1
|
Li J, Guo Z, Wu Z, Wang Y, Wang Z, Guo M, Zhang P. Highly precise strategy of polygalacturonic acid microcarriers functionalized with zwitterions and specific peptides for MSC screening. Carbohydr Polym 2024; 345:122564. [PMID: 39227103 DOI: 10.1016/j.carbpol.2024.122564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Microcarriers for large-scale cell culture have a broader prospect in cell screening compared with the traditional high cost, low efficiency, and cell damaging methods. However, the equal biological affinity to cells has hindered its application. Therefore, based on the antifouling strategy of zwitterionic polymer, we developed a cell-specific microcarrier (CSMC) for shielding non-target cells and capturing mesenchymal stem cells (MSCs), which has characteristics of high biocompatibility, low background noise and high precision. Briefly, [2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide and glycidyl methacrylate were grafted onto polygalacturonic acid, respectively. The former built a hydration layer through solvation to provide an excellent antifouling surface, while the latter provided active sites for the click reaction with sulfhydryl-modified cell-specific peptides, resulting in rapid immobilization of peptides. This method is applicable to the vast majority of polysaccharide materials. The accurate capture ratio of MSCs by CSMC in a mixed multicellular environment is >95 % and the proliferation rate of MSCs on microcarriers is satisfactory. In summary, this grafting strategy of bioactive components lays a foundation for the application of polysaccharide materials in the biomedical field, and the specific adhesive microcarriers also open up new ideas for the development of stem cell screening as well.
Collapse
Affiliation(s)
- Jianchao Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhenxv Wu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zongliang Wang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Min Guo
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Peibiao Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Yee YC, Mori T, Ito S, Taguchi T, Katayama Y. Impact of hydrophobic modification on biocompatibility of Alaska pollock gelatin microparticles. ANAL SCI 2024; 40:2053-2061. [PMID: 39120821 DOI: 10.1007/s44211-024-00643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
This study investigates the impact of hydrophobic modification on the immunogenicity, cytotoxicity, and inflammatory response of Alaska pollock gelatin (ApGltn) microparticles (MPs). Gelatin, known for its inherent biocompatibility, was modified with decyl group (C10) to explore potential alterations in its interaction with the immune system. Immunogenicity was evaluated through the measurement of material-specific IgM and IgG responses, indicating no significant increase post-modification. Cytotoxicity against Caco-2 cell lines and NF-κB-mediated LPS-induced inflammation were also assessed, revealing no exacerbation by the modified MPs. Furthermore, C10 modification with different types of linkage such as secondary amine and amide structure did not influence immune reactivity. These findings suggest that C10 modification maintains the non-immunogenicity and biocompatibility of gelatin MPs, supporting their potential use in biomedical applications.
Collapse
Affiliation(s)
- Ying Chuin Yee
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shima Ito
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Tetsushi Taguchi
- Degree Programs in Pure and Applied Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.
- Biomaterials Field, Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Yoshiki Katayama
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Centre for Advanced Medicine Open Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023, Taiwan, ROC.
| |
Collapse
|
3
|
Cheng M, Yu X, Qi S, Yang K, Lu M, Cao F, Yu G. Development of Organ Targeting Lipid Nanoparticles with Low Immunogenicity and Their Application in the Treatment of Pulmonary Fibrosis. Angew Chem Int Ed Engl 2024; 63:e202407398. [PMID: 39082226 DOI: 10.1002/anie.202407398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/25/2024]
Abstract
As the most advanced non-viral delivery system, lipid nanoparticles (LNPs) were approved by the FDA, propelling the advancements of gene therapy. However, their clinical applications are hampered by the potential immunogenicity of the lipid components that trigger immune-related adverse events, like inflammation and allergy. Herein, we formulate various dLNPs with diminished immunogenicity by incorporating dexamethasone (Dex) into liver-, spleen-, and lung-targeting LNPs formulations that exhibit excellent abilities to target specific organs and deliver various types of RNA, such as mRNA and siRNA. In vivo investigations demonstrate unparalleled advantages in safety as compared to conventional LNPs, showing promising potential in the development of RNA therapeutics. Intriguingly, the encapsulation of runt-related transcription factor-1 siRNA (siRUNX1) into lung-targeting dLNPs (dLNPs@siRUNX1) demonstrates remarkable advantages in the treatment of pulmonary fibrosis through the synergy of gene therapy and drug therapy. This research establishes secure and universal platforms for the precise delivery of nucleic acid therapeutics, showcasing promising clinical applications in gene therapy.
