surface-Assisted Molecular Deposition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48438-48447. [PMID: 39109880 DOI: 10.1021/acsami.4c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Utilizing softly confined self-assembly at the water surface represents a promising approach for the fabrication of two-dimensional molecular monolayers (2D MMs), which have predominantly been concentrated on amphiphilic organic compounds before. Herein, we introduce a straightforward method termed "water surface-assisted molecular deposition (WSAMD)" to organize nonamphiphilic molecules into dense monolayers with high reproducibility. To underscore the versatility and merit of this methodology in the field of supramolecular electronics, we have successfully fabricated a range of defect-free, uniform semiconducting polymer monolayers, featuring a thickness reflective of molecular architectures. The charge carrier mobility could reach 0.05 cm2 V-1 s-1 for holes and 3.5 × 10-4 cm2 V-1 s-1 for electrons, respectively, in p-type and n-type polymeric monolayers when tested as the active layer in field-effect transistors. Furthermore, in situ polymerization reactions can be exploited to generate conductive monolayers of macromolecules such as polybenzylaniline (PBnANI) and polypyrrole (PPy), where PBnANI monolayers exhibit channel length-dependent conductivity, up to 0.37 S cm-1. The advent of the WSAMD method heralds a significant leap forward in the advancement of molecular 2D materials, catalyzing new avenues of exploration within material chemistry.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chuanhui Liu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Menghan Tian
- School of Physics, Beihang University, Beijing 100191, China
| | - Baichuan Jiang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wenbin Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Cailing Ou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Nannan Dou
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zixiao Han
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Tingyu Ji
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoru Cao
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaolan Zhong
- School of Physics, Beihang University, Beijing 100191, China
| | - Lei Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Amin MK, Ye C, Pang S, Liu Y, Taylor D, Nichol GS, McKeown NB. Triptycene-like naphthopleiadene as a readily accessible scaffold for supramolecular and materials chemistry. Chem Sci 2024:d4sc02755h. [PMID: 39211740 PMCID: PMC11348350 DOI: 10.1039/d4sc02755h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Triptycene derivatives are used extensively in supramolecular and materials chemistry, however, most are prepared using a multi-step synthesis involving the generation of a benzyne intermediate, which hinders production on a large scale. Inspired by the ease of the synthesis of resorcinarenes, we report the rapid and efficient preparation of triptycene-like 1,6,2',7'-tetrahydroxynaphthopleiadene directly from 2,7-dihydroxynaphthalene and phthalaldehyde. Structural characterisation confirms the novel bridged bicyclic framework, within which the planes of the single benzene ring and two naphthalene units are fixed at an angle of ∼120° relative to each other. Other combinations of aromatic 1,2-dialdehydes and 2,7-disubstituted naphthalenes also provided similar triptycene-like products. The low cost of the precursors and undemanding reaction conditions allow for rapid multigram synthesis of 1,6,2',7'-tetrahydroxynaphthopleiadene, which is shown to be a useful precursor for making the parent naphthopleiadene hydrocarbon. The great potential for the use of the naphthopleiadene scaffold in supramolecular and polymer chemistry is demonstrated by the preparation of a rigid novel cavitand, a microporous network polymer, and a solution-processable polymer of intrinsic microporosity.
Collapse
Affiliation(s)
- Md Khairul Amin
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
- Chemistry Discipline, Khulna University Khulna 9208 Bangladesh
| | - Chunchun Ye
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Shuhua Pang
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Yuancheng Liu
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Dominic Taylor
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S Nichol
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Neil B McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
3
|
Balan H, Sureshan KM. Hierarchical single-crystal-to-single-crystal transformations of a monomer to a 1D-polymer and then to a 2D-polymer. Nat Commun 2024; 15:6638. [PMID: 39103335 DOI: 10.1038/s41467-024-51051-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
Designing and synthesizing flawless two-dimensional polymers (2D-Ps) via meticulous molecular preorganization presents an intriguing yet challenging frontier in research. We report here the single-crystal-to-single-crystal (SCSC) synthesis of a 2D-P via thermally induced topochemical azide-alkyne cycloaddition (TAAC) reaction. A designed monomer incorporating two azide and two alkyne units is synthesized. The azide and alkyne groups are preorganized in the monomer crystal in reactive geometries for polymerizations in two orthogonal directions. On heating, the polymerizations proceed in a hierarchical manner; at first, the monomer reacts regiospecifically in a SCSC fashion to form a 1,5-triazolyl-linked 1D polymer (1D-P), which upon further heating undergoes another SCSC polymerization to a 2D-P through a second regiospecific TAAC reaction forming 1,4-triazolyl-linkages. Two different linkages in orthogonal directions make this an architecturally attractive 2D-P, as determined, at atomic resolution, by single-crystal X-ray diffraction. The 2D-P reported here is thermally stable in view of the robust triazole-linkages and can be exfoliated as 2D-sheets.
Collapse
Affiliation(s)
- Haripriya Balan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India
| | - Kana M Sureshan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, 695551, India.
| |
Collapse
|
4
|
Ren Y, Xu Y. Recent advances in two-dimensional polymers: synthesis, assembly and energy-related applications. Chem Soc Rev 2024; 53:1823-1869. [PMID: 38192222 DOI: 10.1039/d3cs00782k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Two-dimensional polymers (2DPs) are a class of 2D crystalline polymer materials with definite structures, which have outstanding physical-chemical and electronic properties. They cleverly link organic building units through strong covalent bonds and can construct functional 2DPs through reasonable design and selection of different monomer units to meet various application requirements. As promising energy materials, 2DPs have developed rapidly in recent years. This review first introduces the basic overview of 2DPs, such as their historical development, inherent 2D characteristics and diversified topological advantages, followed by the summary of the typical 2DP synthesis methods recently (including "top-down" and "bottom-up" methods). The latest research progress in assembly and processing of 2DPs and the energy-related applications in energy storage and conversion are also discussed. Finally, we summarize and prospect the current research status, existing challenges, and future research directions of 2DPs.
Collapse
Affiliation(s)
- Yumei Ren
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
- School of Materials Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450046, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
5
|
Prasoon A, Yang H, Hambsch M, Nguyen NN, Chung S, Müller A, Wang Z, Lan T, Fontaine P, Kühne TD, Cho K, Nia AS, Mannsfeld SCB, Dong R, Feng X. On-water surface synthesis of electronically coupled 2D polyimide-MoS 2 van der Waals heterostructure. Commun Chem 2023; 6:280. [PMID: 38104228 PMCID: PMC10725426 DOI: 10.1038/s42004-023-01081-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023] Open
Abstract
The water surface provides a highly effective platform for the synthesis of two-dimensional polymers (2DP). In this study, we present an efficient on-water surface synthesis of crystalline monolayer 2D polyimide (2DPI) through the imidization reaction between tetra (4-aminophenyl) porphyrin (M1) and perylenetracarboxylic dianhydride (M2), resulting in excellent stability and coverage over a large area (tens of cm2). We further fabricate innovative organic-inorganic hybrid van der Waals heterostructures (vdWHs) by combining with exfoliated few-layer molybdenum sulfide (MoS2). High-resolution transmission electron microscopy (HRTEM) reveals face-to-face stacking between MoS2 and 2DPI within the vdWH. This stacking configuration facilitates remarkable charge transfer and noticeable n-type doping effects from monolayer 2DPI to MoS2, as corroborated by Raman spectroscopy, photoluminescence measurements, and field-effect transistor (FET) characterizations. Notably, the 2DPI-MoS2 vdWH exhibits an impressive electron mobility of 50 cm2/V·s, signifying a substantial improvement over pristine MoS2 (8 cm2/V·s). This study unveils the immense potential of integrating 2D polymers to enhance semiconductor device functionality through tailored vdWHs, thereby opening up exciting new avenues for exploring unique interfacial physical phenomena.
Collapse
Affiliation(s)
- Anupam Prasoon
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Hyejung Yang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Alina Müller
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Zhiyong Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Tianshu Lan
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, 91190, Saint-Aubin, France
| | - Thomas D Kühne
- Center for Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf, 02826, Görlitz, Germany
- Institute of Artificial Intelligence, Chair of Computational System Sciences, Technische Universität Dresden, 01187, Dresden, Germany
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Ali Shaygan Nia
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062, Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, 27 Shandanan Road, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, D-06120, Germany.
| |
Collapse
|
6
|
Wang M, Jin Y, Zhang W, Zhao Y. Single-crystal polymers (SCPs): from 1D to 3D architectures. Chem Soc Rev 2023; 52:8165-8193. [PMID: 37929665 DOI: 10.1039/d3cs00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-crystal polymers (SCPs) with unambiguous chemical structures at atomic-level resolutions have attracted great attention. Obtaining precise structural information of these materials is critical as it enables a deeper understanding of the potential driving forces for specific packing and long-range order, secondary interactions, and kinetic and thermodynamic factors. Such information can ultimately lead to success in controlling the synthesis or engineering of their crystal structures for targeted applications, which could have far-reaching impact. Successful synthesis of SCPs with atomic level control of the structures, especially for those with 2D and 3D architectures, is rare. In this review, we summarize the recent progress in the synthesis of SCPs, including 1D, 2D, and 3D architectures. Solution synthesis, topochemical synthesis, and extreme condition synthesis are summarized and compared. Around 70 examples of SCPs with unambiguous structure information are presented, and their synthesis methods and structural analysis are discussed. This review offers critical insights into the structure-property relationships, providing guidance for the future rational design and bottom-up synthesis of a variety of highly ordered polymers with unprecedented functions and properties.
