1
|
Liu X, Huang B, Li J, Li B, Lou Z. Full-spectrum plasmonic semiconductors for photocatalysis. MATERIALS HORIZONS 2024; 11:5470-5498. [PMID: 39139133 DOI: 10.1039/d4mh00515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Localized surface plasmon resonance (LSPR) of noble metal nanoparticles can focus surrounding light onto the particle surface to boost photochemical reactions and solar energy utilization. However, the rarity and high cost of noble metals limit their applications in plasmonic photocatalysis, forcing researchers to seek low-cost alternatives. Recently, some heavily doped semiconductors with high free carrier density have garnered attention due to their metal-like LSPR properties. However, plasmonic semiconductors have complex surface structures characterized by the presence of a depletion layer, which poses challenges for active site exposure and hot carrier transfer, resulting in low photocatalytic activity. In this review, we introduce the essential characteristics and types, synthesis methods, and characterization techniques of full-spectrum plasmonic semiconductors, elucidate the mechanism of full-spectrum nonmetallic plasmonic photocatalysis, including the local electromagnetic field, hot carrier generation and transfer, the photothermal effect, and the solutions for the surface depletion layer, and summarize the applications of plasmonic semiconductors in photocatalytic environmental remediation, CO2 reduction, H2 generation, and organic transformations. Finally, we provide a perspective on full-spectrum plasmonic photocatalysis, aiming to guide the design and development of plasmonic photocatalysts.
Collapse
Affiliation(s)
- Xiaolei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Juan Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| | - Zaizhu Lou
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
2
|
Cheng P, Wang H, Wang H, Wang D, van Aken PA, Schaaf P. Plasmon-Enhanced Light Absorption Below the Bandgap of Semiconducting SnS 2 Microcubes for Highly Efficient Solar Water Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400588. [PMID: 39073231 DOI: 10.1002/smll.202400588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Semiconducting materials show high potential for solar energy harvesting due to their suitable bandgaps, which allow the efficient utilization of light energy larger than their bandgaps. However, the photon energy smaller than their bandgap is almost unused, which significantly limits their efficient applications. Herein, plasmonic Pd/SnS2 microcubes with abundant Pd nanoparticles attached to the SnS2 nanosheets are fabricated by an in situ photoreduction method. The as-prepared Pd/SnS2 microcubes extend the light-harvesting ability of SnS2 beyond its cutoff wavelength, which is attributed to the localized surface plasmon resonance (LSPR) effect of the Pd nanoparticles and the 3D structure of the SnS2 microcubes. Pd nanoparticles can also enhance the light absorption of TiO2 nanoparticles and NiPS3 nanosheets beyond their cutoff wavelengths, revealing the universality for promoting absorption above the cutoff wavelength of the semiconductors. When the plasmonic Pd/SnS2 microcubes are integrated into a hydrophilic sponge acting as the solar evaporator, a solar-to-vapor efficiency of up to 89.2% can be achieved under one sun. The high solar-to-vapor conversion efficiency and the broad applicability of extending the light absorption far beyond the cutoff wavelength of the semiconductor comprise the potential of innovative plasmonic nanoparticle/semiconductor composites for solar desalination.
Collapse
Affiliation(s)
- Pengfei Cheng
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering, Institute of Micro and Nanotechnology MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| | - Hongguang Wang
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Honglei Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering, Institute of Micro and Nanotechnology MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| | - Dong Wang
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering, Institute of Micro and Nanotechnology MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| | - Peter A van Aken
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - Peter Schaaf
- Chair Materials for Electrical Engineering and Electronics, Institute of Materials Science and Engineering, Institute of Micro and Nanotechnology MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| |
Collapse
|
3
|
Xiang L, Li W, Liu Y, Sathishkumar G, He X, Wu H, Ran R, Zhang K, Rao X, Kang ET, Xu L. Copper tannate nanosheets-embedded multifunctional coating for antifouling and photothermal bactericidal applications. Colloids Surf B Biointerfaces 2024; 245:114208. [PMID: 39255749 DOI: 10.1016/j.colsurfb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Implant-associated infections (IAIs), triggered by pathogenic bacteria, are a leading cause of implant failure. The design of functionalized coatings on biomedical materials is crucial to address IAIs. Herein, a multifunctional coating with good antifouling effect and antibacterial photothermal therapy (aPTT) performance was developed. The copper tannate nanosheets (CuTA NSs) were formed via coordination bonding of Cu2+ ions and tannic acid (TA). The CuTA NSs were then integrated into the TA and poly(ethylene glycol) (PEG) network to form the TCP coating for deposition on the titanium (Ti) substrates via surface adhesion of TA and gravitational effect. The resulting Ti-TCP substrate exhibited good antifouling property, reactive oxygen species (ROS) scavenging capability and cytocompatibility. The TCP coating exhibited antifouling efficacy in conjunction with aPTT, curtailing the surface adhesion and biofilm formation of pathogens, such as Staphylococcus aureus and Escherichia coli. Notably, the Ti-TCP substrate also exhibited the ability to prevent bacterial infection in vivo in a subcutaneous implantation model. The present work demonstrated a promising approach in designing high-performance antifouling and photothermal bactericidal coatings to combat IAIs.
Collapse
Affiliation(s)
- Li Xiang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Weizhe Li
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Yanqing Liu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Gnanasekar Sathishkumar
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xiaodong He
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Huajun Wu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Runlong Ran
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, PR China
| | - Kai Zhang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - Xi Rao
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China
| | - En-Tang Kang
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge 117576, Singapore.
| | - Liqun Xu
- BRICS Joint Laboratory on Biomedical Materials, School of Materials and Energy, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Liu Y, Tan X, Liu Z, Zeng E, Mei J, Jiang Y, Li P, Sun W, Zhao W, Tian C, Dong Y, Xie Z, Wang CA. Heat-Localized and Salt-Resistant 3D Hierarchical Porous Ceramic Platform for Efficient Solar-Driven Interfacial Evaporation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400796. [PMID: 38607275 DOI: 10.1002/smll.202400796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Solar-driven interfacial evaporation (SDIE) is a highly promising approach to achieve sustainable desalination and tackle the global freshwater crisis. Despite advancements in this field, achieving balanced thermal localization and salt resistance remains a challenge. Herein, the study presents a 3D hierarchical porous ceramic platform for SDIE applications. The utilized alumina foam ceramics (AFCs) exhibit remarkable corrosion resistance and chemical stability, ensuring a prolonged operational lifespan in seawater or brines. The millimeter-scale air-filled pores in AFCs prevent thermal losses through conduction with bulk water, resulting in heat-localized interfaces. The hydrophilic nature of macroporous AFC skeletons facilitates rapid water replenishment on the evaporating surface for effective salt-resistant desalination. Benefiting from its self-radiation adsorption and side-assisted evaporation capabilities, the AFC-based evaporators exhibit high indoor evaporation rates of 2.99 and 3.54 kg m-2 h-1 under one-sided and three-sided illumination under 1.0 sun, respectively. The AFC-based evaporator maintains a high evaporation rate of ≈2.77 kg m-2 h-1 throughout the 21-day long-term test. Furthermore, it achieves a daily water productivity of ≈10.44 kg m-2 in outdoor operations. This work demonstrates the potential of 3D hierarchical porous ceramics in addressing the trade-off between heat localization and salt resistance, and contributes to the development of durable solar steam generators.
Collapse
Affiliation(s)
- Yumin Liu
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Xinming Tan
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Zhiwei Liu
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Erqi Zeng
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Jianxing Mei
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yun Jiang
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Pengzhang Li
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Weiwei Sun
- College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410073, China
| | - Wenyan Zhao
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Chuanjin Tian
- School of Materials Science and Engineering, National Engineering Research Center for Domestic & Building Ceramics, Jingdezhen Ceramic University, Jingdezhen, 333403, China
| | - Yanhao Dong
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhipeng Xie
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chang-An Wang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Thirumurugan S, Ramanathan S, Muthiah KS, Lin YC, Hsiao M, Dhawan U, Wang AN, Liu WC, Liu X, Liao MY, Chung RJ. Inorganic nanoparticles for photothermal treatment of cancer. J Mater Chem B 2024; 12:3569-3593. [PMID: 38494982 DOI: 10.1039/d3tb02797j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, inorganic nanoparticles (NPs) have attracted increasing attention as potential theranostic agents in the field of oncology. Photothermal therapy (PTT) is a minimally invasive technique that uses nanoparticles to produce heat from light to kill cancer cells. PTT requires two essential elements: a photothermal agent (PTA) and near-infrared (NIR) radiation. The role of PTAs is to absorb NIR, which subsequently triggers hyperthermia within cancer cells. By raising the temperature in the tumor microenvironment (TME), PTT causes damage to the cancer cells. Nanoparticles (NPs) are instrumental in PTT given that they facilitate the passive and active targeting of the PTA to the TME, making them crucial for the effectiveness of the treatment. In addition, specific targeting can be achieved through their enhanced permeation and retention effect. Thus, owing to their significant advantages, such as altering the morphology and surface characteristics of nanocarriers comprised of PTA, NPs have been exploited to facilitate tumor regression significantly. This review highlights the properties of PTAs, the mechanism of PTT, and the results obtained from the improved curative efficacy of PTT by utilizing NPs platforms.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Susaritha Ramanathan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Kayalvizhi Samuvel Muthiah
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
| | - Yu-Chien Lin
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, Division of Biomedical Engineering, James Watt School of Engineering, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow G116EW, UK
| | - An-Ni Wang
- Scrona AG, Grubenstrasse 9, 8045 Zürich, Switzerland
| | - Wai-Ching Liu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong 999077, China
| | - Xinke Liu
- College of Materials Science and Engineering, Chinese Engineering and Research Institute of Microelectronics, Shenzhen University, Shenzhen 518060, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), No. 1, Sec. 3, Zhongxiao E. Rd, Taipei 10608, Taiwan.