Collapse
Affiliation(s)
- Meiqi Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Meixin Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Fangfang Cao
- Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Neumann K. The case for poly(ylides) as a class of charge-neutral, hydrophilic polymers with applications in biomaterials science. Biomater Sci 2024; 12:5481-5490. [PMID: 39279503 DOI: 10.1039/d4bm00928b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Many applications of biomaterials require hydrophilic polymers as building blocks, including hydrogels and nanomedicinal devices. Besides enabling sufficient swelling properties in aqueous environments, hydrophilic polymers provide hydration layers, which are considered a major requirement when designing non-fouling surfaces and materials. For the last few decades, polyethylene glycol has been seen as the gold standard for such applications. However, reports on its stability and immunogenicity have urged chemists to identify alternatives with comparable or superior properties. In addition to biopolymers, zwitterionic polymers have gained increasing attention by effectively offering an overall charge-neutral scaffold capable of forming strong hydration layers. Driven by an enhanced understanding of the structure-property relationship of zwitterionic materials, poly(ylides) have emerged as a new class of hydrophilic and charge-neutral polymers. By having the negative charge adjacent to the positive charge, ylides offer not only a minimal dipole moment but also maintain their overall charge-neutral nature. Despite some early reports on their synthesis during the 1980s, polymeric ylides were largely overlooked as a class of polymers, and their utility as unique hydrophilic building blocks for the design of biomaterials and nanomedicinal tools remained elusive. In recent years, several groups have reported N-oxide and carbon-centered ylide-based polymers as highly effective building blocks for the design of antifouling materials and nanomedicines. Here, by reviewing recent progress and understanding of structure-property relationships, arguments are provided explaining why polymeric ylides should be classified as a standalone class of hydrophilic polymers. Consequently, the author concludes that the term 'poly(ylide)' or 'polymeric ylides' should be routinely used to adequately describe this emerging class of polymers.
Collapse
Affiliation(s)
- Kevin Neumann
- Institute for Molecules and Materials, Radboud University, The Netherlands.
| |
Collapse
|
5
|
Najmina M, Kobayashi S, Shimazui R, Takata H, Shibata M, Ishibashi K, Kamizawa H, Kishimura A, Shiota Y, Ida D, Shimizu T, Ishida T, Katayama Y, Tanaka M, Mori T. A Stealthiness Evaluation of Main Chain Carboxybetaine Polymer Modified into Liposome. Pharmaceutics 2024; 16:1271. [PMID: 39458603 PMCID: PMC11510557 DOI: 10.3390/pharmaceutics16101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Acrylamide polymers with zwitterionic carboxybetaine (CB) side groups have attracted attention as stealth polymers that do not induce antibodies when conjugated to proteins. However, they induce antibodies when modified onto liposomes. We hypothesized that antibodies are produced against polymer backbones rather than CB side groups. Objectives: In this study, we designed and synthesized a polymer employing CB in its main chain, poly(N-acetic acid-N-methyl-propyleneimine) (PAMPI), and evaluated the blood retention of PAMPI-modified liposomes in mice. Results: The non-fouling nature of PAMPI-modified liposomes estimated from serum protein adsorption was found to be not inferior to PCB- and PEG-modified liposomes. However, to our surprise, the PAMPI-modified liposomes showed an instantaneous clearance less than 1 h post-injection, comparable to the naked liposomes. Conclusions: The extent of the blood retention of polymer-modified liposomes cannot be predicted by their susceptibility to serum protein adsorption and semi-flexible conformation.
Collapse
Affiliation(s)
- Mazaya Najmina
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 819-0395, Japan
| | - Shingo Kobayashi
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka 819-0395, Japan
| | - Rena Shimazui
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Mayuka Shibata
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
| | - Kenta Ishibashi
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
| | - Hiroshi Kamizawa
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Motooka 819-0395, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka 819-0395, Japan
| | - Daichi Ida
- Department of Polymer Chemistry, Kyoto University, Ikenoura Gokasho 611-0011, Japan
| | - Taro Shimizu
- Center for Advanced Modalities and DDS, Osaka University, Yamadaoka 565-0871, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Motooka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Motooka 819-0395, Japan
- Graduate School of Systems Life Sciences, Kyushu University, Motooka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, Motooka 819-0395, Japan
| |
Collapse
|
6
|
Siow A, Kowalczyk R, Hong J, Harris PWR. Chemical Modifications on the αvβ6 Integrin Targeting A20FMDV2 Peptide: A Review. ChemMedChem 2024; 19:e202400131. [PMID: 38830829 DOI: 10.1002/cmdc.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Integrin proteins have received a significant increase in attention in recent scientific endeavors. The current trend uses the pre-established knowledge that the arginyl-glycyl-aspartic acid (RGD) structural motif present in the A20FMDV2 peptide is highly selective for the integrin class αvβ6 which is overexpressed in many cancer types. This review will provide an extensive overview of the existing literature research to date to the best of our knowledge, highlighting significant improvements and drawbacks of structure-activity relationships (SAR) work undertaken, aiding future research to identify established SAR for an informed design of future A20FMDV2 mimetic inhibitors. Herein, the review aims to collate the existing structural chemical modifications present on A20FMDV2 in the literature to highlight key structural analogues that display more potent biological activity.