Collapse
Affiliation(s)
- Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
7
|
Rahmani Del Bakhshayesh A, Saghebasl S, Asadi N, Kashani E, Mehdipour A, Nezami Asl A, Akbarzadeh A. Recent advances in nano-scaffolds for tissue engineering applications: Toward natural therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1882. [PMID: 36815236 DOI: 10.1002/wnan.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/24/2023]
Abstract
Among the promising methods for repairing or replacing tissue defects in the human body and the hottest research topics in medical science today are regenerative medicine and tissue engineering. On the other hand, nanotechnology has been expanded into different areas of regenerative medicine and tissue engineering due to its essential benefits in improving performance in various fields. Nanotechnology, a helpful strategy in tissue engineering, offers new solutions to unsolved problems. Especially considering the excellent physicochemical properties of nanoscale structures, their application in regenerative medicine has been gradually developed, and a lot of research has been conducted in this field. In this regard, various nanoscale structures, including nanofibers, nanosheets, nanofilms, nano-clays, hollow spheres, and different nanoparticles, have been developed to advance nanotechnology strategies with tissue repair goals. Here, we comprehensively review the application of the mentioned nanostructures in constructing nanocomposite scaffolds for regenerative medicine and tissue engineering. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
- Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Asadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elmira Kashani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Magnera TF, Dron PI, Bozzone JP, Jovanovic M, Rončević I, Tortorici E, Bu W, Miller EM, Rogers CT, Michl J. Porphene and porphite as porphyrin analogs of graphene and graphite. Nat Commun 2023; 14:6308. [PMID: 37813887 PMCID: PMC10562370 DOI: 10.1038/s41467-023-41461-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/01/2023] [Indexed: 10/11/2023] Open
Abstract
Two-dimensional materials have unusual properties and promise applications in nanoelectronics, spintronics, photonics, (electro)catalysis, separations, and elsewhere. Most are inorganic and their properties are difficult to tune. Here we report the preparation of Zn porphene, a member of the previously only hypothetical organic metalloporphene family. Similar to graphene, these also are fully conjugated two-dimensional polymers, but are composed of fused metalloporphyrin rings. Zn porphene is synthesized on water surface by two-dimensional oxidative polymerization of a Langmuir layer of Zn porphyrin with K2IrCl6, reminiscent of known one-dimensional polymerization of pyrroles. It is transferable to other substrates and bridges μm-sized pits. Contrary to previous theoretical predictions of metallic conductivity, it is a p-type semiconductor due to a predicted Peierls distortion of its unit cell from square to rectangular, analogous to the appearance of bond-length alternation in antiaromatic molecules. The observed reversible insertion of various metal ions, possibly carrying a fifth or sixth ligand, promises tunability and even patterning of circuits on an atomic canvas without removing any π centers from conjugation.
Collapse
Grants
- University of Colorado Boulder Institute of Organic Chemistry and Biochemistry, RVO: 61388963 The Czech Science Foundation grant 20-03691X
- Army Research Laboratory and Army Research Office grant W911NF-15-1-0435 National Science Foundation grant CHE 1900226 DARPA grant HR00111810006 University of Colorado Boulder
- Army Research Laboratory and Army Research Office grant W911NF-15-1-0435 National Science Foundation grant CHE 1900226 University of Colorado Boulder
- University of Colorado Boulder Research Computing Group, funded by National Science Foundation grants ACI-1532235 and ACI-1532236, and Colorado State University Institute of Organic Chemistry and Biochemistry, RVO: 61388963 The Czech Science Foundation grant 20-03691X Czech Ministry of Education, Youth and Sports grant e-INFRA CZ, ID:90140 Wallonia-Brussels International Excellence Grant (IR)
- Department of Energy Office of Science, BES, Division of Chemical Sciences, Geosciences and Biosciences, Solar Photochemistry. The views expressed in the article do not necessarily represent the views of the Department of Energy or the U.S. Government. Alliance for Sustainable Energy, LLC, operating NREL for Department of Energy grant DE-AC36-08GO28308
Collapse
Affiliation(s)
- Thomas F Magnera
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Paul I Dron
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jared P Bozzone
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Milena Jovanovic
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Edward Tortorici
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Wei Bu
- ChemMatCARS, University of Chicago, Lemont, IL, 60439, USA
| | - Elisa M Miller
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Charles T Rogers
- Department of Physics, University of Colorado, Boulder, CO, 80309, USA
- Renewable and Sustainable Energy Institute (RASEI) at the University of Colorado, Boulder, CO, 80303, USA
| | - Josef Michl
- Department of Chemistry, University of Colorado, Boulder, CO, 80309, USA.
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
9
|
Stefaniu C, Wölk C, Latza VM, Chumakov A, Brezesinski G, Schneck E. Cross-linking reactions in Langmuir monolayers of specially designed aminolipids - a toolbox for the customized production of amphiphilic nanosheets. NANOSCALE ADVANCES 2023; 5:4589-4597. [PMID: 37638167 PMCID: PMC10448339 DOI: 10.1039/d3na00244f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Synthetic amino lipids, already known as highly efficient gene therapy tool, are used in a novel way to create cross-linked stable one-molecule-thin films envisioned for future (bio)-materials applications. The films are prepared as Langmuir monolayers at the air/water interface and cross-linked 'in situ' via dynamic imine chemistry. The cross-linking process and the film characteristics are monitored by various surface-sensitive techniques such as grazing incidence X-ray diffraction, X-ray reflectivity, and infrared reflection-absorption spectroscopy. After transfer onto carbon grids, the cross-linked films are investigated by transmission and scanning electron microscopy. The obtained micrographs display mechanically self-supported nanosheets with area dimensions over several micrometers and, thus, an undeniable visual proof of successful cross-linking. The cross-linking process at the air/water interface allows to obtain Janus-faced sheets with a hydrophobic side characterized by aliphatic alkyl chains and a hydrophilic side characterized by nucleophilic groups like amines, hydroxyl groups and imine.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Christian Wölk
- Pharmaceutical Technology, Faculty of Medicine, University of Leipzig Eilenburger Str. 15a 04317 Leipzig Germany
| | - Victoria M Latza
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Andrei Chumakov
- European Synchrotron Radiation Facility 71, avenue des Martyrs, CS 40220 38043 Grenoble Cedex 9 France
| | - Gerald Brezesinski
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Physics, TU Darmstadt Hochschulstr. 8 64289 Darmstadt Germany
| | - Emanuel Schneck
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
- Department of Physics, TU Darmstadt Hochschulstr. 8 64289 Darmstadt Germany
| |
Collapse
|
10
|
Abstract
Two-dimensional (2D) polymers have garnered widespread interest because of their intriguing physicochemical properties. Envisaged applications in fields including nanodevices, solid-state chemistry, physical organic chemistry, and condensed matter physics, however, demand high-quality and large-scale production. In this perspective, we first introduce exotic band structures of organic frameworks holding honeycomb, kagome, and Lieb lattices. We further discuss how mesoscale ordered 2D polymers can be synthesized by means of choosing suitable monomers and optimizing growth conditions. We describe successful polymerization strategies to introducing a non-benzenoid subunit into a π-conjugated carbon lattice via delicately designed monomer precursors. Also, to obviate transfer and restore the intrinsic properties of π-conjugated polymers, new paradigms of aryl-aryl coupling on inert surfaces are discussed. Recent achievements in the photopolymerization demonstrate the need for monomer design. We conclude the potential applications of these organic networks and project the future possibilities in providing new insights into on-surface polymerization.
Collapse
Affiliation(s)
- Tianchao Niu
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Chenqiang Hua
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
| | - Miao Zhou
- Beihang Hangzhou Innovation Institute Yuhang, Xixi Octagon City, Yuhang District, Hangzhou 310023, China
- School of Physics, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
11
|
Prasser Q, Steinbach D, Münch AS, Neubert R, Weber C, Uhlmann P, Mertens F, Plamper FA. Interfacial Rearrangements of Block Copolymer Micelles Toward Gelled Liquid-Liquid Interfaces with Adjustable Viscoelasticity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106956. [PMID: 35373537 DOI: 10.1002/smll.202106956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Though amphiphiles are ubiquitously used for altering interfaces, interfacial reorganization processes are in many cases obscure. For example, adsorption of micelles to liquid-liquid interfaces is often accompanied by rapid reorganizations toward monolayers. Then, the involved time scales are too short to be followed accurately. A block copolymer system, which comprises poly(ethylene oxide)110 -b-poly{[2-(methacryloyloxy)ethyl]diisopropylmethylammonium chloride}170 (i.e., PEO110 -b-qPDPAEMA170 with quaternized poly(diisopropylaminoethyl methacrylate)) is presented. Its reorganization kinetics at the water/n-decane interface is slowed down by electrostatic interactions with ferricyanide ([Fe(CN)6 ]3- ). This deceleration allows an observation of the restructuring of the adsorbed micelles not only by tracing the interfacial pressure, but also by analyzing the interfacial rheology and structure with help of atomic force microscopy. The observed micellar flattening and subsequent merging toward a physically interconnected monolayer lead to a viscoelastic interface well detectable by interfacial shear rheology (ISR). Furthermore, the "gelled" interface is redox-active, enabling a return to purely viscous interfaces and hence a manipulation of the rheological properties by redox reactions. Additionally, interfacial Prussian blue formation stiffens the interface. Such manipulation and in-depth knowledge of the rheology of complex interfaces can be beneficial for the development of emulsion formulations in industry or medicine, where colloidal stability or adapted permeability is crucial.