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 106, Taiwan
| |
Collapse
|
6
|
Sun Y, Zhao X, Song X, Fan J, Yang J, Miao Y, Xiao S. An all-in-one FeO x-rGO sponge fabricated by solid-phase microwave thermal shock for water evaporation and purification. J Environ Sci (China) 2024; 138:671-683. [PMID: 38135430 DOI: 10.1016/j.jes.2023.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 12/24/2023]
Abstract
Developing high-efficiency photothermal seawater desalination devices is of significant importance in addressing the shortage of freshwater. Despite much effort made into photothermal materials, there is an urgent need to design a rapidly synthesized photothermal evaporator for the comprehensive purification of complex seawater. Therefore, we report on all-in-one FeOx-rGO photothermal sponges synthesized via solid-phase microwave thermal shock. The narrow band gap of the semiconductor material Fe3O4 greatly reduces the recombination of electron-hole pairs, enhancing non-radiative relaxation light absorption. The abundant π orbitals in rGO promote electron excitation and thermal vibration between the lattices. Control of the surface hydrophilicity and hydrophobicity promotes salt resistance while simultaneously achieving the purification of various complex polluted waters. The optimized GFM-3 sponge exhibitedan enhanced photothermal conversion rate of 97.3% and a water evaporation rate of 2.04 kg/(m2·hr), showing promising synergistic water purification properties. These findings provide a highly efficient photothermal sponge for practical applicationsof seawater desalination and purification,as well as develop a super-rapid processing methodology for evaporation devices.
Collapse
Affiliation(s)
- Youkun Sun
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuwen Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueling Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhe Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; Prytula Igor Collaborate Innovation Center for Diamond, Shanghai Jian Qiao University, Shanghai 201306, China
| | - Yingchun Miao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
7
|
Cheng Z, Yang Y, Wang P, Wang P, Yang J, Wang D, Chen Q. Optimizing Hydrogen and Hydroxyl Adsorption over Ru/WO 2.9 Metal/Metalloid Heterostructure Electrocatalysts for Highly Efficient and Stable Hydrogen Oxidation Reactions in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2307780. [PMID: 38168535 DOI: 10.1002/smll.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Indexed: 01/05/2024]
Abstract
The development of high-performance, stable and platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline media is crucial for the commercial application of anion exchange membrane fuel cells (AEMFCs). Ruthenium, as an emerging HOR electrocatalyst with a price advantage over platinum, still needs to solve the problems of low intrinsic activity and easy oxidation. Herein, Ru nanoparticles are anchored on the oxygen-vacancy-rich metalloid WO2.9 by interfacial engineering to create abundant and efficient Ru and WO2.9 interfacial active sites for accelerated HOR in alkaline media. Ru/WO2.9 /C displays excellent catalytic activity with mass activity (8.29 A mgNM -1 ) and specific activity (1.32 mA cmNM -2 ), which are 2.5/3.3 and 21.8/8.3 times that of PtRu/C and Pt/C, respectively. Moreover, Ru/WO2.9 /C exhibits excellent CO tolerance and operational stability. Experimental and theoretical studies reveal that the improved charge transfer from Ru to WO2.9 in the metal/metalloid heterostructure significantly tune the electronic structure of Ru sites and optimize the hydrogen binding energy (HBE) of Ru. While, WO2.9 provides abundant hydroxyl adsorption sites. Therefore, the equilibrium adsorption of hydrogen and hydroxyl at the interface of Ru/WO2.9 will be realized, and the oxidation of metal Ru would be avoided, thereby achieving excellent HOR activity and durability.
Collapse
Affiliation(s)
- Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
8
|
Wang J, Sun M, Liu C, Ye Y, Chen M, Zhao Z, Zhang Y, Wu X, Wang K, Zhou Y. Customized Microenvironments Spontaneously Facilitate Coupled Engineering of Real-Life Large-Scale Clean Water Capture and Pollution Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306103. [PMID: 37549101 DOI: 10.1002/adma.202306103] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/23/2023] [Indexed: 08/09/2023]
Abstract
Harnessing abundant renewable resources and pollutants on a large scale to address environmental challenges, while providing sustainable freshwater, is a significant endeavour. This study presents the design of fully functional solar vaporization devices (SVD) based on organic-inorganic hybrid nanocomposites (CCMs-x). These devices exhibit efficient photothermal properties that facilitate multitargeted interfacial reactions, enabling simultaneous catalysis of sewage and desalination. The localized interfacial heating generated by the photothermal effect of CCMs-x triggers surface-dominated catalysis and steam generation. The CCMs-x SVD achieves a solar water-vapor generation rate of 1.41 kg m-2 h-1 (90.8%), and it achieves over 95% removal of pollutants within 60 min under one-sun for practical application. The exceptional photothermal conversion rate of wastewater for environmental remediation and water capture is attributed to customized microenvironments within the system. The integrated parallel reaction system in SVD ensures it is a real-life application in multiple scenarios such as municipal/medical wastewater and brine containing high concentrations. Additionally, the SVD exhibits long-term durability, antifouling functionality toward complex ionic contaminants. This study not only demonstrates a one-stone-two-birds strategy for large-scale direct production of potable water from polluted seawater, but also opens up exciting possibilities for parallel production of energy and water resources.
Collapse
Affiliation(s)
- Jinhu Wang
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Mingyuzhi Sun
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Changle Liu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Yuchuan Ye
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Mengshan Chen
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Zhemeng Zhao
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| | - Yongcai Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xiaohu Wu
- Shandong Institute of Advanced Technology, Jinan, 250100, P. R. China
| | - Kaiwen Wang
- Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, P. R. China
| |
Collapse
|
9
|
Chen L, Ding C, Chai K, Yang B, Chen W, Zeng J, Xu W, Huang Y. Nanohole-Array Induced Metallic Molybdenum Selenide Nanozyme for Photoenhanced Tumor-Specific Therapy. ACS NANO 2023; 17:18148-18163. [PMID: 37713431 DOI: 10.1021/acsnano.3c05000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Deficient catalytic sensitivity to the tumor microenvironment is a major obstacle to nanozyme-mediated tumor therapy. Electron transfer is the intrinsic essence for a nanozyme-catalyzed redox reaction. Here, we developed a nanohole-array-induced metallic molybdenum selenide (n-MoSe2) that is enriched with Se vacancies and can serve as an electronic transfer station for cycling electrons between H2O2 decomposition and glutathione (GSH) depletion. In a MoSe2 nanohole array, the metallic phase reaches up to 84.5%, which has been experimentally and theoretically demonstrated to exhibit ultrasensitive H2O2 responses and enhanced peroxidase (POD)-like activities for H2O2 thermodynamic heterolysis. More intriguingly, plenty of delocalized electrons appear due to phase- and vacancy-facilitated band structure reconstruction. Combined with the limited characteristic sizes of nanoholes, the surface plasmon resonance effect can be excited, leading to the broad absorption spectrum spanning of n-MoSe2 from the visible to near-infrared region (NIR) for photothermal conversion. Under NIR laser irradiation, metallic MoSe2 is able to induce out-of-balance redox and metabolism homeostasis in the tumor region, thus significantly improving therapeutic effects. This study that takes advantage of phase and defect engineering offers inspiring insights into the development of high-efficiency photothermal nanozymes.
Collapse
Affiliation(s)
- Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Weiwei Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Weiming Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
10
|
Chen X, Zhu Y, Liu S, Liu J, Li J. Hierarchical Tantalum Oxide Composite for Efficient Solar-Driven Water Purification. ACS OMEGA 2023; 8:29025-29032. [PMID: 37599953 PMCID: PMC10433488 DOI: 10.1021/acsomega.3c01858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
Applying solar energy to generate drinking water is a clean and low-energy exhaust route to address the issue of water purification. The current challenge with solar vapor generation is constructing nano/micro-hierarchical structures that can convert solar irradiation into exploitable thermal energy with high efficiency. Although various structures and material designs have been reported in recent years, solar vapor conversion can be improved by integrating light harvesting, thermal concentration, and water diffusion. Because of the optimized solar harvesting, enhanced heat capacity, and specified diffusive path endowed by the hierarchical composite structure, amorphous tantalum oxide/carbon-based yolk-shell structures (α-Ta2O5/C YS) for highly efficient solar vapor generation under 1 sun illumination are applied in this study. As a result, the α-Ta2O5/C YS realized a water evaporation rate of 3.54 kg m-2 h-1 with a solar-thermal conversion efficiency of 91% under one sun irradiation (1 kW m-2) with excellent evaporation stability. The collected water from seawater meets the World Health Organization drinking water standard. Importantly, reactive oxygen species enabled by α-Ta2O5 could be produced for water sterilization, exhibiting a facile way for application in various scenarios to acquire drinkable water.