Collapse
Affiliation(s)
- Andrew Siow
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Jiwon Hong
- School of Biological Sciences and Surgical and Translational Research Centre, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, School of Biological Sciences and The Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, 23 and 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
7
|
Sharma S, Chakraborty M, Yadav D, Dhullap A, Singh R, Verma RK, Bhattacharya S, Singh S. Strategic Developments in Polymer-Functionalized Liposomes for Targeted Colon Cancer Therapy: An Updated Review of Clinical Trial Data and Future Horizons. Biomacromolecules 2024; 25:5650-5669. [PMID: 39162323 DOI: 10.1021/acs.biomac.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Liposomes, made up of phospholipid bilayers, are efficient nanocarriers for drug delivery because they can encapsulate both hydrophilic and lipophilic drugs. Conventional cancer treatments sometimes involve considerable toxicities and adverse drug reactions (ADRs), which limits their clinical value. Despite liposomes' promise in addressing these concerns, clinical trials have revealed significant limitations, including stability, targeted distribution, and scaling challenges. Recent clinical trials have focused on enhancing liposome formulations to increase therapeutic efficacy while minimizing negative effects. Notably, the approval of liposomal medications like Doxil demonstrates their potential in cancer treatment. However, the intricacy of liposome preparation and the requirement for comprehensive regulatory approval remain substantial impediments. Current clinical trial updates show continued efforts to improve liposome stability, targeting mechanisms, and payload capacity in order to address these issues. The future of liposomal drug delivery in cancer therapy depends on addressing these challenges in order to provide patients with more effective and safer treatment alternatives.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Moitrai Chakraborty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Dharmendra Yadav
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Aniket Dhullap
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| | - Raghuraj Singh
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Rahul Kumar Verma
- Pharmaceutical Nanotechnology lab, Institute of Nano Science and Technology (INST), Sector 81, Mohali, Punjab 140306, India
| | - Sankha Bhattacharya
- SVKM's NMIMS School of Pharmacy & Technology Management, Shirpur, Dist. Dhule, Maharashtra 425405, India
| | - Sanjiv Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur 844102, India
| |
Collapse
|
8
|
Luozhong S, Li R, Tian Z, Cao Z, Bhashyam D, Zhang P, McIlhenny K, Fang L, McMullen P, Jiang S. A De Novo Strategy To Improve Pharmacokinetics of Proteins from mRNA Therapeutics via Zwitterionic Polypeptide Fusion. J Am Chem Soc 2024; 146:21245-21249. [PMID: 39074299 DOI: 10.1021/jacs.4c07903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Achieving therapeutic efficacy in protein replacement therapies requires sustaining pharmacokinetic (PK) profiles, while maintaining the bioactivity of circulating proteins. This is often achieved via PEGylation in protein-based therapies, but it remains challenging for proteins produced in vivo in mRNA-based therapies due to the lack of a suitable post-translational modification method. To address this issue, we integrated a genetically encoded zwitterionic polypeptide, EKP, into mRNA constructs to enhance the PK properties of product proteins. Composed of alternating glutamic acid (E), lysine (K), and proline (P), EKP exhibits unique superhydrophilic properties and low immunogenicity. Our results demonstrate that EKP fusion significantly extends the circulation half-life of proteins expressed from mRNA while preserving their bioactivity using human interferon alpha and Neoleukin-2/15 as examples. This EKP fusion technology offers a new approach to overcoming the current limitations in mRNA therapeutics and has the potential to significantly advance the development of mRNA-based protein replacement therapy.