Collapse
Affiliation(s)
- Quirin Prasser
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, Freiberg, 09599, Germany
| | - Daniel Steinbach
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, Freiberg, 09599, Germany
| | - Alexander S Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Richard Neubert
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, Freiberg, 09599, Germany
| | - Christian Weber
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, Hannover, 30655, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden, 01069, Germany
| | - Florian Mertens
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, Freiberg, 09599, Germany
- Center for Efficient High Temperature Processes and Materials Conversion ZeHS, TU Bergakademie Freiberg, Winklerstr 5, Freiberg, 09599, Germany
| | - Felix A Plamper
- Institute of Physical Chemistry, TU Bergakademie Freiberg, Leipziger Str. 29, Freiberg, 09599, Germany
- Center for Efficient High Temperature Processes and Materials Conversion ZeHS, TU Bergakademie Freiberg, Winklerstr 5, Freiberg, 09599, Germany
- Freiberg Center for Water Research ZeWaF, TU Bergakademie Freiberg, Winklerstraße 5, Freiberg, 09599, Germany
| |
Collapse
|
12
|
Rashid RB, Evans AM, Hall LA, Dasari RR, Roesner EK, Marder SR, D'Allesandro DM, Dichtel WR, Rivnay J. A Semiconducting Two-Dimensional Polymer as an Organic Electrochemical Transistor Active Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110703. [PMID: 35355340 DOI: 10.1002/adma.202110703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Organic electrochemical transistors (OECTs) are devices with broad potential in bioelectronic sensing, circuits, and neuromorphic hardware. Their unique properties arise from the use of organic mixed ionic/electronic conductors (OMIECs) as the active channel. Typical OMIECs are linear polymers, where defined and controlled microstructure/morphology, and reliable characterization of transport and charging can be elusive. Semiconducting two-dimensional polymers (2DPs) present a new avenue in OMIEC materials development, enabling electronic transport along with precise control of well-defined channels ideal for ion transport/intercalation. To this end, a recently reported 2DP, TIIP, is synthesized and patterned at 10 µm resolution as the channel of a transistor. The TIIP films demonstrate textured microstructure and show semiconducting properties with accessible oxidation states. Operating in an aqueous electrolyte, the 2DP-OECT exhibits a device-scale hole mobility of 0.05 cm2 V-1 s-1 and a µC* figure of merit of 1.75 F cm-1 V-1 s-1 . 2DP OMIECs thus offer new synthetic degrees of freedom to control OECT performance and may enable additional opportunities such as ion selectivity or improved stability through reduced morphological modulation during device operation.
Collapse
Affiliation(s)
- Reem B Rashid
- Dept. of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Austin M Evans
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Lyndon A Hall
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Raghunath R Dasari
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Emily K Roesner
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Seth R Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- University of Colorado Boulder, Renewable and Sustainable Energy Institute, Boulder, CO, 80303, USA
- National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, CO, 80401, USA
- University of Colorado Boulder, Department of Chemical and Biological Engineering, Boulder, CO, 80303, USA
- University of Colorado Boulder, Department of Chemistry, Boulder, CO, 80303, USA
| | | | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Rivnay
- Dept. of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
13
|
Wang F, Zhang Z, Shakir I, Yu C, Xu Y. 2D Polymer Nanosheets for Membrane Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103814. [PMID: 35084113 PMCID: PMC8922124 DOI: 10.1002/advs.202103814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Since the discovery of single-layer graphene in 2004, the family of 2D inorganic nanosheets is considered as ideal membrane materials due to their ultrathin atomic thickness and fascinating physicochemical properties. However, the intrinsically nonporous feature of 2D inorganic nanosheets hinders their potential to achieve a higher flux to some extent. Recently, 2D polymer nanosheets, originated from the regular and periodic covalent connection of the building units in 2D plane, have emerged as promising candidates for preparing ultrafast and highly selective membranes owing to their inherently tunable and ordered pore structure, light weight, and high specific surface. In this review, the synthetic methodologies (including top-down and bottom-up methods) of 2D polymer nanosheets are first introduced, followed by the summary of 2D polymer nanosheets-based membrane fabrication as well as membrane applications in the fields of gas separation, water purification, organic solvent separation, and ion exchange/transport in fuel cells and lithium-sulfur batteries. Finally, based on their current achievements, the authors' personal insights are put forward into the existing challenges and future research directions of 2D polymer nanosheets for membrane separation. The authors believe this comprehensive review on 2D polymer nanosheets-based membrane separation will definitely inspire more studies in this field.
Collapse
Affiliation(s)
- Fei Wang
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Zhao Zhang
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| | - Imran Shakir
- Department of Materials Science and EngineeringUniversity of CaliforniaLos AngelesCA90095USA
- Sustainable Energy Technologies CenterCollege of EngineeringKing Saud UniversityRiyadh11421Saudi Arabia
| | - Chengbing Yu
- School of Materials Science and EngineeringShanghai UniversityShanghai201800China
| | - Yuxi Xu
- School of EngineeringWestlake UniversityHangzhouZhejiang Province310024China
- School of EngineeringWestlake Institute for Advanced StudyHangzhouZhejiang Province310024China
| |
Collapse
|
14
|
Vaillard AS, El Haitami A, Dreier LB, Fontaine P, Cousin F, Gutfreund P, Goldmann M, Backus EHG, Cantin S. Vertically Heterogeneous 2D Semi-Interpenetrating Networks Based on Cellulose Acetate and Cross-Linked Polybutadiene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2538-2549. [PMID: 35171621 DOI: 10.1021/acs.langmuir.1c03084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work reports the feasibility of polybutadiene (PB) cross-linking under UV irradiation in the presence of a linear polymer, cellulose acetate (CA), to form semi-interpenetrating polymer networks at the air-water interface. The thermodynamic properties and the morphology of two-dimensional (2D) CA/PB blends are investigated after UV irradiation and for a wide range of CA volume fractions. A contraction of the mixed Langmuir films is observed independent of the composition, in agreement with that recorded for the individual PB monolayer after cross-linking. The PB network formation is demonstrated by in situ sum-frequency generation spectroscopy on the equivolumic CA/PB mixed film. From Brewster angle microscopy observations, the PB network synthesis does not induce any morphology change at the mesoscopic scale, and all of the mixed films remain homogeneous laterally. In situ neutron reflectometry is used to probe the effect of PB cross-linking on the vertical structure of CA/PB mixed films. For all studied compositions, significant thickening of the films is evidenced, consistent with their contraction ratio. This thickening is accompanied by a partial expulsion of the PB toward the film-air interface, which is attributed to the hydrophobic character of the PB. This phenomenon is stronger for films rich in PB. In particular, the structure of the PB-rich film undergoes a transition from vertically homogeneous to inhomogeneous along the depth. 2D semi-interpenetrating polymer networks can thus be synthesized at the air-water interface with a morphology that is strongly influenced by the polymer-polymer and polymer-environment interactions.
Collapse
Affiliation(s)
| | | | - Lisa B Dreier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Michel Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
- Institut des NanoSciences de Paris, Sorbonne Université, 75252 Paris Cedex 05, France
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 75006 Paris, France
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | | |
Collapse
|
15
|
Yang H, Zhang T, Xue Q. Recent advances in single-crystalline two-dimensional polymers: Synthesis, characterization and challenges. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Affiliation(s)
- Gregor Hofer
- X-ray Platform D-MATL, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
| | - A. Dieter Schlüter
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
| | - Thomas Weber
- X-ray Platform D-MATL, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5-10, 8093 Zurich, Switzerland
| |
Collapse
|
17
|
Wang J, Wang K, Xu Y. Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. ACS NANO 2021; 15:19026-19053. [PMID: 34842431 DOI: 10.1021/acsnano.1c09194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium metal anodes (LMAs) have attracted much attention in recent years because of their high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.040 V vs standard hydrogen electrode). Lithium metal can be coupled with various cathodes to construct high-energy-density lithium metal batteries (LMBs) which hold great promise for next-generation batteries. However, the unstable solid electrolyte interphases (SEIs) and the uncontrollable lithium dendrite growth severely hinder the commercial development of LMAs. The emerging 2D polymers (2DPs), which possess high mechanical flexibility, high specific surface area, abundant surface chemistry, and rich chemical modification characteristics, have shown great advantages in addressing the inherent issues of LMAs. Herein, the current progress of 2DPs for stable and dendrite-free LMAs in liquid- and solid-based batteries is comprehensively reviewed. Some perspectives for the application of 2DPs in LMBs are also discussed. It is believed that the emerging 2DPs will provide insights into developing high-energy-density LMBs and beyond.
Collapse
Affiliation(s)
- Jiwei Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Northeast Center for Chemical Energy Storage (NECCES), Binghamton University, Binghamton, New York 13902, United States
| | - Kaixi Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
18
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
19
|
On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat Chem 2021; 13:730-736. [PMID: 34083780 DOI: 10.1038/s41557-021-00709-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/19/2021] [Indexed: 02/04/2023]
Abstract
The use of solid supports and ultra-high vacuum conditions for the synthesis of two-dimensional polymers is attractive, as it can enable thorough characterization, often with submolecular resolution, and prevent contamination. However, most on-surface polymerizations are thermally activated, which often leads to high defect densities and relatively small domain sizes. Here, we have obtained a porous two-dimensional polymer that is ordered on the mesoscale by the two-staged topochemical photopolymerization of fluorinated anthracene triptycene (fantrip) monomers on alkane-passivated graphite surfaces under ultra-high vacuum. First, the fantrip monomers self-assemble into highly ordered monolayer structures, where all anthracene moieties adopt a suitable arrangement for photopolymerization. Irradiation with violet light then induces complete covalent crosslinking by [4+4] photocycloaddition to form a two-dimensional polymer, while fully preserving the long-range order of the self-assembled structure. The extent of the polymerization is confirmed by local infrared spectroscopy and scanning tunnelling microscopy characterization, in agreement with density functional theory calculations, which also gives mechanistic insights.