Collapse
Affiliation(s)
- Xuanbo Chen
- College of Power Engineering, Naval University of Engineering, No. 717, Jiefang Road, Qiaokou District, Wuhan 430033, P. R. China
| | - Yingqi Zhu
- College of Power Engineering, Naval University of Engineering, No. 717, Jiefang Road, Qiaokou District, Wuhan 430033, P. R. China
| | - Shuyong Liu
- College of Power Engineering, Naval University of Engineering, No. 717, Jiefang Road, Qiaokou District, Wuhan 430033, P. R. China
| | - Jinlin Liu
- College of Power Engineering, Naval University of Engineering, No. 717, Jiefang Road, Qiaokou District, Wuhan 430033, P. R. China
| | - Jing Li
- College of Power Engineering, Naval University of Engineering, No. 717, Jiefang Road, Qiaokou District, Wuhan 430033, P. R. China
| |
Collapse
|
11
|
Ma J, Xie W, Li J, Yang H, Wu L, Zou Y, Deng Y. Micellar Nanoreactors Enabled Site-Selective Decoration of Pt Nanoparticles Functionalized Mesoporous SiO 2 /WO 3-x Composites for Improved CO Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301011. [PMID: 37066705 DOI: 10.1002/smll.202301011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Site-selective and partial decoration of supported metal nanoparticles (NPs) with transition metal oxides (e.g., FeOx ) can remarkably improve its catalytic performance and maintain the functions of the carrier. However, it is challenging to selectively deposit transition metal oxides on the metal NPs embedded in the mesopores of supporting matrix through conventional deposition method. Herein, a restricted in situ site-selective modification strategy utilizing poly(ethylene oxide)-block-polystyrene (PEO-b-PS) micellar nanoreactors is proposed to overcome such an obstacle. The PEO shell of PEO-b-PS micelles interacts with the hydrolyzed tungsten salts and silica precursors, while the hydrophobic organoplatinum complex and ferrocene are confined in the hydrophobic PS core. The thermal treatment leads to mesoporous SiO2 /WO3-x framework, and meanwhile FeOx nanolayers are in situ partially deposited on the supported Pt NPs due to the strong metal-support interaction between FeOx and Pt. The selective modification of Pt NPs with FeOx makes the Pt NPs present an electron-deficient state, which promotes the mobility of CO and activates the oxidation of CO. Therefore, mesoporous SiO2 /WO3-x -FeOx /Pt based gas sensors show a high sensitivity (31 ± 2 in 50 ppm of CO), excellent selectivity, and fast response time (3.6 s to 25 ppm) to CO gas at low operating temperature (66 °C, 74% relative humidity).
Collapse
Affiliation(s)
- Junhao Ma
- Department of Chemistry, Department of Gastroenterology and Hepatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Lab of Transducer Technology, Zhongshan Hospital, iChEM, Fudan University, Shanghai, 200433, P. R. China
| | - Wenhe Xie
- Department of Chemistry, Department of Gastroenterology and Hepatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Lab of Transducer Technology, Zhongshan Hospital, iChEM, Fudan University, Shanghai, 200433, P. R. China
| | - Jichun Li
- Department of Chemistry, Department of Gastroenterology and Hepatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Lab of Transducer Technology, Zhongshan Hospital, iChEM, Fudan University, Shanghai, 200433, P. R. China
| | - Haitao Yang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, P. R. China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yidong Zou
- Department of Chemistry, Department of Gastroenterology and Hepatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Lab of Transducer Technology, Zhongshan Hospital, iChEM, Fudan University, Shanghai, 200433, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Lab of Transducer Technology, Zhongshan Hospital, iChEM, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
12
|
Liu X, Song H, Sun T, Wang H. Responsive Microneedles as a New Platform for Precision Immunotherapy. Pharmaceutics 2023; 15:1407. [PMID: 37242649 PMCID: PMC10220742 DOI: 10.3390/pharmaceutics15051407] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Microneedles are a well-known transdermal or transdermal drug delivery system. Different from intramuscular injection, intravenous injection, etc., the microneedle delivery system provides unique characteristics for immunotherapy administration. Microneedles can deliver immunotherapeutic agents to the epidermis and dermis, where immune cells are abundant, unlike conventional vaccine systems. Furthermore, microneedle devices can be designed to respond to certain endogenous or exogenous stimuli including pH, reactive oxygen species (ROS), enzyme, light, temperature, or mechanical force, thereby allowing controlled release of active compounds in the epidermis and dermis. In this way, multifunctional or stimuli-responsive microneedles for immunotherapy could enhance the efficacy of immune responses to prevent or mitigate disease progression and lessen systemic adverse effects on healthy tissues and organs. Since microneedles are a promising drug delivery system for accurate delivery and controlled drug release, this review focuses on the progress of using reactive microneedles for immunotherapy, especially for tumors. Limitations of current microneedle system are summarized, and the controllable administration and targeting of reactive microneedle systems are examined.
Collapse
Affiliation(s)
- Xinyang Liu
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haohao Song
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Tairan Sun
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou 075100, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Ding M, Lu H, Sun Y, He Y, Yu J, Kong H, Shao C, Liu C, Li C. Superelastic 3D Assembled Clay/Graphene Aerogels for Continuous Solar Desalination and Oil/Organic Solvent Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2205202. [PMID: 36354171 PMCID: PMC9798983 DOI: 10.1002/advs.202205202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Indexed: 05/19/2023]
Abstract
Superelastic, arbitrary-shaped, and 3D assembled clay/graphene aerogels (CGAs) are fabricated using commercial foam as sacrificial skeleton. The CGAs possess superelasticity under compressive strain of 95% and compressive stress of 0.09-0.23 MPa. The use of clay as skeletal support significantly reduces the use of graphene by 50%. The hydrophobic CGAs show high solvent absorption capacity of 186-519 times its own weight. Moreover, both the compression and combustion methods can be adopted for reusing the CGAs. In particular, it is demonstrated a design of 3D assembled hydrophilic CGA equipped with salt collection system for continuous solar desalination. Due to energy recovery and brine transport management promoted by this design, the 3D assembled CGA system exhibits an extremely high evaporation rate of 4.11 kg m-2 h-1 and excellent salt-resistant property without salt precipitation even in 20 wt% brine for continuous 36 h illumination (1 kW m-2 ), which is the best reported result from the solar desalination devices. More importantly, salts can be collected conveniently by squeezing and drying the solution out of the salt collection system. The work provides new insights into the design of 3D assembled CGAs and advances their applications in continuous solar desalination and efficient oil/organic solvent adsorption.
Collapse
Affiliation(s)
- Meichun Ding
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaian271000China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Hao Lu
- CAS Key Laboratory of Engineering PlasticsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistrythe Chinese Academy of SciencesBeijing100190China
| | - Yongbin Sun
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaian271000China
| | - Yujian He
- College of Materials Science and EngineeringQingdao UniversityQingdao266071China
| | - Jiahui Yu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Huijun Kong
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaian271000China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Changxiang Shao
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaian271000China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| | - Chen‐Yang Liu
- CAS Key Laboratory of Engineering PlasticsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of Chemistrythe Chinese Academy of SciencesBeijing100190China
| | - Chenwei Li
- School of Chemistry and Pharmaceutical EngineeringShandong First Medical University & Shandong Academy of Medical SciencesTaian271000China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117China
| |
Collapse
|
15
|
Liu P, Hu Y, Li X, Xu L, Chen C, Yuan B, Fu M. Enhanced Solar Evaporation Using a Scalable MoS
2
‐Based Hydrogel for Highly Efficient Solar Desalination. Angew Chem Int Ed Engl 2022; 61:e202208587. [DOI: 10.1002/anie.202208587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Pan Liu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Yi‐bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Xiao‐Ying Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Lei Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Chen Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
- Key Laboratory of Songliao Aquatic Environment Ministry of Education Jilin Jianzhu University Changchun 130118 P. R. China
| | - Ming‐Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| |
Collapse
|
16
|
Wang Q, Qiu W, Li M, Li N, Li X, Qin X, Wang X, Yu J, Li F, Huang L, Wu D. Mussel-inspired multifunctional hydrogel dressing with hemostasis, hypoglycemic, photothermal antibacterial properties on diabetic wounds. Biomater Sci 2022; 10:4796-4814. [PMID: 35852356 DOI: 10.1039/d2bm00433j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meticulously establish an efficient photothermal multifunctional hydrogel dressing is a prospective strategy for the treatment of diabetic chronic wounds. Herein, glucose oxidase (GOx) was added to polydopamine/acrylamide (PDA/AM) hydrogels to reduce hyperglycemia to a normal level (3.9-6.1 mmol L-1) and enhance compressive properties (55 kPa) and adhesive properties (32.69 kPa), which are capable of hemostasis in the wound. Then, MnO2 nanoparticles were encapsulated into a polydopamine/acrylamide (PDA/AM) hydrogel, endowing it with excellent antibacterial properties (E. coli and S. aureus were 97.87% and 99.99%) under the irradiation of 808 nm NIR; meanwhile, the biofilm was eliminated completely. Besides, O2 was generated (18 mg mL-1) by the decomposition of H2O2 under the catalysis of MnO2, which could accelerate the formation of angiogenesis and promote the crawling and proliferation of cells. Furthermore, the diabetic wound in vivo treated with the PDA/AM/GOx/MnO2 hydrogel had a less inflammatory response and faster healing speed, which was completely healed in 14 days. Therefore, the multifunctional hydrogels with the capability of high compressible, hemostasis, antibacterial, hyperglycemia manipulation, and O2 generation, demonstrate promise in diabetic chronic wound dressing.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Liqian Huang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
17
|
Liu P, Hu Y, Li X, Xu L, Chen C, Yuan B, Fu M. Enhanced Solar Evaporation Using a Scalable MoS
2
‐Based Hydrogel for Highly Efficient Solar Desalination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pan Liu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Yi‐bo Hu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Xiao‐Ying Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Lei Xu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Chen Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
- Key Laboratory of Songliao Aquatic Environment Ministry of Education Jilin Jianzhu University Changchun 130118 P. R. China
| | - Ming‐Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control College of Civil Engineering Huaqiao University Xiamen Fujian 361021 P. R. China
| |
Collapse
|
18
|
Xiong Z, Yu H, Gong X. Designing Photothermal Superhydrophobic PET Fabrics via In Situ Polymerization and 1,4-Conjugation Addition Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8708-8718. [PMID: 35776847 DOI: 10.1021/acs.langmuir.2c01366] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study demonstrates a simple and fast method to integrate superhydrophobicity, UV protection, and photothermal effect onto PET fabrics. The surface of PET fabric forms a hierarchical rough structure through in situ oxidative polymerization of the pyrrole (Py). The 1,4-conjugate addition reaction between pentaerythritol tetraacrylate, 3-aminopropyltriethoxysilane, and octadecyl acrylate not only endows the PET fabric with superhydrophobicity but also forms a cross-linked network structure which improves the stability of multifunctional coatings on the surface of the PET fabric. In addition, the wettability of the prepared PET fabric is investigated by adjusting the Py monomer and octadecyl acrylate concentration. The results reveal that the prepared PET fabrics exhibit obviously superhydrophobic behavior with a contact angle of 155.8°. The surface temperature of the superhydrophobic PPy/PET fabric can rise to 91 °C under a simulated sunlight which is much higher than the pristine PET fabric, while reaching basically the same steady-state in five heating/cooling cycles. The prepared PET fabric also possesses excellent self-cleaning, UV shielding, and solar light absorption performances. Furthermore, the superhydrophobic PET fabric exhibited excellent stability against 180 °C high temperature, strong UV radiation, different pH solutions and organic solvent erosion, 8 h washing tests, and 25 sandpaper abrasion cycles. These findings provide a path for the future development of multifunctional fabrics using fluorine-free environmentally friendly materials.