Collapse
Affiliation(s)
- Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Ruoxin Li
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zhen Tian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Zeyu Cao
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Dani Bhashyam
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Prince Zhang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kay McIlhenny
- Department of Molecular Biology and Genetic, Cornell University, Ithaca, New York 14853, United States
| | - Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Patrick McMullen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
9
|
Xiao P, Wang H, Liu H, Yuan H, Guo C, Feng Y, Qi P, Yin T, Zhang Y, He H, Tang X, Gou J. Milk Exosome-Liposome Hybrid Vesicles with Self-Adapting Surface Properties Overcome the Sequential Absorption Barriers for Oral Delivery of Peptides. ACS NANO 2024. [PMID: 39099105 DOI: 10.1021/acsnano.4c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Milk exosomes (mExos) have demonstrated significant promise as vehicles for the oral administration of protein and peptide drugs owing to their superior capacity to traverse epithelial barriers. Nevertheless, certain challenges persist due to their intrinsic characteristics, including suboptimal drug loading efficiency, inadequate mucus penetration capability, and susceptibility to membrane protein loss. Herein, a hybrid vesicle with self-adaptive surface properties (mExos@DSPE-Hyd-PMPC) was designed by fusing functionalized liposomes with natural mExos, aiming to overcome the limitations associated with mExos and unlock their full potential in oral peptide delivery. The surface property transformation of mExos@DSPE-Hyd-PMPC was achieved by introducing a pH-sensitive hydrazone bond between the highly hydrophilic zwitterionic polymer and the phospholipids, utilizing the pH microenvironment on the jejunum surface. In comparison to natural mExos, hybrid vesicles exhibited a 2.4-fold enhancement in the encapsulation efficiency of the semaglutide (SET). The hydrophilic and neutrally charged surfaces of mExos@DSPE-Hyd-PMPC in the jejunal lumen exhibited improved preservation of membrane proteins and efficient traversal of the mucus barrier. Upon reaching the surface of jejunal epithelial cells, the highly retained membrane proteins and positively charged surfaces of the hybrid vesicle efficiently overcame the apical barrier, the intracellular transport barrier, and the basolateral exocytosis barrier. The self-adaptive surface properties of the hybrid vesicle resulted in an oral bioavailability of 8.7% and notably enhanced the pharmacological therapeutic effects. This study successfully addresses some limitations of natural mExos and holds promise for overcoming the sequential absorption barriers associated with the oral delivery of peptides.
Collapse
Affiliation(s)
- Peifu Xiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanxun Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China
| | - Hongbing Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Feng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pan Qi
- Changchun GeneScience Pharmaceutical Co. Ltd, Changchun 130012, China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Humphries J, Fletcher NL, Sonderegger SE, Bell CA, Kempe K, Thurecht KJ. Mitigating the Effects of Persistent Antipolymer Immune Reactions in Nanomedicine: Evaluating Materials-Based Approaches Using Molecular Imaging. ACS NANO 2024. [PMID: 39037055 DOI: 10.1021/acsnano.4c07317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Poly(ethylene glycol) (PEG) is a hydrophilic polymer ubiquitously used in both medical and nonmedical goods. Recent debate surrounding the observed stimulation of immune responses against PEG has spurred the development of materials that may be suitable replacements for this common polymeric component. The underlying view is that these alternative materials with comparable physicochemical properties can overcome the unfavorable and unpredictable effects of antibody-mediated clearance by being chemically, and therefore antigenically, distinct from PEG. However, this hypothesis has not been thoroughly tested in any defined manner, and the immune response observed against PEG has not been rigorously investigated within the context of these emerging materials. Consequently, it remains unclear whether immunity-mediated discrimination between polymeric entities even occurs in vivo and, if this is the case, how it may be exploited. In this study, we utilize positron emission tomography-computed tomography molecular imaging in mice immunized to develop specific antibody responses to PEG and an alternative polymer in order to visualize and quantify the influence of antipolymer antibodies on the biodistribution of synthetic polymers in vivo as a function of immunization status. Under the conditions of this experiment, mice could be primed to exhibit both innate and adaptive immunity to all of the polymer systems to which they were exposed. We demonstrate that alternating between chemically disparate polymers is a viable approach to extend their efficacy when antipolymer humoral immune responses arise.