Collapse
|
20
|
Shao F, Wang W, Yang W, Yang Z, Zhang Y, Lan J, Dieter Schlüter A, Zenobi R. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat Commun 2021; 12:4557. [PMID: 34315909 PMCID: PMC8316434 DOI: 10.1038/s41467-021-24856-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Plasmon-induced chemical reactions (PICRs) have recently become promising approaches for highly efficient light-chemical energy conversion. However, an in-depth understanding of their mechanisms at the nanoscale still remains challenging. Here, we present an in-situ investigation by tip-enhanced Raman spectroscopy (TERS) imaging of the plasmon-induced [4+4]-cycloaddition polymerization within anthracene-based monomer monolayers physisorbed on Au(111), and complement the experimental results with density functional theory (DFT) calculations. This two-dimensional (2D) polymerization can be flexibly triggered and manipulated by the hot carriers, and be monitored simultaneously by TERS in real time and space. TERS imaging provides direct evidence for covalent bond formation with ca. 3.7 nm spatial resolution under ambient conditions. Combined with DFT calculations, the TERS results demonstrate that the lateral polymerization on Au(111) occurs by a hot electron tunneling mechanism, and crosslinks form via a self-stimulating growth mechanism. We show that TERS is promising to be plasmon-induced nanolithography for organic 2D materials.
Collapse
Affiliation(s)
- Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute, East China Normal University, Shanghai, People's Republic of China
| | - Weimin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Zhilin Yang
- Department of Physics, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Jiujiang Research Institute, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Yao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, People's Republic of China
| | - Jinggang Lan
- Department of Chemistry, University of Zurich, Zurich, Switzerland.
| | - A Dieter Schlüter
- Department of Materials, Polymer Chemistry, ETH Zurich, Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Herrero ACG, Féron M, Bendiab N, Den Hertog M, Reita V, Salut R, Palmino F, Coraux J, Chérioux F. Nano-sheets of two-dimensional polymers with dinuclear (arene)ruthenium nodes, synthesised at a liquid/liquid interface. NANOTECHNOLOGY 2021; 32:355603. [PMID: 34030148 DOI: 10.1088/1361-6528/ac0472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
We developed a new class of mono- or few-layered two-dimensional polymers based on dinuclear (arene)ruthenium nodes, obtained by combining the imine condensation with an interfacial chemistry process, and use a modified Langmuir-Schaefer method to transfer them onto solid surfaces. Robust nano-sheets of two-dimensional polymers including dinuclear complexes of heavy ruthenium atoms as nodes were synthesised. These nano-sheets, whose thickness is of a few tens of nanometers, were suspended onto solid porous membranes. Then, they were thoroughly characterised with a combination of local probes, including Raman spectroscopy, Fourier transform infrared spectroscopy and transmission electron microscopy in imaging and diffraction mode.
Collapse
Affiliation(s)
| | - Michel Féron
- University Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, 15B avenue des Montboucons, F-25030 Besançon Cedex, France
| | - Nedjma Bendiab
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NÉEL, F-38000 Grenoble, France
| | - Martien Den Hertog
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NÉEL, F-38000 Grenoble, France
| | - Valérie Reita
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NÉEL, F-38000 Grenoble, France
| | - Roland Salut
- University Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, 15B avenue des Montboucons, F-25030 Besançon Cedex, France
| | - Frank Palmino
- University Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, 15B avenue des Montboucons, F-25030 Besançon Cedex, France
| | - Johann Coraux
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut NÉEL, F-38000 Grenoble, France
| | - Frédéric Chérioux
- University Bourgogne Franche-Comté, FEMTO-ST, UFC, CNRS, 15B avenue des Montboucons, F-25030 Besançon Cedex, France
| |
Collapse
|
22
|
Chen R, Wang D, Hao W, Shao F, Zhao Y. Tessellation strategy for the interfacial synthesis of an anthracene-based 2D polymer via [4+4]-photocycloaddition. Chem Commun (Camb) 2021; 57:5794-5797. [PMID: 33998616 DOI: 10.1039/d1cc02179f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the tessellation or tiling process in daily life, a rigid triangular macrocyclic molecule containing anthracene as a photo-active moiety was synthesized to realize pre-organization through π-π interactions. The successful preparation of a 2D polymer monolayer at the air/water interface was achieved through [4+4]-photocycloaddition.
Collapse
Affiliation(s)
- Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Wenbo Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Feng Shao
- Department of Physics and Astronomy, National Graphene Institute, University of Manchester, Manchester, M13 9PL, UK.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
23
|
Zhang G, Zeng Y, Gordiichuk P, Strano MS. Chemical kinetic mechanisms and scaling of two-dimensional polymers via irreversible solution-phase reactions. J Chem Phys 2021; 154:194901. [PMID: 34240902 DOI: 10.1063/5.0044050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Two-dimensional (2D) polymers are extended networks of multi-functional repeating units that are covalently linked together but confined to a single plane. The past decade has witnessed a surge in interest and effort toward producing and utilizing 2D polymers. However, facile synthesis schemes suitable for mass production are yet to be realized. In addition, unifying theories to describe the 2D polymerization process, such as those for linear polymers, have not yet been established. Herein, we perform a chemical kinetic simulation to study the recent synthesis of 2D polymers in homogeneous solution with irreversible chemistry. We show that reaction sites for polymerization in 2D always scale unfavorably compared to 3D, growing as molecular weight to the 1/2 power vs 2/3 power for 3D. However, certain mechanisms can effectively suppress out-of-plane defect formation and subsequent 3D growth. We consider two such mechanisms, which we call bond-planarity and templated autocatalysis. In the first, although single bonds can easily rotate out-of-plane to render polymerization in 3D, some double-bond linkages prefer a planar configuration. In the second mechanism, stacked 2D plates may act as van der Waals templates for each other to enhance growth, which leads to an autocatalysis. When linkage reactions possess a 1000:1 selectivity (γ) for staying in plane vs rotating, solution-synthesized 2D polymers can have comparable size and yield with those synthesized from confined polymerization on a surface. Autocatalysis could achieve similar effects when self-templating accelerates 2D growth by a factor β of 106. A combined strategy relaxes the requirement of both mechanisms by over one order of magnitude. We map the dependence of molecular weight and yield for the 2D polymer on the reaction parameters, allowing experimental results to be used to estimate β and γ. Our calculations show for the first time from theory the feasibility of producing two-dimensional polymers from irreversible polymerization in solution.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yuwen Zeng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Pavlo Gordiichuk
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Moradi M, Lengweiler NL, Housecroft CE, Tulli LG, Stahlberg H, Jung TA, Shahgaldian P. Coordination-Driven Monolayer-to-Bilayer Transition in Two-Dimensional Metal-Organic Networks. J Phys Chem B 2021; 125:4204-4211. [PMID: 33724817 DOI: 10.1021/acs.jpcb.1c01058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on monolayer-to-bilayer transitions in 2D metal-organic networks (MONs) from amphiphiles supported at the water-air interface. Functionalized calix[4]arenes are assembled through the coordination of selected transition metal ions to yield monomolecular 2D crystalline layers. In the presence of Ni(II) ions, interfacial self-assembly and coordination yields stable monolayers. Cu(II) promotes 2D coordination of a monolayer which is then diffusively reorganizing, nucleates, and grows a progressive amount of second layer islands. Atomic force microscopic data of these layers after transfer onto solid substrates reveal crystalline packing geometries with submolecular resolution as they are varying in function of the building blocks and the kinetics of the assembly. We assign this monolayer-to-bilayer transition to a diffusive reorganization of the initial monolayers owing to chemical vacancies of the predominant coordination motif formed by Cu2+ ions. Our results introduce a new dimension into the controlled monolayer-to-multilayer architecturing of 2D metal-organic networks.
Collapse
Affiliation(s)
- Mina Moradi
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland.,Laboratory for Micro- and Nano-technology, Paul Scherrer Institute, 4132 Villigen, Switzerland
| | - Nadia L Lengweiler
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | | | - Ludovico G Tulli
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, 4058 Basel, Switzerland
| | - Thomas A Jung
- Laboratory for Micro- and Nano-technology, Paul Scherrer Institute, 4132 Villigen, Switzerland.,Swiss Nanoscience Institute and Department of Physics, University of Basel, 4056 Basel, Switzerland
| | - Patrick Shahgaldian
- Institute of Chemistry and Bioanalytics, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| |
Collapse
|
25
|
Hu F, Hao W, Mücke D, Pan Q, Li Z, Qi H, Zhao Y. Highly Efficient Preparation of Single-Layer Two-Dimensional Polymer Obtained from Single-Crystal to Single-Crystal Synthesis. J Am Chem Soc 2021; 143:5636-5642. [PMID: 33848155 DOI: 10.1021/jacs.1c00907] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A two-dimensional polymer (2DP) single crystal (T-2DP) with submillimeter size was synthesized by single-crystal to single-crystal transformation based on photochemical [2 + 2]-cycloaddition. A successful conversion from monomer to polymer was achieved in the single-crystal state. The structure information with an atomic resolution of both the monomer and 2DP was given through single-crystal X-ray diffraction. By simply treated with trifluoroacetic acid (TFA) under mild conditions, an unprecedented efficiency of exfoliation was achieved. The triazine core in T-2DP could be protonated by TFA, which resulted in a solution-like sample with >60% of monolayers. The size of the exfoliated monolayer reaches to several hundreds of μm2. This is another precious example of 2DP single crystal with nearly perfect structure and large enough size. The successful preparation of the highly desirable 2DP "solution" for a long time containing large sized and large amount of 2DP monolayers may open up new prospects for the basic properties study and the applications of 2DPs.