Collapse
Affiliation(s)
- Zheng Xiong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Haiyang Yu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
19
|
Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction. J Colloid Interface Sci 2022; 625:800-816. [PMID: 35772208 DOI: 10.1016/j.jcis.2022.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023]
Abstract
The design and exploration of high-efficiency and low-cost electrode catalysts are of great significance to the development of novel energy conversion technologies. In this work, metal and nonmetal heteroatoms co-doped biphasic tungsten-based chalcogenide heterostructured catalyst (Co-WS2/P-WO2.9) with rich defects is successfully synthesized by a vulcanization technique. The electrocatalytic performance of WS2/WO3 in the hydrogen evolution reaction (HER) and triiodide reduction reaction is significantly enhanced by modifying and optimizing its electronic structure through a defect engineering strategy. As an electrocatalyst for HER, the optimized Co-WS2/P-WO2.9 exhibits a low overpotential at 10 mA cm-2 of 146 and 120 mV with small Tafel slopes of 86 and 74 mV dec-1 in alkaline and acidic electrolyte, respectively. In addition, a Co-WS2/P-WO2.9 assembled solar cell yields a short circuit current density of 15.85 mA cm-2, an open-circuit voltage of 0.74 V, a fill factor of 0.66, and a competitive power conversion efficiency (7.83%), which is comparable or higher than conventional Pt-based solar cell (16.02 mA cm-2, 0.70 V, 0.63, 7.14%). The formation of a heterostructure in Co-WS2/P-WO2.9 leads to the presence of a built-in electric field in the interfacial region between Co-WS2 and P-WO2.9, which leads to an increased open-circuit voltage from 0.70 V for Pt to 0.74 V for Co-WS2/P-WO2.9. This work can provide a technical support for developing high-performance heterostructured catalysts, which open up a way for improving catalytic performance of heterostructured catalysts in the field of electrocatalysis.
Collapse
|
20
|
Zhou D, Chen YX, Yuan XY, Chai ZL, Liu JK. Gradient Design of Vacancies and Their Positive Correlation with Electrochemical Anticorrosion Protection. Inorg Chem 2022; 61:8053-8065. [PMID: 35546124 DOI: 10.1021/acs.inorgchem.2c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The contribution of defects to electrochemistry is a controversial but practically applicable subject. Meanwhile, it is challenging to obtain precisely a certain nonchemometric single phase in mixed-valence compounds. The precise design of nonchemometric single-phase WO3-x (x = 0, 0.1, 0.28, and 1) mixed-valence metal oxides (MVMOs) was achieved by the gradient intrinsic reduction method, and the correlation between oxygen vacancies and electrochemical anticorrosion protection was explored systematically. Then, the decisive role of periodic oxygen vacancies in electrochemical anticorrosion was confirmed. And the origin was the synergistic reaction of oxygen vacancy-upgraded photocathodic protection, vacancy-induced passivation, and mixed-valence reductive protection, which were brought about by the high oxygen vacancy concentration. Integrating the above three aspects, the WO2.72 MVMO showed the best electrochemical anticorrosion performance by increasing the resistance value to 7.67 times that of the epoxy resin coating. The establishment of a positive correlation between oxygen vacancy and corrosion protection in WO3-x (x = 0, 0.1, 0.28, and 1) materials can not only guide the design of MVMOs but also make an important contribution to the rapid precorrosion performance of the materials.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi-Xiang Chen
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yu Yuan
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, Sichuan, P. R. China
| | - Zhuang-Lei Chai
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jin-Ku Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Material Corrosion and Protection Key Laboratory of Sichuan Province, Zigong 643000, Sichuan, P. R. China
| |
Collapse
|
21
|
Wang Y, Sun X, Han Y, Wang K, Cheng L, Sun Y, Besenbacher F, Yu M. Au@MnSe 2 Core-Shell Nanoagent Enabling Immediate Generation of Hydroxyl Radicals and Simultaneous Glutathione Deletion Free of Pre-Reaction for Chemodynamic-Photothermo-Photocatalytic Therapy with Significant Immune Response. Adv Healthc Mater 2022; 11:e2200041. [PMID: 35481899 DOI: 10.1002/adhm.202200041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/29/2022] [Indexed: 11/08/2022]
Abstract
As a typical tumor microenvironment-responsive therapy, chemodynamic therapy (CDT), producing hydroxyl radicals (• OH) to eliminate tumor cells, has demonstrated great promise. Nevertheless, there are still major challenges: • OH generated from endogenous H2 O2 is usually insufficient; the CDT effect is strongly dependent on the pre-reaction with glutathione. Addressing the challenges, Au@MnSe2 core-shell nanoagent for synergetic chemodynamic-photothermo-photocatalytic therapy combined with tetramodal imaging, including magnetic resonance imaging, computed tomography, photoacoustic, and infrared thermal imaging is reported. Distinct from the reported glutathione-depleting agents, Mn2+ in MnSe2 allows immediate generation of • OH, independent of pre-reaction. Meanwhile, Mn3+ consumes glutathione by its conversion to Mn2+ . The Au-MnSe2 combination promotes photothermal conversion and photocatalytic reaction, resulting in largely enhanced • OH generation from endogenous H2 O2 and significant hyperthermia. Meanwhile, immune response is effectively activated: the intratumoral expression of programmed cell death-1 and proinflammatory cytokines increase to 4-7 folds; the cytotoxic and helper T lymphocytes cells in the tumor area increase to more than 2.5-folds; an evident, temporary systemic immunostimulatory effect is demonstrated. High tumor inhibition rate (≈97.3%) and greatly prolonged survival are obtained. This highly-integrated design coordinating three different therapies with four different imaging modals provide new possibilities for high-performance theranostic nanoagents.
Collapse
Affiliation(s)
- Yuanlin Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Xiang Sun
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Yaqian Han
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Kai Wang
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Lixin Cheng
- Department of Medical Imaging The Fourth Affiliated Hospital of the Harbin Medical University Harbin 150001 P. R. China
| | - Ye Sun
- Condensed Matter Science and Technology Institute School of Instrumentation Science and Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| | - Flemming Besenbacher
- iNANO and Department of Physics and Astronomy Aarhus University Aarhus 8000 Denmark
| | - Miao Yu
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 P. R. China
| |
Collapse
|
22
|
Zhang D, Liu R, Ji S, Cai Y, Liang C, Li Z. Hierarchical WO 3-x Ultrabroadband Absorbers and Photothermal Converters Grown from Femtosecond Laser-Induced Periodic Surface Structures. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24046-24058. [PMID: 35484908 DOI: 10.1021/acsami.2c04523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxygen-vacancy-rich WO3-x absorbers are gaining increasing attention because of their extensive absorbance-based applications in near-infrared shielding, photocatalysis, sterilization, interfacial evaporator and electrochromic, photochromic, and photothermal fields. Thermal treatment in an oxygen-deficient atmosphere enables us to prepare WO3-x but lacks the capacity for finely manipulating the grown structures. In this work, we present that laser-induced periodic surface structure (LIPSS) obtained by femtosecond laser ablation is a good template to grow various hierarchical WO3-x ultrabroadband absorbers and photothermal converters by thermal oxidation annealing in air. Increasing annealing temperature from 600 to 1000 °C allows the manipulation of WO3-x crystal sizes from ∼70 nm to ∼4 μm, accompanied by a color transition from brown to dark blue and finally to yellow. Benefiting from annealing-induced surface cracks and phase transition into WO3-x (containing both WO3 and W18O49) at 600 °C, excellent UV-vis-NIR-MIR ultrabroadband absorbers were produced: >90% UV-NIR absorbance (0.3-2.5 μm) and 50-90% MIR absorbance (2.5-16 μm), much better than most W-based metamaterial absorbers. The higher the annealing temperature (1000 > 800 > 600 °C), the better the photothermal performances (sample temperature as the indicator) of annealed interfaces due to the increased oxidation rates and resultant thicker oxide layers (6, 150, and 507 μm), a trend which is more apparent upon the irradiation of high-density (3160 mW/cm2) and ultrabroadband (200-2500 nm) light but much less apparent for shorter-band (200-800, 420-800, 800-2500 nm, etc.) and less-intensity (1694, 1540, 1460 mW/cm2, etc.) light irradiation. This phenomenon indicates that (1) higher-performance ultrabroadband absorbers possess a higher photothermal conversion capacity; (2) thicker-WO3-x oxide layer converters are more effective in preserving photothermal heat; and (3) both the W-LIPSS and metal tungsten substrate can quickly dissipate the photothermal heat to inhibit heat accumulation in the oxide photothermal converters. It is also proved that ablation-induced high-pressure shockwaves can produce deformation layers in the subsurfaces to release annealing-induced stresses, beneficial for the formation of less-cracked non-stoichiometric WO3-x interfaces upon annealing. High-pressure shockwaves are also capable of inducing grain refinement of LIPSS, which facilitates a homogeneous growth of small non-stoichiometric metal-oxide crystals upon annealing. Our results indicate that femtosecond laser ablation is a convenient upstream template-fabrication technique compatible with the thermal oxidation annealing method to develop advanced functional oxygen-vacancy metal-oxide interfaces.