Collapse
Affiliation(s)
- James Humphries
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Stefan E Sonderegger
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Craig A Bell
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Karthäuser JF, Gruhn D, Martínez Guajardo A, Kopecz R, Babel N, Stervbo U, Laschewsky A, Viebahn R, Salber J, Rosenhahn A. In vitro biocompatibility analysis of protein-resistant amphiphilic polysulfobetaines as coatings for surgical implants in contact with complex body fluids. Front Bioeng Biotechnol 2024; 12:1403654. [PMID: 39086500 PMCID: PMC11288920 DOI: 10.3389/fbioe.2024.1403654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
The fouling resistance of zwitterionic coatings is conventionally explained by the strong hydrophilicity of such polymers. Here, the in vitro biocompatibility of a set of systematically varied amphiphilic, zwitterionic copolymers is investigated. Photocrosslinkable, amphiphilic copolymers containing hydrophilic sulfobetaine methacrylate (SPe) and butyl methacrylate (BMA) were systematically synthesized in different ratios (50:50, 70:30, and 90:10) with a fixed content of photo-crosslinker by free radical copolymerization. The copolymers were spin-coated onto substrates and subsequently photocured by UV irradiation. Pure pBMA and pSPe as well as the prepared amphiphilic copolymers showed BMA content-dependent wettability in the dry state, but overall hydrophilic properties a fortiori in aqueous conditions. All polysulfobetaine-containing copolymers showed high resistance against non-specific adsorption (NSA) of proteins, platelet adhesion, thrombocyte activation, and bacterial accumulation. In some cases, the amphiphilic coatings even outperformed the purely hydrophilic pSPe coatings.
Collapse
Affiliation(s)
- Jana F. Karthäuser
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Dierk Gruhn
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | | | - Regina Kopecz
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| | - Nina Babel
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - Ulrik Stervbo
- Centre for Translational Medicine, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Herne, Germany
| | - André Laschewsky
- Institute of Chemistry, Universität Potsdam, Potsdam, Germany
- Fraunhofer Institute of Applied Polymer Research IAP, Potsdam, Germany
| | - Richard Viebahn
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Jochen Salber
- Experimental Surgery, Ruhr University Bochum, Bochum, Germany
- Department of Surgery, Knappschaftskrankenhaus Bochum, University Hospital of the Ruhr University Bochum, Bochum, Germany
| | - Axel Rosenhahn
- Analytical Chemistry—Biointerfaces, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Zarnoosheh Farahani T, Nejadmoghaddam MR, Sari S, Ghahremanzadeh R, Minai-Tehrani A. Generation of anti-SN38 antibody for loading efficacy and therapeutic monitoring of SN38-containing therapeutics. Heliyon 2024; 10:e33232. [PMID: 39021912 PMCID: PMC11253049 DOI: 10.1016/j.heliyon.2024.e33232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
SN38, one of the most potent anti-tumor analogues of the camptothecins (CPTs), has limitations in its direct formulation as an anticancer agent due to its super toxicity and poor solubility in water and pharmaceutically approved solvents. However, it has garnered significant scientific interest as a payload in conjugated nanomedicine platforms (e.g., SN-38lip, NK012, SNB-101, and ADCs) to enhance their effectiveness and safety. The development of these platforms necessitates a convenient quantitative determination of SN38 in preclinical and clinical studies, a need that our study directly addresses, offering a practical solution to a pressing problem in cancer research and drug development. This study details the meticulous process of generating poly and monoclonal antibodies (pAb and mAb) against SN38 and their application to measure the SN38 in naked and conjugated forms of SN38-conjugated ADCs. For this purpose, two haptens of SN38 were synthesized by introducing the glycine or 4-amino-4-oxobutanyol(glycine) moiety as a conjugation functional group of the SN38. IR, NMR and mass spectrometric techniques confirmed the chemical modifications of the haptens. The haptens were then conjugated to each bovine serum albumin (BSA) and keyhole limpet hemocyanin (KLH) protein. The SN38-KLH conjugates were meticulously examined for immunization and generation of pAb and mAb. The immunization efficiency, reactivity, binding affinity, specificity, and cross-reactivity of purified pAb and mAb against Irinotecan, a model for the emergence of an SN38 derivative in clinical settings, were evaluated using ELISA and western blotting (WB) techniques. Conjugation efficiency of the SN38 to the KLH was increased using 4-amino-4-oxobutanyol(glycine) moiety, as its immunization efficacy was more to generate pAb. Furthermore, only this hapten could immunized mice to generate mAb recognizing SN38 with nanomolar equilibrium affinity. Our recent findings strongly support the notion that the generated pAb employed in developing an ELISA effectively ascertains the presence of SN38 in SN38-conjugated ADC, with a test midpoint EC50 of 2.5 μg/mL. Our study's unique contribution to the field lies in the development of specific antibodies against SN38 for measuring it on ADC, a feat that has not been achieved before. These immunoassays can be readily applied to detect other SN38-conjugate therapeutic platforms, thereby enhancing their clinical knowledge translation. The affinity of both pAb and mAb also meets the acceptance criteria for quantifying SN38 in fluidic material, as well as in Therapeutic drug monitoring (TDM) studies, a crucial aspect of personalized medicine. The potential applications of the anti-SN38 antibodies extend to reducing SN38-induced systemic toxicity through an inverse targeting strategy, a novel approach that piques further interest in our findings.