Collapse
Affiliation(s)
- Fan Hu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenbo Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - David Mücke
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Universität Ulm, 89081 Ulm, Germany
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haoyuan Qi
- Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Universität Ulm, 89081 Ulm, Germany.,Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
26
|
|
27
|
Tan F, Han S, Peng D, Wang H, Yang J, Zhao P, Ye X, Dong X, Zheng Y, Zheng N, Gong L, Liang C, Frese N, Gölzhäuser A, Qi H, Chen S, Liu W, Zheng Z. Nanoporous and Highly Thermal Conductive Thin Film of Single-Crystal Covalent Organic Frameworks Ribbons. J Am Chem Soc 2021; 143:3927-3933. [PMID: 33629850 DOI: 10.1021/jacs.0c13458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoporous materials are widely explored as efficient adsorbents for the storage of gases and liquids as well as for effective low-dielectric materials in large-scale integrated circuits. These applications require fast heat transfer, while most nanoporous substances are thermal insulators. Here, the oriented growth of micrometer-sized single-crystal covalent organic frameworks (COFs) ribbons with nanoporous structures at an air-water interface is presented. The obtained COFs ribbons are interconnected into a continuous and purely crystalline thin film. Due to the robust connectivity among the COFs ribbons, the entire film can be easily transferred and reliably contacted with target supports. The measured thermal conductivity amounts to ∼5.31 ± 0.37 W m-1 K-1 at 305 K, which is so far the highest value for nanoporous materials. These findings provide a methodology to grow and assemble single-crystal COFs into large area ensembles for the exploration of functional properties and potentially lead to new devices with COFs thin films where both porosity and thermal conductivity are desired.
Collapse
Affiliation(s)
- Fanglin Tan
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Shuo Han
- Department of Physics, Renmin University of China, Beijing, 100872, P. R. China
| | - Daoling Peng
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510640, P. R. China
| | - Honglei Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jing Yang
- Key Laboratory of Low-Carbon Chemistry & Energy Conser-vation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Pei Zhao
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xiaojun Ye
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xin Dong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yuanyuan Zheng
- Key Laboratory of Low-Carbon Chemistry & Energy Conser-vation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Nan Zheng
- College of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Li Gong
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Chaolun Liang
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Natalie Frese
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Armin Gölzhäuser
- Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany
| | - Haoyuan Qi
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technical University of Dresden, 01069 Dresden, Germany.,Central Facility of Electron Microscopy, Electron Microscopy Group of Materials Science, Universität Ulm, 89081 Ulm, Germany
| | - Shanshan Chen
- Department of Physics, Renmin University of China, Beijing, 100872, P. R. China
| | - Wei Liu
- Key Laboratory of Low-Carbon Chemistry & Energy Conser-vation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, and State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, China
| |
Collapse
|
28
|
Balch HB, Evans AM, Dasari RR, Li H, Li R, Thomas S, Wang D, Bisbey RP, Slicker K, Castano I, Xun S, Jiang L, Zhu C, Gianneschi N, Ralph DC, Brédas JL, Marder SR, Dichtel WR, Wang F. Electronically Coupled 2D Polymer/MoS 2 Heterostructures. J Am Chem Soc 2020; 142:21131-21139. [PMID: 33284624 PMCID: PMC9836045 DOI: 10.1021/jacs.0c10151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Emergent quantum phenomena in electronically coupled two-dimensional heterostructures are central to next-generation optical, electronic, and quantum information applications. Tailoring electronic band gaps in coupled heterostructures would permit control of such phenomena and is the subject of significant research interest. Two-dimensional polymers (2DPs) offer a compelling route to tailored band structures through the selection of molecular constituents. However, despite the promise of synthetic flexibility and electronic design, fabrication of 2DPs that form electronically coupled 2D heterostructures remains an outstanding challenge. Here, we report the rational design and optimized synthesis of electronically coupled semiconducting 2DP/2D transition metal dichalcogenide van der Waals heterostructures, demonstrate direct exfoliation of the highly crystalline and oriented 2DP films down to a few nanometers, and present the first thickness-dependent study of 2DP/MoS2 heterostructures. Control over the 2DP layers reveals enhancement of the 2DP photoluminescence by two orders of magnitude in ultrathin sheets and an unexpected thickness-dependent modulation of the ultrafast excited state dynamics in the 2DP/MoS2 heterostructure. These results provide fundamental insight into the electronic structure of 2DPs and present a route to tune emergent quantum phenomena in 2DP hybrid van der Waals heterostructures.
Collapse
Affiliation(s)
- Halleh B. Balch
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | | | | | | | | | - Simil Thomas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,Department of Physics, Govt. College Nedumangad, Kerala 695541, India
| | - Danqing Wang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Ryan P. Bisbey
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States,Department of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Kaitlin Slicker
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ioannina Castano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sangni Xun
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lili Jiang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| | - Nathan Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute for Nanotechnology, Simpson Querrey Institute, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel C. Ralph
- Department of Physics and Kavli Institute at Cornell, Cornell University, Ithaca, New York 14853, United States
| | - Jean-Luc Brédas
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States,Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Seth R. Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - William R. Dichtel
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, Berkeley, California 94720, United States,Kavli Energy Nanosciences Institute, University of California Berkeley, Berkeley, California 94720, United States,Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
29
|
Haroun F, El Haitami A, Ober P, Backus EHG, Cantin S. Poly(ethylene glycol)- block-poly(propylene glycol)- block-poly(ethylene glycol) Copolymer 2D Single Network at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9142-9152. [PMID: 32686418 DOI: 10.1021/acs.langmuir.0c01398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work, Langmuir monolayers based on poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) triblock copolymer were in situ stabilized at the air-water interface in the presence of a cross-linking agent, benzene-1,3,5-tricarboxaldehyde (BTC), in the aqueous subphase. The reaction takes place through acid-catalyzed acetalization between the terminal hydroxyl groups of the copolymer and aldehyde functions of the BTC molecules. Mean area per repeat unit measurements as a function of the reaction time show a significant monolayer contraction associated with an increase in its compressibility modulus. In addition, Brewster angle microscopy observations indicate the appearance of higher-density two-dimensional domains, irreversibly formed at constant surface pressure. This is also confirmed on a smaller scale by atomic force microscopy (AFM). These arguments, consistent with copolymer monolayer cross-linking in acidic medium, are supported in situ at the air-water interface by sum-frequency generation (SFG) spectroscopy. Furthermore, PEG-PPG-PEG monolayer cross-linking is not evidenced in alkaline medium, in coherence with the interfacial acid-catalyzed acetalization.
Collapse
Affiliation(s)
- Ferhat Haroun
- LPPI, CY Cergy Paris Université, F95000 Cergy, France
| | | | - Patrick Ober
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Sophie Cantin
- LPPI, CY Cergy Paris Université, F95000 Cergy, France
| |
Collapse
|
30
|
Ishigami T, Inake Y, Tabe Y, Nonaka Y, Endo K, Nishiyama I. 2D Photopolymerization of Liquid Crystalline Langmuir Monolayers: In Situ Observation by Reflected Polarizing Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8914-8921. [PMID: 32654492 DOI: 10.1021/acs.langmuir.0c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photopolymerization of Langmuir monolayers composed of bifunctional acrylic liquid crystalline (LC) compounds was observed in situ by polarizing optical microscopy. In a dark state, monolayers of the LC compounds formed at an air-water or liquid-liquid interface exhibited liquid-like fluidity and in-plane optical anisotropy because of the coherent molecular tilt from the surface normal. Irradiated by UV light, the in-plane anisotropy and the liquid fluidity gradually disappeared with time, indicating the formation of the polymerized monolayers. Because the constituent molecules possess polymerizable acryloyl groups, under UV light, they are combined by acrylic polymer chains grown on the interface, which decreases the intermolecular distance and disturbs the coherent molecular tilt, resulting in the evanescence of the in-plane optical anisotropy and the fluidity. In contrast to the classical model of radical polymerization, the time taken for the monolayers to be photopolymerized was inversely proportional to the UV intensity, which is ascribed to the ideal two dimensionality of the reaction field. Because the polymerization degree is quantitatively estimated from the in-plane optical anisotropy of the LC monolayers, the process is traced, from moment to moment, by in situ microscopy observation.