Collapse
Affiliation(s)
- Dongshi Zhang
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruijie Liu
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sihan Ji
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yunyu Cai
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Changhao Liang
- Key Laboratory of Materials Physics and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhuguo Li
- Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Ahmad Wani T, Garg P, Bera S, Bhattacharya S, Dutta S, Kumar H, Bera A. Narrow-Bandgap LaMO 3 (M = Ni, Co) nanomaterials for efficient interfacial solar steam generation. J Colloid Interface Sci 2022; 612:203-212. [PMID: 34992020 DOI: 10.1016/j.jcis.2021.12.158] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022]
Abstract
Photothermal water evaporation provides a pathway towards a promising solution to global freshwater scarcity. Synergistic integration of functions in a material in diverse directions is a key strategy for designing multifunctional materials. Lanthanum-based perovskite complex oxides LaMO3 (M = Ni and Co) have narrow band gaps with a high absorption coefficient. These functionalities have not been appropriately explored for photothermal energy conversion. Here, we synthesized nanostructured metallic LaNiO3 and semiconducting LaCoO3 and used them to design interfacial solar steam generators. Effective light absorption capability over the entire solar spectrum of these materials leads to a photothermal efficiency of the order of 83% for both materials. Using a cone-shaped 3D interfacial steam generator with a LaNiO3 absorber, we achieved an evaporation rate of 2.3 kg m-2 h-1, corresponding to solar vapor generation efficiency of over 95%. To the best of our knowledge, this evaporation rate is higher than any oxide-based interfacial solar steam generator reported so far. Furthermore, we have also shown an effective way of using such evaporators for long-term seawater desalination.
Collapse
Affiliation(s)
- Tawseef Ahmad Wani
- Department of Physics, Indian Institute of Technology Jammu, Jammu and Kashmir 181221, India
| | - Parul Garg
- Department of Physics, Indian Institute of Technology Jammu, Jammu and Kashmir 181221, India
| | - Saheb Bera
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Sanchari Bhattacharya
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Odisha 769008, India
| | - Sanjoy Dutta
- Department of Physics and Astronomy, National Institute of Technology Rourkela, Odisha 769008, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Ashok Bera
- Department of Physics, Indian Institute of Technology Jammu, Jammu and Kashmir 181221, India.
| |
Collapse
|
24
|
Xiang Q, Yang C, Luo Y, Liu F, Zheng J, Liu W, Ran H, Sun Y, Ren J, Wang Z. Near-Infrared II Nanoadjuvant-Mediated Chemodynamic, Photodynamic, and Photothermal Therapy Combines Immunogenic Cell Death with PD-L1 Blockade to Enhance Antitumor Immunity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107809. [PMID: 35143709 DOI: 10.1002/smll.202107809] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The efficacy of immune checkpoint inhibition in inducing death of cancer cells is affected by the immunosuppressive "cold" tumor microenvironment, which results in a poor response by the patient's antitumor immune system. However, the immunomodulatory effects of immunogenic cell death in response to irritation by heat energy and reactive oxygen species (ROS) can switch the tumor microenvironment from "cold" to "hot." This study has developed a nanoadjuvant for immune therapy using iron tungsten oxide (FeWOx)-based nanosheets with surface PEGylation (FeWOx-PEG). This FeWOx-PEG nanoadjuvant serves as a chemodynamic reagent via the Fenton reaction and acts as a photosensitizer for photodynamic and photothermal therapy under near-infrared II laser irradiation; however, it could also be used to augment tumor-infiltrating T-cells and provoke a systemic antitumor immune response by combining the immunogenic cell death triggered by ROS and photothermal therapy with the immune checkpoint blockade. This research demonstrates that application of the FeWOx-PEG nanoadjuvant under the guidance of magnetic resonance/computed tomography/photoacoustic imaging can eliminate the primary tumor and suppress the growth of distant tumors.
Collapse
Affiliation(s)
- Qinyanqiu Xiang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Chao Yang
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400010, P. R. China
| | - Yuanli Luo
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Fan Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jun Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Jianli Ren
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, P. R. China
| |
Collapse
|
25
|
Du B, Zheng Y, Ye J, Wang D, Mao C, Sun N. Photoluminescence-based sensing of ethanol gas with ultrafine WO 3 nanorods. OPTICS LETTERS 2022; 47:1145-1148. [PMID: 35230312 DOI: 10.1364/ol.452013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Ultrafine one-dimensional WO3 nanorods (NRs) with diameters of 10-200 nm have been fabricated using a hydrothermal synthesis method. The optical performance of the WO3 NRs strongly depends on their various defects as well as their crystal quality. Upon exposure to trace quantities of ethanol gas, the photoluminescence (PL) spectra of these nanorod samples under ultraviolet illumination showed a large variation in intensity. WO3-NR-based ethanol gas sensing via PL spectra variation demonstrated a 100 ppm sensitivity detection limit and a wide linear detection range of 200-2000 ppm at 100°C. This outstanding optical ethanol sensing performance can be ascribed to the very large surface area to volume ratio of this material, which increases the density of active sites for ethanol adsorption and reaction with adsorbed oxygen species.
Collapse
|
26
|
Li Y, Liao Y, Zhang J, Huang E, Ji L, Zhang Z, Zhao R, Zhang Z, Yang B, Zhang Y, Xu B, Qin G, Zhang X. High‐Entropy‐Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Enhui Huang
- School of Science China Pharmaceutical University Nanjing 211198 P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Zhimin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Yanhui Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Bo Xu
- School of Science China Pharmaceutical University Nanjing 211198 P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| |
Collapse
|
27
|
Zhou M, Liu Y, Su Y, Su Q. Plasmonic Oxygen Defects in MO 3- x (M = W or Mo) Nanomaterials: Synthesis, Modifications, and Biomedical Applications. Adv Healthc Mater 2021; 10:e2101331. [PMID: 34549537 DOI: 10.1002/adhm.202101331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Indexed: 12/31/2022]
Abstract
Nanomedicine is a promising technology with many advantages and provides exciting opportunities for cancer diagnosis and therapy. During recent years, the newly developed oxygen-deficiency transition metal oxides MO3- x (M = W or Mo) have received significant attention due to the unique optical properties, such as strong localized surface plasmon resonance (LSPR) , tunable and broad near-IR absorption, high photothermal conversion efficiency, and large X-ray attenuation coefficient. This review presents an overview of recent advances in the development of MO3- x nanomaterials for biomedical applications. First, the fundamentals of the LSPR effect are introduced. Then, the preparation and modification methods of MO3- x nanomaterials are summarized. In addition, the biological effects of MO3- x nanomaterials are highlighted and their applications in the biomedical field are outlined. This includes imaging modalities, cancer treatment, and antibacterial capability. Finally, the prospects and challenges of MO3- x and MO3- x -based nanomaterial for fundamental studies and clinical applications are also discussed.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| | - Yan Su
- Genome Institute of Singapore Agency of Science Technology and Research Singapore 138672 Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology Shanghai University Shanghai 200444 China
| |
Collapse
|
28
|
Zhao S, Zhang L, Deng L, Ouyang J, Xu Q, Gao X, Zeng Z, Liu YN. NIR-II Responsive Hydrogel as an Angiogenesis Inhibition Agent for Tumor Microenvironment Reprogramming. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103003. [PMID: 34561966 DOI: 10.1002/smll.202103003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Regulation of angiogenesis is a great challenge for effective anticancer therapy. Generally, anti-angiogenic therapies are focused on inhibition of inducers involved in pro-angiogenic communication pathways. Despite the great potential of anti-angiogenic therapy, engineering efficient angiogenesis inhibition agents (AIAs) is still a formidable challenge, since most anti-angiogenic therapies are limited due to the cancer recurrence via compensatory expression of different angiogenic mediators. Herein, we present a new strategy of near-infrared-II (NIR-II) responsive hydrogel AIAs, constructed by incorporation of nitric oxide (NO) precursor (BNN6) and 2D WO2.9 nanosheets within hydrogel (WB@hydrogel). Because of the defect/2D engineering, the bandgap of the WO2.9 nanosheets narrows, which extends the absorption to the NIR-II region. It offers a favorable NIR-II controlled manner for NO generation through irradiation time and light intensity. The continuous supply of NO can activate the expression of wild-type p53 protein and further reverse the transcriptional expression of pro- and anti-angiogenic factors of the tumor microenvironment (TME), subsequently alternating pro-angiogenic TME to anti-angiogenic TME. In the murine tumor model, this method achieved high tumor growth inhibition (TGI) rate and excellent anti-recurrence efficiency.