Collapse
Affiliation(s)
- Tahereh Zarnoosheh Farahani
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | | | - Soyar Sari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Ghahremanzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Arash Minai-Tehrani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
13
|
Oluwole SA, Weldu WD, Jayaraman K, Barnard KA, Agatemor C. Design Principles for Immunomodulatory Biomaterials. ACS APPLIED BIO MATERIALS 2024. [PMID: 38922334 DOI: 10.1021/acsabm.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The immune system is imperative to the survival of all biological organisms. A functional immune system protects the organism by detecting and eliminating foreign and host aberrant molecules. Conversely, a dysfunctional immune system characterized by an overactive or weakened immune system causes life-threatening autoimmune or immunodeficiency diseases. Therefore, a critical need exists to develop technologies that regulate the immune system to ensure homeostasis or treat several diseases. Accumulating evidence shows that biomaterials─artificial materials (polymers, metals, ceramics, or engineered cells and tissues) that interact with biological systems─can trigger immune responses, offering a materials science-based strategy to modulate the immune system. This Review discusses the expanding frontiers of biomaterial-based immunomodulation, focusing on principles for designing these materials. This Review also presents examples of immunomodulatory biomaterials, which include polymers and metal- and carbon-based nanomaterials, capable of regulating the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Samuel Abidemi Oluwole
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Welday Desta Weldu
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Keerthana Jayaraman
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Kelsie Amanda Barnard
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, Florida 33124, United States
- Department of Biology, University of Miami, Coral Gables, Florida 33124, United States
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| |
Collapse
|
14
|
Fang L, Cai S, McMullen P, Hsu YC, Chen MYQ, Jiang S. Passivating the Background of Living Microbes with a Zwitterionic Peptide for Therapies. Bioconjug Chem 2024; 35:575-581. [PMID: 38456602 DOI: 10.1021/acs.bioconjchem.3c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Living microbial therapies have been proposed as a course of action for a variety of diseases. However, problematic interactions between the host immune system and the microbial organism present significant clinical concerns. Previously, we developed a genetically encoded superhydrophilic zwitterionic peptide, termed EKP, to mimic low-immunogenic zwitterionic materials, which have been used for the chemical modification of biologics such as protein and nucleic acid drugs to increase their in vivo circulation time and reduce their immunogenicity. Herein, we demonstrate the protective effects of the EKP polypeptide genetically cloaking the surface of Saccharomyces cerevisiae as a model microbe in both in vitro and in vivo systems. First, we show that EKP peptide cloaking suppresses the interactions between yeast cells and their specific antibodies, thereby illustrating its cloaking behavior. Then, we examine the in vitro interactions between EKP peptide surface cloaked yeast cells and murine macrophage cells, which exhibit phagocytotic behavior in the presence of foreign microbes. Our results indicate that EKP cloaking suppresses macrophage interactions and thus reduces phagocytosis. Furthermore, EKP cloaked yeast cells demonstrate a prolonged circulation time in mice in vivo.
Collapse
Affiliation(s)
- Liang Fang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Simian Cai
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Patrick McMullen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yi-Chen Hsu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Michelle Yi Qin Chen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Higaki Y, Maeda S, Miura Y. Impact of Zwitterions on the Acidity Constant and Glucose Sensitivity of Block Copolymers with Phenylboronic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10355-10361. [PMID: 38688035 DOI: 10.1021/acs.langmuir.4c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Molecular assemblies that transform in response to pH and saccharide concentration are promising nanomaterials in the field of biomedicine, and polymeric micelles of amphiphilic polymers with phenylboronic acids (PBAs) have been studied. Herein, we report the impact of zwitterions on the acidity constant for the collapse and the glucose sensitivity of a polymeric micelle produced from a diblock copolymer comprising polyacrylamides with PBA and zwitterionic carboxybetaine (PAEBB-b-PCBAAm). The diblock copolymer was synthesized through reversible addition-fragmentation chain-transfer polymerization followed by deprotection. PAEBB-b-PCBAAm produced micellar aggregates in aqueous solutions at a neutral pH, and the polymeric micelles collapsed at a pH of 11.0 because the PBA transformed into a hydroxyboronate anion. The pKa decreased in the presence of glucose owing to boronate ester formation. The PCBAAm chain significantly increased the pH at which the molecular assemblies dissociated. This is probably because the pKa of boronic acid increased through the dipolar interaction of zwitterions, and/or the zwitterionic polymer corona is valid for screening of PBA ionization and electrostatic repulsion of boronate anions. This study on the modulation of pKa through the zwitterionic interaction can facilitate the molecular design of pH- and saccharide-responsive biomaterials.