Collapse
Affiliation(s)
- Tatsuhiko Ishigami
- Kagami Memorial Research Institute of Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjiku, 1690051 Tokyo, Japan
| | - Yutaka Inake
- Kagami Memorial Research Institute of Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjiku, 1690051 Tokyo, Japan
| | - Yuka Tabe
- Kagami Memorial Research Institute of Materials Science and Technology, Waseda University, 2-8-26 Nishi-waseda, Shinjiku, 1690051 Tokyo, Japan
| | - Yuki Nonaka
- DIC Corporation, 4472-1 Komuro, Ina, Kita-adachi, 3628577 Saitama, Japan
| | - Koichi Endo
- DIC Corporation, 4472-1 Komuro, Ina, Kita-adachi, 3628577 Saitama, Japan
| | - Isa Nishiyama
- DIC Corporation, 4472-1 Komuro, Ina, Kita-adachi, 3628577 Saitama, Japan
| |
Collapse
|
31
|
Sahabudeen H, Qi H, Ballabio M, Položij M, Olthof S, Shivhare R, Jing Y, Park S, Liu K, Zhang T, Ma J, Rellinghaus B, Mannsfeld S, Heine T, Bonn M, Cánovas E, Zheng Z, Kaiser U, Dong R, Feng X. Highly Crystalline and Semiconducting Imine-Based Two-Dimensional Polymers Enabled by Interfacial Synthesis. Angew Chem Int Ed Engl 2020; 59:6028-6036. [PMID: 31943664 PMCID: PMC7187418 DOI: 10.1002/anie.201915217] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Indexed: 01/08/2023]
Abstract
Single-layer and multi-layer 2D polyimine films have been achieved through interfacial synthesis methods. However, it remains a great challenge to achieve the maximum degree of crystallinity in the 2D polyimines, which largely limits the long-range transport properties. Here we employ a surfactant-monolayer-assisted interfacial synthesis (SMAIS) method for the successful preparation of porphyrin and triazine containing polyimine-based 2D polymer (PI-2DP) films with square and hexagonal lattices, respectively. The synthetic PI-2DP films are featured with polycrystalline multilayers with tunable thickness from 6 to 200 nm and large crystalline domains (100-150 nm in size). Intrigued by high crystallinity and the presence of electroactive porphyrin moieties, the optoelectronic properties of PI-2DP are investigated by time-resolved terahertz spectroscopy. Typically, the porphyrin-based PI-2DP 1 film exhibits a p-type semiconductor behavior with a band gap of 1.38 eV and hole mobility as high as 0.01 cm2 V-1 s-1 , superior to the previously reported polyimine based materials.
Collapse
Affiliation(s)
- Hafeesudeen Sahabudeen
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Haoyuan Qi
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUniversität Ulm89081UlmGermany
| | - Marco Ballabio
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Miroslav Položij
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Selina Olthof
- Department of ChemistryUniversity of CologneLuxemburger Str. 11650939CologneGermany
| | - Rishi Shivhare
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Yu Jing
- College of Chemical EngineeringNanjing Forestry UniversityNanjingChina
| | - SangWook Park
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Kejun Liu
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Tao Zhang
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Ji Ma
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Bernd Rellinghaus
- IFW DresdenInstitute for Metallic Materials01171DresdenGermany
- Dresden Center for Nanoanalysis (DCN), cfaedTechnische Universität Dresden01062DresdenGermany
| | - Stefan Mannsfeld
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Thomas Heine
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Enrique Cánovas
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia)Faraday 928049MadridSpain
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of ChemistrySun Yat-sen UniversityGuangzhou510275China
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUniversität Ulm89081UlmGermany
| | - Renhao Dong
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| | - Xinliang Feng
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden01062DresdenGermany
| |
Collapse
|
32
|
Lange RZ, Synnatschke K, Qi H, Huber N, Hofer G, Liang B, Huck C, Pucci A, Kaiser U, Backes C, Schlüter AD. Enriching and Quantifying Porous Single Layer 2D Polymers by Exfoliation of Chemically Modified van der Waals Crystals. Angew Chem Int Ed Engl 2020; 59:5683-5695. [PMID: 31821673 PMCID: PMC7154524 DOI: 10.1002/anie.201912705] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Indexed: 01/11/2023]
Abstract
2D polymer sheets with six positively charged pyrylium groups at each pore edge in a stacked single crystal can be transformed into a 2D polymer with six pyridines per pore by exposure to gaseous ammonia. This reaction furnishes still a crystalline material with tunable protonation degree at regular nano-sized pores promising as separation membrane. The exfoliation is compared for both 2D polymers with the latter being superior. Its liquid phase exfoliation yields nanosheet dispersions, which can be size-selected using centrifugation cascades. Monolayer contents of ≈30 % are achieved with ≈130 nm sized sheets in mg quantities, corresponding to tens of trillions of monolayers. Quantification of nanosheet sizes, layer number and mass shows that this exfoliation is comparable to graphite. Thus, we expect that recent advances in exfoliation of graphite or inorganic crystals (e.g. scale-up, printing etc.) can be directly applied to this 2D polymer as well as to covalent organic frameworks.
Collapse
Affiliation(s)
- Ralph Z. Lange
- Institute for PolymersETH ZürichVladimir-Prelog-Weg 58093ZürichSwitzerland
| | - Kevin Synnatschke
- Institute of Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - Haoyuan Qi
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Niklas Huber
- Institute for PolymersETH ZürichVladimir-Prelog-Weg 58093ZürichSwitzerland
| | - Gregor Hofer
- Institute for PolymersETH ZürichVladimir-Prelog-Weg 58093ZürichSwitzerland
- X-ray Platform D-MATLDepartment of MaterialsETH ZürichVladimir-Prelog-Weg 58093ZürichSwitzerland
| | - Baokun Liang
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christian Huck
- Kirchhoff Institute of PhysicsHeidelberg UniversityIm Neuenheimer Feld 22769120HeidelbergGermany
| | - Annemarie Pucci
- Kirchhoff Institute of PhysicsHeidelberg UniversityIm Neuenheimer Feld 22769120HeidelbergGermany
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Claudia Backes
- Institute of Physical ChemistryHeidelberg UniversityIm Neuenheimer Feld 25369120HeidelbergGermany
| | - A. Dieter Schlüter
- Institute for PolymersETH ZürichVladimir-Prelog-Weg 58093ZürichSwitzerland
| |
Collapse
|
33
|
Wright T, Petel Y, Zellman CO, Sauvé ER, Hudson ZM, Michal CA, Wolf MO. Room temperature crystallization of amorphous polysiloxane using photodimerization. Chem Sci 2020; 11:3081-3088. [PMID: 34122813 PMCID: PMC8157530 DOI: 10.1039/c9sc06235a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/13/2020] [Indexed: 11/21/2022] Open
Abstract
Bulk crystallization in flexible polymeric systems is difficult to control due to the random orientation of the chains. Here we report a photo cross-linking strategy that results in simultaneous cross-linking and crystallization of polysiloxane chains into millimeter sized leaf-like polycrystalline structures. Polymers containing pendant anthracene groups are prepared and undergo [4+4] photocycloaddition under 365 nm irradiation at room temperature. The growth and morphology of the crystalline structures is studied using polarized optical microscopy (POM) and atomic force microscopy and is found to progress through three unique stages of nucleation, growth, and constriction. The mobility of the individual chains is probed using pulsed-field gradient (PFG) NMR to provide insights into the diffusion processes that may govern chain transport to the growing crystal fronts. The room temperature crystallization of this conventionally amorphous polymer system may allow for a new level of morphological control for silicone materials.
Collapse
Affiliation(s)
- Taylor Wright
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Yael Petel
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Carson O Zellman
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC Canada V5A 1S6
| | - Ethan R Sauvé
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Zachary M Hudson
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Carl A Michal
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
- Department of Physics and Astronomy, University of British Columbia Vancouver BC Canada V6T 1Z1
| | - Michael O Wolf
- Department of Chemistry, University of British Columbia Vancouver BC Canada V6T 1Z1
| |
Collapse
|
34
|
Bilbao N, Martín C, Zhan G, Martínez-Abadía M, Sanz-Matı As A, Mateo-Alonso A, Harvey JN, Van der Auweraer M, Mali KS, De Feyter S. Anatomy of On-Surface Synthesized Boroxine Two-Dimensional Polymers. ACS NANO 2020; 14:2354-2365. [PMID: 32011858 DOI: 10.1021/acsnano.9b09520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic two-dimensional polymers (2DPs) obtained from well-defined monomers via bottom-up fabrication strategies are promising materials that can extend the realm of inorganic 2D materials. The on-surface synthesis of such 2DPs is particularly popular, however the pathway complexity in the growth of such films formed on solid surfaces is poorly understood. In this contribution, we present a straightforward experimental protocol which allows the synthesis of large-area, defect-free 2DPs based on boroxine linkages at room temperature. We focus on unravelling the multiple pathways available to the polymerizing system for the spatial extension of the covalent bonds. Besides the anticipated 2DP, the system can evolve into self-assembled monolayers of partially fused monodisperse reaction products that are difficult to isolate by conventional synthetic methods or remain in the monomeric state. The access to each pathway can be controlled via monomer concentration and the choice of the solvent. Most importantly, the unpolymerized systems do not evolve into the corresponding 2DP upon annealing, indicating the presence of strong kinetic traps. Using high-resolution scanning tunneling microscopy, we show reversibility in the polymerization process where the attachment and the detachment of monomers to 2DP crystallites could be monitored as a function of time. Finally, we show that the way the 2DP grows depends on the choice of the solvent. Using UV-vis absorption and emission spectroscopy, we reveal that the dominant pathway for 2DP growth is via in-plane self-condensation of the monomers, whereas in the case of an aprotic solvent, the favored growth mode is via π stacking of the monomers.