Collapse
Affiliation(s)
- Senfeng Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Ling Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Liu Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Jiang Ouyang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qianqian Xu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| | - Xinyu Gao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhilin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
29
|
Li Y, Liao Y, Zhang J, Huang E, Ji L, Zhang Z, Zhao R, Zhang Z, Yang B, Zhang Y, Xu B, Qin G, Zhang X. High-Entropy-Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021; 60:27113-27118. [PMID: 34605601 DOI: 10.1002/anie.202112520] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/08/2022]
Abstract
Photothermal materials with broadband optical absorption and high conversion efficiency are intensively pursued to date. Here, proposing by the d-d interband transitions, we report an unprecedented high-entropy alloy FeCoNiTiVCrCu nanoparticles that the energy regions below and above the Fermi level (±4 eV) have been fully filled by the 3d transition metals, which realizes an average absorbance greater than 96 % in the entire solar spectrum (wavelength of 250 to 2500 nm). Furthermore, we also calculated the photothermal conversion efficiency and the evaporation rate towards the steam generation. Due to its pronounced full light capture and ultrafast local heating, our high-entropy-alloy nanoparticle-based solar steam generator has over 98 % efficiency under one sun irradiation, meanwhile enabling a high evaporation rate of 2.26 kg m-2 h-1 .
Collapse
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Enhui Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhimin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yanhui Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Bo Xu
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| |
Collapse
|
30
|
Xu X, Fu M, Li P, Yang M. The pH responsive upconversion fluorescence and photothermal conversion properties of NaYF 4:Yb 3+/Er 3+@NaYF 4@MnO 2@Au. Dalton Trans 2021; 50:10838-10844. [PMID: 34292284 DOI: 10.1039/d1dt01878g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
While photothermal therapy is widely applied in phototherapy, there are still challenges in developing new generation phototherapy materials with precise diagnostic functions. Here we report the construction of a pH responsive upconversion fluorescence imaging precisely guided photothermal therapy system, namely NaYF4:Yb3+/Er3+@NaYF4@MnO2@Au nanocomposites, which can effectively avoid light damage to non-target tissues. Owing to the fluorescence resonance energy transfer between the upconversion nanocrystal donor and MnO2 and Au acceptor, the upconversion fluorescence is completely quenched. However, in pH 5.3 PBS buffer, MnO2 is gradually broken down, and the upconversion fluorescence is partially recovered, which could be used for upconversion fluorescence imaging to precisely guide photothermal therapy under 980 nm excitation. Simultaneously, due to the absorption of 980 nm excitation light and the emission bands of Er3+ (2H11/2→4I15/2 and 4S3/2→4I15/2 transition), temperature increment of core@shell@MnO2@Au could reach 35.5 °C under 980 nm excitation at 0.8 W cm-2. The core@shell@MnO2@Au nanocomposites are supposed to contribute significantly in the biological applications of photoluminescence imaging and photothermal therapy.
Collapse
Affiliation(s)
- Xia Xu
- College of Science, Gansu Agricultural University, No. 1, Yingmen Village, Lanzhou 730070, P. R. China.
| | - Meirong Fu
- College of Science, Gansu Agricultural University, No. 1, Yingmen Village, Lanzhou 730070, P. R. China.
| | - Penghui Li
- College of Science, Gansu Agricultural University, No. 1, Yingmen Village, Lanzhou 730070, P. R. China.
| | - Min Yang
- College of Science, Gansu Agricultural University, No. 1, Yingmen Village, Lanzhou 730070, P. R. China.
| |
Collapse
|
31
|
Prakoso SP, Sun SS, Saleh R, Tao YT, Wang CL. Tailoring Photophysical Properties of Diketopyrrolopyrrole Small Molecules with Electron-Withdrawing Moieties for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38365-38374. [PMID: 34351125 DOI: 10.1021/acsami.1c10665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of photothermal materials (PTMs) for solar steam generation (SSG) has gained tremendous attention in response to the global clean water scarcity issue. However, the investigation in employing organic small-molecule PTMs for SSG applications is rarely found due to their narrow optical absorption range to harvest solar energy and insufficient photostability for long-term use. Herein, we employ a diketopyrrolopyrrole (DPP) core unit together with electron-withdrawing (EW) endcaps and siloxane side chains to introduce stronger intramolecular charge transfer (ICT) characteristics as well as the hydrophobic character. The enhanced ICT characteristics of DPP derivatives render a broad optical absorption range, less emission, and a high nonradiative decay rate for efficient solar energy harvesting and photothermal effects. Meanwhile, the hydrophobic nature of these DPP derivatives allows the facile fabrication of novel Janus photothermal membranes for effective water vaporization and solar-to-vapor conversion efficiency. By embedding DPP derivatives to the SSG device, we showed that the solar-to-vapor efficiency can reach up to 71.8% under relatively low visible light power (∼700 W m-2), which is, on average, 2.66 times higher than that of bulk water of similar dimension. Moreover, this report demonstrates the great potential of conjugated small molecules for photothermal applications, owing to their versatility and flexibility in structural engineering and its diminishing radiative decay properties. This may inspire more innovation and advancement in SSG applications.
Collapse
Affiliation(s)
- Suhendro Purbo Prakoso
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Shue Road, Hsinchu 30010, Taiwan
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Chiao Tung University, 128 Academia Road, Taipei 11529, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
| | - Rosari Saleh
- Departemen Fisika, Fakultas MIPA-Universitas Indonesia, Depok 16424, Indonesia
| | - Yu-Tai Tao
- Institute of Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
| | - Chien-Lung Wang
- Department of Applied Chemistry, National Chiao Tung University, 1001 Ta-Shue Road, Hsinchu 30010, Taiwan
| |
Collapse
|
32
|
Chen X, Wang L, Sun J, Wu G, Zhang Z, Yu Q, Wang W, Liu M. Vacancy-Enhanced Photothermal Killing of Bacteria Mediated by Graphene Oxide. ACS APPLIED BIO MATERIALS 2021; 4:5661-5668. [PMID: 35006719 DOI: 10.1021/acsabm.1c00454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the emergence of antibiotic resistance, the development of efficient antimicrobial agents has become increasingly important. Graphene oxide (GO) has been used as an antibacterial agent, but how to realize and improve the antibacterial properties of GO is still required critically. Herein, we prepared two GO samples, abbreviated as GO-V11 and GO-V9. Positron annihilation spectra showed that they possessed predominantly VCCCCCCCCCCC (V11C) and VCCCCCCCCC (V9C) carbon vacancies, respectively. Their photothermal antibacterial properties were measured against Gram-negative Escherichia coli (E. coli) and Gram-positive Bacillus subtilis (B. subtilis) by using colony-forming unit and liquid optical density assays. GO-V9 displayed a higher photothermal antibacterial efficiency toward the two bacteria than GO-V11 because GO-V9 had a higher photothermal conversion efficiency (PTCE) (57.3%) than GO-V11 (42.5%). To reveal the difference in their PTCEs and antibacterial efficiencies, their energy band structures were tested with density functional theory calculations. The different vacancies changed the energy band structure from the indirect band gap of GO-V11 to the quasi-metallic band gap of GO-V9. The quasi-metallic band gap showed the higher PTCE, so we revealed the importance of the band gap of GO for its antibacterial mechanism. Tuning the vacancy properties is promising for improving the photothermal antibacterial efficiency.
Collapse
Affiliation(s)
- Xue Chen
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Lijing Wang
- Department of Electronics, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071, China
| | - Jingyu Sun
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Guizhu Wu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Ze Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Nankai University, 94 Weijin Rd., Tianjin 300071, China
| | - Weichao Wang
- Department of Electronics, Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071, China
| | - Mingyang Liu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.,Dept. of Civil & Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
33
|
Lv Z, He S, Wang Y, Zhu X. Noble Metal Nanomaterials for NIR-Triggered Photothermal Therapy in Cancer. Adv Healthc Mater 2021; 10:e2001806. [PMID: 33470542 DOI: 10.1002/adhm.202001806] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Indexed: 12/24/2022]
Abstract
It is of great significance to develop anticancer therapeutic agents or technologies with high degree of specificity and patient compliance, while low toxicity. The emerging photothermal therapy (PTT) has become a new and powerful therapeutic technology due to its noninvasiveness, high specificity, low side effects to normal tissues and strong anticancer efficacy. Noble metal nanomaterials possess strong surface plasmon resonance (SPR) effect and synthetic tunability, which make them facile and effective PTT agents with superior optical and photothermal characteristics, such as high absorption cross-section, incomparable optical-thermal conversion efficiency in the near infrared (NIR) region, as well as the potential of bioimaging. By incorporating with various functional reagents such as antibodies, peptides, biocompatible polymers, chemo-drug and immune factors, noble metal nanomaterials have presented strong potential in multifunctional cancer therapy. Herein, the recent development regarding the application of noble metal nanomaterials for NIR-triggered PTT in cancer treatment is summarized. A variety of studies with good therapeutic effects against cancer from impressive photothermal efficacy of noble metal nanomaterials are concluded. Intelligent nanoplatforms through ingenious fabrication showing potential of multifunctional PTT, combined with chemo-therapy, immunotherapy, photodynamic therapy (PDT), as well as simultaneous imaging modality are also demonstrated.