Collapse
Affiliation(s)
- Yuji Higaki
- Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Saya Maeda
- Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Muszalska-Kolos I, Dwiecki PM. Searching for Conjugates as New Structures for Antifungal Therapies. J Med Chem 2024. [PMID: 38470824 DOI: 10.1021/acs.jmedchem.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.
Collapse
Affiliation(s)
- Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Mariusz Dwiecki
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Pharmaceutical Company "Ziołolek" Sp. z o.o., Starolecka 189, 61-341 Poznan, Poland
| |
Collapse
|
17
|
Luc VS, Lin CC, Wang SY, Lin HP, Li BR, Chou YN, Chang CC. Antifouling Properties of Amine-Oxide-Containing Zwitterionic Polymers. Biomacromolecules 2023; 24:5467-5477. [PMID: 37862241 DOI: 10.1021/acs.biomac.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Biofouling due to nonspecific proteins or cells on the material surfaces is a major challenge in a range of applications such as biosensors, medical devices, and implants. Even though poly(ethylene glycol) (PEG) has become the most widely used stealth material in medical and pharmaceutical products, the number of reported cases of PEG-triggered rare allergic responses continues to increase in the past decades. Herein, a new type of antifouling material poly(amine oxide) (PAO) has been evaluated as an alternative to overcome nonspecific foulant adsorption and impart comparable biocompatibility. Alkyl-substituted PAO containing diethyl, dibutyl, and dihexyl substituents are prepared, and their solution properties are studied. Photoreactive copolymers containing benzophenone as the photo-cross-linker are prepared by reversible addition-fragmentation chain-transfer polymerization and fully characterized by gel permeation chromatography and dynamic light scattering. Then, these water-soluble polymers are anchored onto a silicon wafer with the aid of UV irradiation. By evaluating the fouling resistance properties of these modified surfaces against various types of foulants, protein adsorption and bacterial attachment assays show that the cross-linked PAO-modified surface can efficiently inhibit biofouling. Furthermore, human blood cell adhesion experiments demonstrate that our PAO polymer could be used as a novel surface modifier for biomedical devices.
Collapse
Affiliation(s)
- Van-Sieu Luc
- Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Chien-Cheng Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Shao-Yu Wang
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Hsiu-Pen Lin
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Bor-Ran Li
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ying-Nien Chou
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
18
|
Zeng Z, Chen S, Chen Y. Zwitterionic Polymer: A New Paradigm for Protein Conjugation beyond PEG. ChemMedChem 2023; 18:e202300245. [PMID: 37675618 DOI: 10.1002/cmdc.202300245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
To render protein drugs more suitable for clinical treatment, PEGylation has been widely used to ameliorate their inherent deficiencies, such as poor stability, rapid elimination in the bloodstream, and high immunogenicity. While increasingly PEGylated protein drugs have been approved by the FDA, the non-degradability of PEG and the emergence of anti-PEG antibodies after injection raise concerns about their cumulative chronic toxicity and long-term therapeutic efficacy. Zwitterionic polymer, with a unique structure containing equal amounts of positively charged and negatively charged groups, shows a different hydration behavior to PEG, which may be a superior PEG alternative for protein conjugation. In this concept review, a series of features beyond that of PEGylated protein exhibited by protein-zwitterionic polymer conjugate are discussed and some suggestions are presented for their future direction.
Collapse
Affiliation(s)
- Zhipeng Zeng
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shi Chen
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongming Chen
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Center of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
19
|
Qian S, Lin HA, Pan Q, Zhang S, Zhang Y, Geng Z, Wu Q, He Y, Zhu B. Chemically revised conducting polymers with inflammation resistance for intimate bioelectronic electrocoupling. Bioact Mater 2023; 26:24-51. [PMID: 36875055 PMCID: PMC9975642 DOI: 10.1016/j.bioactmat.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023] Open
Abstract
Conducting polymers offer attractive mixed ionic-electronic conductivity, tunable interfacial barrier with metal, tissue matchable softness, and versatile chemical functionalization, making them robust to bridge the gap between brain tissue and electronic circuits. This review focuses on chemically revised conducting polymers, combined with their superior and controllable electrochemical performance, to fabricate long-term bioelectronic implants, addressing chronic immune responses, weak neuron attraction, and long-term electrocommunication instability challenges. Moreover, the promising progress of zwitterionic conducting polymers in bioelectronic implants (≥4 weeks stable implantation) is highlighted, followed by a comment on their current evolution toward selective neural coupling and reimplantable function. Finally, a critical forward look at the future of zwitterionic conducting polymers for in vivo bioelectronic devices is provided.