Collapse
Affiliation(s)
- Nerea Bilbao
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Cristina Martín
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
- Departamento de Química Física, Facultad de Farmacia , Universidad de Castilla-La Mancha , 02071 Albacete , Spain
| | - Gaolei Zhan
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Marta Martínez-Abadía
- POLYMAT , University of the Basque Country UPV/EHU , Avenida de Tolosa 72, E-20018 Donostia-San Sebastián , Spain
| | - Ana Sanz-Matı As
- Department of Chemistry, Quantum Chemistry, and Physical Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Aurelio Mateo-Alonso
- POLYMAT , University of the Basque Country UPV/EHU , Avenida de Tolosa 72, E-20018 Donostia-San Sebastián , Spain
- Ikerbasque, Basque Foundation for Science , 48013 Bilbao , Spain
| | - Jeremy N Harvey
- Department of Chemistry, Quantum Chemistry, and Physical Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Mark Van der Auweraer
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Kunal S Mali
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Steven De Feyter
- Department of Chemistry, Division of Molecular Imaging and Photonics , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| |
Collapse
|
35
|
Sahabudeen H, Qi H, Ballabio M, Položij M, Olthof S, Shivhare R, Jing Y, Park S, Liu K, Zhang T, Ma J, Rellinghaus B, Mannsfeld S, Heine T, Bonn M, Cánovas E, Zheng Z, Kaiser U, Dong R, Feng X. Highly Crystalline and Semiconducting Imine‐Based Two‐Dimensional Polymers Enabled by Interfacial Synthesis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915217] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hafeesudeen Sahabudeen
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Haoyuan Qi
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUniversität Ulm 89081 Ulm Germany
| | - Marco Ballabio
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Miroslav Položij
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Selina Olthof
- Department of ChemistryUniversity of Cologne Luxemburger Str. 116 50939 Cologne Germany
| | - Rishi Shivhare
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Yu Jing
- College of Chemical EngineeringNanjing Forestry University Nanjing China
| | - SangWook Park
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Kejun Liu
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Tao Zhang
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Ji Ma
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Bernd Rellinghaus
- IFW DresdenInstitute for Metallic Materials 01171 Dresden Germany
- Dresden Center for Nanoanalysis (DCN), cfaedTechnische Universität Dresden 01062 Dresden Germany
| | - Stefan Mannsfeld
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Thomas Heine
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Enrique Cánovas
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia) Faraday 9 28049 Madrid Spain
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationSchool of ChemistrySun Yat-sen University Guangzhou 510275 China
| | - Ute Kaiser
- Central Facility of Electron MicroscopyElectron Microscopy Group of Materials ScienceUniversität Ulm 89081 Ulm Germany
| | - Renhao Dong
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| | - Xinliang Feng
- Faculty of Chemistry and Food ChemistryCenter for Advancing Electronics DresdenTechnische Universität Dresden 01062 Dresden Germany
| |
Collapse
|
36
|
Vaillard AS, El Haitami A, Dreier LB, Backus EHG, Cantin S. Confinement and Cross-Linking of 1,2-Polybutadiene in Two Dimensions at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:862-871. [PMID: 31935102 DOI: 10.1021/acs.langmuir.9b03297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Langmuir monolayers of 1,2-polybutadiene (PB) were investigated by means of surface pressure-area isotherms, Brewster angle microscopy (BAM) observations, and sum-frequency generation (SFG) spectroscopy. A homogeneous and stable monolayer is formed 1.5 h after PB spreading provided that both light and oxygen are present. This was attributed to a slight oxidation of the PB at the air-water interface. The cross-linking of PB under UV photoirradiation was then studied. SFG spectroscopy demonstrates the in situ formation of a two-dimensional network. From surface pressure-area characterizations and BAM experiments, the cross-linked PB monolayer appears significantly denser and more rigid than the non-irradiated monolayer. Atomic force microscopy images reveal an increase by a factor of three in the root-mean-square roughness of the irradiated monolayers compared with the non-irradiated ones.
Collapse
Affiliation(s)
- Anne-Sophie Vaillard
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI, EA 2528) , Institut des Matériaux, CY Cergy Paris Université , 5 mail Gay-Lussac Neuville/Oise , Cergy-Pontoise Cedex 95031 , France
| | - Alae El Haitami
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI, EA 2528) , Institut des Matériaux, CY Cergy Paris Université , 5 mail Gay-Lussac Neuville/Oise , Cergy-Pontoise Cedex 95031 , France
| | - Lisa B Dreier
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research , Ackermannweg 10 , Mainz 55128 , Germany
- Department of Physical Chemistry , Währinger Strasse 42 , Vienna A-1090 , Austria
| | - Sophie Cantin
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI, EA 2528) , Institut des Matériaux, CY Cergy Paris Université , 5 mail Gay-Lussac Neuville/Oise , Cergy-Pontoise Cedex 95031 , France
| |
Collapse
|
37
|
Abstract
Organic 2D materials display valuable properties that are unique from their bulk counterparts, but creating covalent sheets with long-ranging order remains a formidable challenge. Now, reacting complementary monomers right below a surfactant monolayer on water proves to be a powerful method to create organic 2D materials with long-range order.
Collapse
|
38
|
Lange RZ, Synnatschke K, Qi H, Huber N, Hofer G, Liang B, Huck C, Pucci A, Kaiser U, Backes C, Schlüter AD. Enriching and Quantifying Porous Single Layer 2D Polymers by Exfoliation of Chemically Modified van der Waals Crystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ralph Z. Lange
- Institute for Polymers ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Kevin Synnatschke
- Institute of Physical Chemistry Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Haoyuan Qi
- Central Facility of Electron Microscopy Electron Microscopy Group of Materials Science Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Niklas Huber
- Institute for Polymers ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Gregor Hofer
- Institute for Polymers ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
- X-ray Platform D-MATL Department of Materials ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Baokun Liang
- Central Facility of Electron Microscopy Electron Microscopy Group of Materials Science Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Christian Huck
- Kirchhoff Institute of Physics Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany
| | - Annemarie Pucci
- Kirchhoff Institute of Physics Heidelberg University Im Neuenheimer Feld 227 69120 Heidelberg Germany
| | - Ute Kaiser
- Central Facility of Electron Microscopy Electron Microscopy Group of Materials Science Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Claudia Backes
- Institute of Physical Chemistry Heidelberg University Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - A. Dieter Schlüter
- Institute for Polymers ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
39
|
Andrés MA, Carné-Sánchez A, Sánchez-Laínez J, Roubeau O, Coronas J, Maspoch D, Gascón I. Ultrathin Films of Porous Metal-Organic Polyhedra for Gas Separation. Chemistry 2020; 26:143-147. [PMID: 31692089 DOI: 10.1002/chem.201904141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/21/2022]
Abstract
Ultrathin films of a robust RhII -based porous metal-organic polyhedra (MOP) have been obtained. Homogeneous and compact monolayer films (ca. 2.5 nm thick) were first formed at the air-water interface, deposited onto different substrates and characterized using spectroscopic methods, scanning transmission electron microscopy and atomic force microscopy. As a proof of concept, the gas separation performance of MOP-supported membranes has also been evaluated. Selective MOP ultrathin films (thickness ca. 60 nm) exhibit remarkable CO2 permeance and CO2 /N2 selectivity, demonstrating the great combined potential of MOP and Langmuir-based techniques in separation technologies.
Collapse
Affiliation(s)
- Miguel A Andrés
- Departamento de Química Física and Instituto de Nanociencia de, Aragón (INA), Universidad de Zaragoza, 50009, Zaragoza, Spain.,Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Javier Sánchez-Laínez
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, Universidad de Zaragoza, 50009, Zaragoza, Spain.,Chemical and Environmental Engineering Department and Instituto de, Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Olivier Roubeau
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Joaquín Coronas
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, Universidad de Zaragoza, 50009, Zaragoza, Spain.,Chemical and Environmental Engineering Department and Instituto de, Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018, Zaragoza, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Ignacio Gascón
- Departamento de Química Física and Instituto de Nanociencia de, Aragón (INA), Universidad de Zaragoza, 50009, Zaragoza, Spain.,Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC, Universidad de Zaragoza, 50009, Zaragoza, Spain
| |
Collapse
|
40
|
Jin Y, Hu Y, Ortiz M, Huang S, Ge Y, Zhang W. Confined growth of ordered organic frameworks at an interface. Chem Soc Rev 2020; 49:4637-4666. [DOI: 10.1039/c9cs00879a] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This tutorial review covers the recent design, synthesis, characterization, and property study of COF thin films and covalent monolayers through interfacial polymerization.
Collapse
Affiliation(s)
- Yinghua Jin
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Yiming Hu
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| | - Michael Ortiz
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| | | | - Yanqing Ge
- Department of Chemistry
- University of Colorado
- Boulder
- USA
- School of Chemistry and Pharmaceutical Engineering
| | - Wei Zhang
- Department of Chemistry
- University of Colorado
- Boulder
- USA
| |
Collapse
|
41
|
Zheng LQ, Servalli M, Schlüter AD, Zenobi R. Tip-enhanced Raman spectroscopy for structural analysis of two-dimensional covalent monolayers synthesized on water and on Au (111). Chem Sci 2019; 10:9673-9678. [PMID: 32055337 PMCID: PMC6984395 DOI: 10.1039/c9sc03296g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/24/2019] [Indexed: 01/15/2023] Open
Abstract
A two-dimensional (2D) covalent monolayer based on [4 + 4] cycloaddition reactions between adjacent anthracene units was synthesized at an air/water interface. For structural analysis, tip-enhanced Raman spectroscopy (TERS) provides direct evidence for the covalent bonds formed between monomer molecules. For the first time, progress of the photopolymerization reaction was monitored by irradiation (λ = 385 nm) of the monomer monolayer for different times, based on averaged TER spectra extracted from maps. In addition, a 2D polymerization on a Au (111) substrate was realized, which opens up new possibilities for such chemical transformations. This work uses TERS as a minimally invasive tool to investigate how the reaction conditions affect polymerization conversion. We show that the high sensitivity and the high spatial resolution of TERS can be used to estimate the crystallinity of 2D covalent monolayers, which is a key question in polymer synthesis.