Collapse
Affiliation(s)
- Zhuoqian Lv
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sijia He
- Cancer Center Shanghai General Hospital Shanghai Jiao Tong University School of Medicine 650 Xinsongjiang Road Shanghai 201620 China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
34
|
Xie Z, Zhu J, Zhang L. Three-Dimensionally Structured Polypyrrole-Coated Setaria viridis Spike Composites for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9027-9035. [PMID: 33577283 DOI: 10.1021/acsami.0c22917] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven steam generation is a promising technology for the production of freshwater from seawater and polluted water. High water evaporation rates have been achieved via the interfacial heating scheme; however, they are still limited to meet the increasing need for freshwater due to the restricted evaporation area of two-dimensionally (2D) geometrical planar photothermal membranes. Herein, a three-dimensionally (3D) structured solar evaporator is prepared via coating photothermal polypyrrole (PPy) on the spike of Setaria viridis(S. viridis) for highly efficient evaporation. Due to the enlarged evaporation area and open structure for vapor dissipation, the PPy-coated S. viridis spike solar evaporator shows a high water evaporation rate of 3.72 kg m-2 h-1 under one sun illumination. The 3D solar evaporator also demonstrates good durability and anti-salt-clogging performance for real-life applications. Furthermore, we show that the 3D solar evaporator demonstrates effective decontamination of saline water, dye-contaminated water, and corrosive water. This work can inspire new paradigms toward developing high-performance solar steaming technologies for effective water purification to address the worldwide crisis of freshwater shortage.
Collapse
Affiliation(s)
- Zhanjun Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 51800, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 51800, China
| |
Collapse
|
35
|
Zuo S, Xia D, Guan Z, Yang F, Cheng S, Xu H, Wan R, Li D, Liu M. Dual-functional CuO/CN for highly efficient solar evaporation and water purification. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Wang L, Xu SM, Yang X, He S, Guan S, Waterhouse GIN, Zhou S. Exploiting Co Defects in CoFe-Layered Double Hydroxide (CoFe-LDH) Derivatives for Highly Efficient Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54916-54926. [PMID: 33233881 DOI: 10.1021/acsami.0c14147] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Currently, two-dimensional materials are being actively pursued in catalysis and other fields due their abundance of defects, which results in enhanced performance relative to their bulk defect-free counterparts. To date, the exploitation of defects in two-dimensional materials to enhance photothermal therapies has received little attention, motivating a detailed investigation. Herein, we successfully fabricated a series of novel CoFe-based photothermal agents (CoFe-x) by heating CoFe-layered double hydroxide (CoFe-LDH) nanosheets at different temperatures (x) between 200-800 °C under a Ar atmosphere. The CoFe-x products differed in their particle size, cobalt defect concentration, and electronic structure, with the CoFe-500 product containing the highest concentration of Co2+ defects and most efficient photothermal performance under near-infrared (NIR, 808 nm) irradiation. Experiments and density functional theory (DFT) calculations revealed that Co2+ defects modify the electronic structure of CoFe-x, narrowing the band gap and thus increasing the nonradiative recombination rate, thereby improving the NIR-driven photothermal properties. In vitro and in vivo results demonstrated that CoFe-500 was an efficient agent for photothermal cancer treatment and also near-infrared (NIR) thermal imaging, magnetic resonance (MR) imaging, and photoacoustic (PA) imaging. This work provides valuable new insights about the role of defects in the rational design of nanoagents with optimized structures for improved cancer therapy.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Si-Min Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Xueting Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, P. R. China
| | - Shan He
- Beijing Technology and Business University, Beijing 100148, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
37
|
Tao Y, Chan HF, Shi B, Li M, Leong KW. Light: A Magical Tool for Controlled Drug Delivery. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2005029. [PMID: 34483808 PMCID: PMC8415493 DOI: 10.1002/adfm.202005029] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 05/04/2023]
Abstract
Light is a particularly appealing tool for on-demand drug delivery due to its noninvasive nature, ease of application and exquisite temporal and spatial control. Great progress has been achieved in the development of novel light-driven drug delivery strategies with both breadth and depth. Light-controlled drug delivery platforms can be generally categorized into three groups: photochemical, photothermal, and photoisomerization-mediated therapies. Various advanced materials, such as metal nanoparticles, metal sulfides and oxides, metal-organic frameworks, carbon nanomaterials, upconversion nanoparticles, semiconductor nanoparticles, stimuli-responsive micelles, polymer- and liposome-based nanoparticles have been applied for light-stimulated drug delivery. In view of the increasing interest in on-demand targeted drug delivery, we review the development of light-responsive systems with a focus on recent advances, key limitations, and future directions.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingyang Shi
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Kam W Leong
- Department of Biomedical Engineering, Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
38
|
Abstract
The temperature and magnetic field dependence of resistivity in WO2.9 was investigated. The variation of resistivity with temperature displayed unusual features, such as a broad maximum around 230 K and a logarithmic increase of resistivity below 16 K. In the temperature range 16–230 K, we observed metallic-like behavior with a positive temperature coefficient. The combined analysis of resistivity and magnetoresistance (MR) data shows that these unusual transport properties of WO2.9 can be understood by considering the (bi)polaronic nature of charge carriers. In contrast to magnetization data, superconducting transition below Tc = 80 K was not detected in resistivity measurements, indicating that the superconductivity is localized in small regions that do not percolate. We found a strong increase in positive MR below 80 K. This effect is similar to that observed in underdoped cuprates, where the substantial increase of MR is attributed to superconducting fluctuations in small clusters. Therefore, the temperature dependence of MR indicates the presence of non-percolating superconducting clusters in WO2.9 below 80 K in agreement with magnetization data.
Collapse
|
39
|
Yang H, Yang G, Qiao Z, Bao H, Zhang S, Li X, Liu Y. Facile Deflagration Synthesis of Hollow Carbon Nanospheres with Efficient Performance for Solar Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35193-35200. [PMID: 32602699 DOI: 10.1021/acsami.0c06233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solar water evaporation is a promising and environment-friendly approach to relieve global water scarcity issues. Currently, many reports show that the voids and porous structure are beneficial to the absorption of solar energy to generate water steam. Herein, carbon nanospheres with central cavity structures are rationally designed by the one-step NaN3/fluorinated graphite deflagration method. The Na clusters derived from NaN3 deflagration are not only provided as the hollow templates but also react with fluorinated graphite to release heat, further boosting the formation of hollow carbon nanospheres (HCSs). Benefiting from the diversity of carbon nanomaterials, rough surface, unique hollow structures, and numerous micron/submicron holes, the light absorption ability, heat localization, and water supply capacity of HCSs have been significantly enhanced. Because of these advantages, the HCS-3 exhibits an excellent water evaporation efficiency of 92.7% at 1 kW m-2, which is much higher than that of carbon nanospheres, graphene oxide, and even most of the previous carbon materials. In addition, we demonstrated that the HCSs have a long-term stability and high efficiency of production of drinkable water and purifying various types of wastewater, including seawater, strong acid/alkaline water, and water containing dyes. To sum up, the deflagration synthetic technology as a facile and ultrafast process can be a new insight for future photothermal material design.
Collapse
Affiliation(s)
- Haifeng Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Guangcheng Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| | - Zhiqiang Qiao
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Songtao Zhang
- Testing Center, Yangzhou University, Yangzhou 225009, China
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Yousong Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
| |
Collapse
|
40
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO 3-x Dots with Remarkably Low Toxicity and Uncompromised Activity as Co-reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020; 59:16747-16754. [PMID: 32524717 DOI: 10.1002/anie.202007451] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/26/2023]
Abstract
The exceptional nature of WO3-x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3-x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3-x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3-x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)3 2+ with a comparable ECL efficiency to the well-known Ru(bpy)3 2+ /tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3-x dots were ca. 300-fold less toxic. The potency of WO3-x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.
Collapse
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.,Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| |
Collapse
|
41
|
Pan D, Fang Z, Yang E, Ning Z, Zhou Q, Chen K, Zheng Y, Zhang Y, Shen Y. Facile Preparation of WO
3−
x
Dots with Remarkably Low Toxicity and Uncompromised Activity as Co‐reactants for Clinical Diagnosis by Electrochemiluminescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deng Pan
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Zhengzou Fang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Erli Yang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Zhenqiang Ning
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Qing Zhou
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Kaiyang Chen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yongjun Zheng
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yuanjian Zhang
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| | - Yanfei Shen
- Medical School, Jiangsu Provincial Key Laboratory of Critical Care MedicineSchool of Chemistry and Chemical EngineeringSoutheast University Nanjing 210009 China
| |
Collapse
|
42
|
Zhang H, Wang Y, Liu Y, Zhao M, Liu C, Wang Y, Albolkany MK, Wu N, Wang M, Yang L, Liu B. Efficient Solar Evaporation by [Ni(Phen) 3 ][V 14 O 34 Cl]Cl Hybrid Semiconductor Confined in Mesoporous Glass. CHEMSUSCHEM 2020; 13:2945-2951. [PMID: 32240576 DOI: 10.1002/cssc.202000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Efficient utilization of solar energy for water evaporation is an advanced and environmentally friendly technology to address the crisis of global drinking water shortages. This study concerns an efficient solar vapor generator comprised of a light-absorbing and photothermal hybrid compound [Ni(Phen)3 ][V14 O34 Cl]Cl (NiV14 ) confined in mesoporous and hydrophilic glass (meso-glass). The generator is floated in water by supporting it on a domestic melamine-formaldehyde (MF) foam to ensure evaporation at the water-air interface. The porous structures and poor thermal conductivities of the meso-glass and MF foam contribute to enabling a consistent water supply, strong solar thermal localization, and less heat dissipation and convection. Associated with the strong photothermal role of NiV14 , these synergistic effects lead to a water evaporation rate of 14.38 kg m-2 h-1 with total water evaporation efficiency of 111.4% under 6 suns and a daily solar water purification yield of 42.00 L m-2 under 1 sun irradiation. This solar evaporation system shows great promise for high-efficiency water purification application.
Collapse
Affiliation(s)
- Hongping Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yongguang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Mingming Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Congyan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yang Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Mohamed K Albolkany
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Niannian Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Min Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Luyun Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Bo Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Fujian Institute of Innovation of Chinese Academy of Sciences, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
43
|
Zhu Q, Ye K, Zhu W, Xu W, Zou C, Song L, Sharman E, Wang L, Jin S, Zhang G, Luo Y, Jiang J. A Hydrogenated Metal Oxide with Full Solar Spectrum Absorption for Highly Efficient Photothermal Water Evaporation. J Phys Chem Lett 2020; 11:2502-2509. [PMID: 32160473 DOI: 10.1021/acs.jpclett.0c00592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Searching for cost-effective photothermal material that can harvest the full solar spectrum is critically important for solar-driven water evaporation. Metal oxides are cheap materials but cannot cover the full solar spectrum. Here we prepared a hydrogenated metal oxide (H1.68MoO3) material, in which H-doping causes the insulator-to-metal phase transition of the originally semiconductive MoO3. It offers a blackbody-like solar absorption of ≥95% over the entire visible-to-near-infrared solar spectrum, owing to its unusual quasi-metallic energy band, and high solar-to-heat conversion rate due to quick relaxation of excited electrons. Using a self-floating H1.68MoO3/airlaid paper photothermal film, we achieved a stable and high water vapor generation rate of 1.37 kg m-2 h-1, a superb solar-to-vapor efficiency of 84.8% under 1 sun illumination, and daily production of 12.4 L of sanitary water/m2 from seawater under natural sunlight. This thus opens a new avenue of designing cost-effective photothermal materials based on metal oxides.
Collapse
Affiliation(s)
- Qing Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ke Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wen Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Chongwen Zou
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Edward Sharman
- Department of Neurology, University of California, Irvine, California 92697, United States
| | - Linjun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shunyu Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
44
|
Volokh M, Mokari T. Metal/semiconductor interfaces in nanoscale objects: synthesis, emerging properties and applications of hybrid nanostructures. NANOSCALE ADVANCES 2020; 2:930-961. [PMID: 36133041 PMCID: PMC9418511 DOI: 10.1039/c9na00729f] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/04/2020] [Indexed: 05/11/2023]
Abstract
Hybrid nanostructures, composed of multi-component crystals of various shapes, sizes and compositions are much sought-after functional materials. Pairing the ability to tune each material separately and controllably combine two (or more) domains with defined spatial orientation results in new properties. In this review, we discuss the various synthetic mechanisms for the formation of hybrid nanostructures of various complexities containing at least one metal/semiconductor interface, with a focus on colloidal chemistry. Different synthetic approaches, alongside the underlying kinetic and thermodynamic principles are discussed, and future advancement prospects are evaluated. Furthermore, the proved unique properties are reviewed with emphasis on the connection between the synthetic method and the resulting physical, chemical and optical properties with applications in fields such as photocatalysis.
Collapse
Affiliation(s)
- Michael Volokh
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Taleb Mokari
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
45
|
Liu F, Sun J, Yu W, Jiang Q, Pan M, Xu Z, Mo F, Liu X. Quantum dot-pulsed dendritic cell vaccines plus macrophage polarization for amplified cancer immunotherapy. Biomaterials 2020; 242:119928. [PMID: 32145508 DOI: 10.1016/j.biomaterials.2020.119928] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/22/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Dendritic cell (DC) vaccines hold great potential in cancer immunotherapy, but the suboptimal design of DC vaccines and the immunosuppressive tumor microenvironment largely impair their anti-tumor efficacy. Here, quantum dot (QD) pulsed-DC vaccines integrating with tumor-associated macrophage polarization are developed for amplified anti-tumor immunity. Semiconductor QDs are engineered with diverse functions to act as fluorescence nanoprobes, immunomodulatory adjuvants, and nanocarriers to load tumor antigens and Toll-like receptor 9 agonists. The QD-pulsed DC vaccines enable spatiotemporal tracking of lymphatic drainage and efficacy evaluation of DC immunotherapy, and trigger potent immunoactivation. Specifically, designer DC vaccine plus macrophage polarization elicits potent immune response to stimulate innate and adaptive antitumor immunity and ameliorate the immunosuppressive tumor microenvironment. As a new combination therapy, this strategy greatly boosts antigen-specific T-cell immunity and thus strongly inhibits local tumor growth and tumor metastasis in vivo. This study may provide an applicable treatment for cancer immunotherapy.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Wenqian Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Qunying Jiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Min Pan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Zhen Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Fengye Mo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
46
|
Gong Q, Xing J, Huang Y, Wu A, Yu J, Zhang Q. Perylene Diimide Oligomer Nanoparticles with Ultrahigh Photothermal Conversion Efficiency for Cancer Theranostics. ACS APPLIED BIO MATERIALS 2020; 3:1607-1615. [DOI: 10.1021/acsabm.9b01187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Jie Xing
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices and Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|
47
|
Lin J, Ren W, Li A, Yao C, Chen T, Ma X, Wang X, Wu A. Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO 2 Nanoparticles' Remarkable SERS Sensitivity for Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4204-4211. [PMID: 31789506 DOI: 10.1021/acsami.9b17150] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring novel surface-enhanced Raman scattering (SERS) active materials with high detection sensitivity, excellent biocompatibility, low biotoxicity, and good spectral stability is urgently required for efficacious cancer cell diagnosis. Herein, black TiO2 nanoparticles (B-TiO2 NPs) with crystal-amorphous core-shell structure are successfully developed. Remarkable SERS activity is derived from the synergistic effect of the promising crystal-amorphous core-shell structure. Abundant excitons can be generated by high-efficiency exciton transitions in the crystal core, a feature that provides sufficient charge source. Significantly, the novel crystal-amorphous heterojunction enables the efficient exciton separation at the crystal-amorphous interface, which can effectively facilitate charge transfer from the crystal core to the amorphous shell and results in exciton enrichment at the amorphous shell. Kelvin probe force microscopy (KPFM) confirms the Fermi level of the amorphous layer shifting to a relatively low position compared to that of the crystal core, allowing efficient photoinduced charge transfer (PICT) between the amorphous shell and probe molecules. The first-principles density functional theory (DFT) calculations further indicate that the amorphous shell structure possesses a narrow band gap and a relatively high electronic density of state (DOS), which can effectively promote vibration coupling with target molecules. Moreover, MCF-7 drug-resistant (MCF-7/ADR) breast cancer cells can be quickly and accurately diagnosed based on the high-sensitivity B-TiO2-based SERS bioprobe. To the best of our knowledge, this is the first time the crystal-amorphous core-shell heterojunction enhancement of the TiO2-molecule PICT process, which widens the application of semiconductor-based SERS platforms in precision diagnosis and treatment of cancer, has been investigated.
Collapse
Affiliation(s)
- Jie Lin
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Wenzhi Ren
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Anran Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Tianxiang Chen
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Xuehua Ma
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| | - Xiaotian Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry and Environment , Beihang University , Beijing 100191 , P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering , Chinese Academy of Sciences , 1219 ZhongGuan West Road , Ningbo 315201 , P. R. China
| |
Collapse
|
48
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
49
|
Li Y, Yan P, Guo C, Xu Q. Supercritical CO2-assisted amorphization of WO2.72 and its high-efficiency photothermal conversion. Chem Commun (Camb) 2020; 56:7805-7808. [DOI: 10.1039/d0cc00894j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Amorphization of WO2.72 was successfully achieved with the assistance of supercritical carbon dioxide (SC CO2). Amorphous SC CO2-treated sample has strong optical absorbance and excellent photothermal conversion efficiency of 52.5% indicates they can be a promising photothermal agent.
Collapse
Affiliation(s)
- Youzeng Li
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Pengfei Yan
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Cang Guo
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
| | - Qun Xu
- College of Materials Science and Engineering
- Zhengzhou University
- Zhengzhou 450052
- China
- Henan Institute of Advanced Technology
| |
Collapse
|
50
|
Sun L, Jiao X, Liu W, Wang Y, Cao Y, Bao SJ, Xu Z, Kang Y, Xue P. Novel Oxygen-Deficient Zirconia (ZrO 2-x) for Fluorescence/Photoacoustic Imaging-Guided Photothermal/Photodynamic Therapy for Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41127-41139. [PMID: 31610123 DOI: 10.1021/acsami.9b16604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Theranostic nanoplatforms that integrate therapy and diagnosis in a single composite have become increasingly attractive in the field of precise and efficient tumor treatment. Herein, a novel oxygen-deficient zirconia (ZrO2-x) nanosystem based on the conjugation of thiol-polyethylene glycol-amine (SH-PEG-NH2) and chlorin e6 (Ce6) was elaborately designed and established for efficacious photothermal/photodynamic therapy (PTT/PDT) and fluorescence/photoacoustic (FL/PA) bimodal imaging for the first time. The crystalline-disordered, PEGylated ZrO2-x nanoparticles (ZP NPs) displayed strong optical absorption in the near-infrared (NIR) window and were featured with significant photothermal conversion capacity. The ZP NPs were further covalently conjugated with Ce6 to form ZrO2-x@PEG/Ce6 (ZPC) NPs, which displayed a long circulatory half-life, efficient tumor accumulation, and outstanding FL/PA imaging performance. Moreover, the nanocomposites effectively generated cytotoxic intracellular reactive oxygen species (ROS) responsive to laser activation. Both cell studies and animal experiments explicitly demonstrated that ZPC NPs mediated remarkable tumor ablation with minimal systemic toxicity thanks to their tumor-specific PTT/PDT effect. Collectively, these findings may open up new avenues to broaden the application of oxygen-deficient ZrO2-x nanostructures as high-performance photothermal agents in tumor theranostics through rational design and accurate control of their physiochemical properties.
Collapse
Affiliation(s)
- Lihong Sun
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Xiaodan Jiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing 400010 , China
| | - Ying Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital , Chongqing Medical University , Chongqing 400010 , China
| | - Shu-Juan Bao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Southwest University , Chongqing 400715 , China
| |
Collapse
|