Collapse
Affiliation(s)
- Li-Qing Zheng
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland .
| | - Marco Servalli
- Department of Materials , Institute of Polymer Chemistry , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - A Dieter Schlüter
- Department of Materials , Institute of Polymer Chemistry , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland .
| |
Collapse
|
42
|
Murray DJ, Kim JH, Grzincic EM, Kim SC, Abate AR, Zuckermann RN. Uniform, Large-Area, Highly Ordered Peptoid Monolayer and Bilayer Films for Sensing Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13671-13680. [PMID: 31603340 DOI: 10.1021/acs.langmuir.9b02557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The production of atomically defined, uniform, large-area 2D materials remains as a challenge in materials chemistry. Many methods to produce 2D nanomaterials suffer from limited lateral film dimensions, lack of film uniformity, or limited chemical diversity. These issues have hindered the application of these materials to sensing applications, which require large-area uniform films to achieve reliable and consistent signals. Furthermore, the development of a 2D material system that is biocompatible and readily chemically tunable has been a fundamental challenge. Here, we report a simple, robust method for the production of large-area, uniform, and highly tunable monolayer and bilayer films, from sequence-defined peptoid polymers, and their application as highly selective molecular recognition elements in sensor production. Monolayers and bilayer films were produced on the centimeter scale using Langmuir-Blodgett methods and exhibited a high degree of uniformity and ordering as evidenced by atomic force microscopy, electron diffraction, and grazing incidence X-ray scattering. We further demonstrated the utility of these films in sensing applications by employing the biolayer interferometry technique to detect the specific binding of the pathogen derived proteins, shiga toxin and anthrax protective antigen, to peptoid-coated sensors.
Collapse
Affiliation(s)
- Daniel J Murray
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Jae Hong Kim
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Elissa M Grzincic
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Samuel C Kim
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States
| | - Adam R Abate
- Department of Bioengineering and Therapeutic Sciences , University of California , San Francisco , California 94158 , United States
- Chan Zuckerberg Biohub , San Francisco , California 94158 , United States
| | - Ronald N Zuckermann
- The Molecular Foundry , Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| |
Collapse
|
43
|
On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat Chem 2019; 11:994-1000. [DOI: 10.1038/s41557-019-0327-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/05/2019] [Indexed: 11/08/2022]
|
44
|
Neumann C, Szwed M, Frey M, Tang Z, Kozieł K, Cyganik P, Turchanin A. Preparation of Carbon Nanomembranes without Chemically Active Groups. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31176-31181. [PMID: 31357855 DOI: 10.1021/acsami.9b09603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electron-irradiation-induced synthesis of carbon nanomembranes (CNMs) from aromatic thiol-based self-assembled monolayers (SAMs) on gold substrate is a well-established method to form molecular thin nanosheets. These molecular two-dimensional materials can be prepared with tunable properties; therefore, they find a variety of applications in nanotechnology ranging from ultrafiltration to nanobiosensors. However, no chemically inert CNM was fabricated up to now, as the reactive thiol group is present on the membrane surface even after transferring it to other substrates. Here, we study the electron irradiation of carboxylic acid-based SAMs on a silver substrate as an alternative route for CNM formation. Our analysis, based on a combination of X-ray photoelectron spectroscopy and scanning electron microscopy demonstrates that for this type of SAMs, purely carbonaceous CNMs with tunable porosity can be obtained.
Collapse
Affiliation(s)
- Christof Neumann
- Institute of Physical Chemistry , Friedrich Schiller University Jena , 07743 Jena , Germany
| | - Monika Szwed
- Smoluchowski Institute of Physics , Jagiellonian University , 30-348 Krakow , Poland
| | - Martha Frey
- Institute of Physical Chemistry , Friedrich Schiller University Jena , 07743 Jena , Germany
| | - Zian Tang
- Institute of Physical Chemistry , Friedrich Schiller University Jena , 07743 Jena , Germany
| | - Krzysztof Kozieł
- Faculty of Chemistry , Jagiellonian University , 30-387 Krakow , Poland
| | - Piotr Cyganik
- Smoluchowski Institute of Physics , Jagiellonian University , 30-348 Krakow , Poland
| | - Andrey Turchanin
- Institute of Physical Chemistry , Friedrich Schiller University Jena , 07743 Jena , Germany
- Jena Center for Soft Matter (JSCM) , 07743 Jena , Germany
| |
Collapse
|
45
|
|
46
|
Wang W, Shao F, Kröger M, Zenobi R, Schlüter AD. Structure Elucidation of 2D Polymer Monolayers Based on Crystallization Estimates Derived from Tip-Enhanced Raman Spectroscopy (TERS) Polymerization Conversion Data. J Am Chem Soc 2019; 141:9867-9871. [DOI: 10.1021/jacs.9b01765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Wang
- Department of Materials, Polymer Chemistry, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Feng Shao
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Martin Kröger
- Department of Materials, Polymer Physics, ETH Zürich, Leopold-Ruzicka-Weg 4, 8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - A. Dieter Schlüter
- Department of Materials, Polymer Chemistry, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
47
|
Ikai T, Yoshida T, Shinohara KI, Taniguchi T, Wada Y, Swager TM. Triptycene-Based Ladder Polymers with One-Handed Helical Geometry. J Am Chem Soc 2019; 141:4696-4703. [DOI: 10.1021/jacs.8b13865] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tomoyuki Ikai
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Takumu Yoshida
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Ken-ichi Shinohara
- School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahi-dai, Nomi 923-1292, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuya Wada
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Timothy M. Swager
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Schlüter AD. Bridging Length Scales by Photochemistry. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Mames A, Osior A, Szkudlarek PG, Pietrzak M, Szymański S, Ratajczyk T. Synthesis and structural characterization of exemplary silyl triptycenes. NEW J CHEM 2019. [DOI: 10.1039/c9nj00934e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthesis of sterically congested silyl triptycenes and their structural characterization via NMR, X-ray and PXRD are presented.
Collapse
Affiliation(s)
- Adam Mames
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Agnieszka Osior
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | - Mariusz Pietrzak
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Sławomir Szymański
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
50
|
Servalli M, Celebi K, Payamyar P, Zheng L, Položij M, Lowe B, Kuc A, Schwarz T, Thorwarth K, Borgschulte A, Heine T, Zenobi R, Schlüter AD. Photochemical Creation of Covalent Organic 2D Monolayer Objects in Defined Shapes via a Lithographic 2D Polymerization. ACS NANO 2018; 12:11294-11306. [PMID: 30354049 DOI: 10.1021/acsnano.8b05964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work we prepare Langmuir-Blodgett monolayers with a trifunctional amphiphilic anthraphane monomer. Upon spreading at the air/water interface, the monomers self-assemble into 1 nm-thin monolayer islands, which are highly fluorescent and can be visualized by the naked eye upon excitation. In situ fluorescence spectroscopy indicates that in the monolayers, all the anthracene units of the monomers are stacked face-to-face forming excimer pairs, whereas at the edges of the monolayers, free anthracenes are present acting as edge groups. Irradiation of the monolayer triggers [4 + 4]-cycloadditions among the excimer pairs, effectively resulting in a two-dimensional (2D) polymerization. The polymerization reaction also completely quenches the fluorescence, allowing to draw patterns on the monomer monolayers. More interestingly, after transferring the monomer monolayer on a solid substrate, by employing masks or the laser of a confocal scanning microscope, it is possible to arbitrarily select the parts of the monolayer that one wants to polymerize. The unpolymerized regions can then be washed away from the substrate, leaving 2D macromolecular monolayer objects of the desired shape. This photolithographic process employs 2D polymerizations and affords 1 nm-thin coatings.
Collapse
Affiliation(s)
- Marco Servalli
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Kemal Celebi
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| | - Payam Payamyar
- John A. Paulson School of Engineering and Applied Sciences , Harvard University , 9 Oxford Street , Cambridge , Massachusetts 02138 , United States
| | - Liqing Zheng
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - Miroslav Položij
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie , Universität Leipzig , Linnéstrasse 2 , 04103 Leipzig , Germany
- Theoretische Chemie , Technische Universität Dresden , Bergstraße 66b , 01062 Dresden , Germany
| | - Benjamin Lowe
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie , Universität Leipzig , Linnéstrasse 2 , 04103 Leipzig , Germany
| | - Agnieszka Kuc
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie , Universität Leipzig , Linnéstrasse 2 , 04103 Leipzig , Germany
- Abteilung Ressourcenökölogie, Forschungsstelle Leipzig , Helmholtz-Zentrum Dresden-Rossendorf , Permosenstrasse 15 , 04318 Leipzig , Germany
| | - Tobias Schwarz
- ScopeM, Institute of Biochemistry , ETH Zurich , Otto-Stern-Weg 3 , Zurich 8093 , Switzerland
| | - Kerstin Thorwarth
- Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
| | - Andreas Borgschulte
- Advanced Analytical Technologies , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , 8600 Dübendorf , Switzerland
| | - Thomas Heine
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie , Universität Leipzig , Linnéstrasse 2 , 04103 Leipzig , Germany
- Theoretische Chemie , Technische Universität Dresden , Bergstraße 66b , 01062 Dresden , Germany
- Abteilung Ressourcenökölogie, Forschungsstelle Leipzig , Helmholtz-Zentrum Dresden-Rossendorf , Permosenstrasse 15 , 04318 Leipzig , Germany
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences , ETH Zurich , Vladimir-Prelog-Weg 3 , 8093 Zurich , Switzerland
| | - A Dieter Schlüter
- Laboratory of Polymer Chemistry, Department of Materials , ETH Zurich , Vladimir-Prelog-Weg 5 , 8093 Zurich , Switzerland
| |
Collapse
|