Collapse
Affiliation(s)
- Sihao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.,School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Hsing-An Lin
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Qichao Pan
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Shuhua Zhang
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yunhua Zhang
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Zhi Geng
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Qing Wu
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| | - Yong He
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bo Zhu
- School of Materials Science and Engineering & Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
20
|
Sun Q, Yang Z, Qi X. Design and Application of Hybrid Polymer-Protein Systems in Cancer Therapy. Polymers (Basel) 2023; 15:polym15092219. [PMID: 37177365 PMCID: PMC10181109 DOI: 10.3390/polym15092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Polymer-protein systems have excellent characteristics, such as non-toxic, non-irritating, good water solubility and biocompatibility, which makes them very appealing as cancer therapeutics agents. Inspiringly, they can achieve sustained release and targeted delivery of drugs, greatly improving the effect of cancer therapy and reducing side effects. However, many challenges, such as reducing the toxicity of materials, protecting the activities of proteins and controlling the release of proteins, still need to be overcome. In this review, the design of hybrid polymer-protein systems, including the selection of polymers and the bonding forms of polymer-protein systems, is presented. Meanwhile, vital considerations, including reaction conditions and the release of proteins in the design process, are addressed. Then, hybrid polymer-protein systems developed in the past decades for cancer therapy, including targeted therapy, gene therapy, phototherapy, immunotherapy and vaccine therapy, are summarized. Furthermore, challenges for the hybrid polymer-protein systems in cancer therapy are exemplified, and the perspectives of the field are covered.
Collapse
Affiliation(s)
- Qi Sun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Beijing 100069, China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, China
| | - Zhenzhen Yang
- Drug Clinical Trial Center, Peking University Third Hospital, Peking University, Beijing 100191, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xianrong Qi
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
22
|
Yuan Z, McMullen P, Luozhong S, Sarker P, Tang C, Wei T, Jiang S. Hidden hydrophobicity impacts polymer immunogenicity. Chem Sci 2023; 14:2033-2039. [PMID: 36845929 PMCID: PMC9945064 DOI: 10.1039/d2sc07047b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Antibodies against poly(ethylene glycol) (PEG) have been found to be the culprit of side reactions and efficacy loss of a number of PEGylated drugs. Fundamental mechanisms of PEG immunogenicity and design principles for PEG alternatives still have not been fully explored. By using hydrophobic interaction chromatography (HIC) under varied salt conditions, we reveal the "hidden" hydrophobicity of those polymers which are generally considered as hydrophilic. A correlation between the hidden hydrophobicity of a polymer and its polymer immunogenicity is observed when this polymer is conjugated with an immunogenic protein. Such a correlation of hidden hydrophobicity vs. immunogenicity for a polymer also applies to corresponding polymer-protein conjugates. Atomistic molecular dynamics (MD) simulation results show a similar trend. Based on polyzwitterion modification and with this HIC technique, we are able to produce extremely low-immunogenic protein conjugates as their hydrophilicity is pushed to the limit and their hydrophobicity is eliminated, breaking the current barriers of eliminating anti-drug and anti-polymer antibodies.
Collapse
Affiliation(s)
- Zhefan Yuan
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Patrick McMullen
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Sijin Luozhong
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Pranab Sarker
- Department of Chemical Engineering, Howard University Washington D.C. 20059 USA
| | - Chenjue Tang
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| | - Tao Wei
- Department of Chemical Engineering, Howard University Washington D.C. 20059 USA
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University Ithaca NY 14853 USA
| |
Collapse
|
23
|
Zhao C, Wen S, Pan J, Wang K, Ji Y, Huang D, Zhao B, Chen W. Robust Construction of Supersmall Zwitterionic Micelles Based on Hyperbranched Polycarbonates Mediates High Tumor Accumulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2725-2736. [PMID: 36598373 DOI: 10.1021/acsami.2c20056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Despite the numerous advantages of nanomedicines, their therapeutic efficacy is hampered by biological barriers, including fast in vivo clearance, poor tumor accumulation, inefficient penetration, and cellular uptake. Herein, cross-linked supersmall micelles based on zwitterionic hyperbranched polycarbonates can overcome these challenges for efficiently targeted drug delivery. Biodegradable acryloyl/zwitterion-functionalized hyperbranched polycarbonates are synthesized by a one-pot sequential reaction of Michael-type addition and ring-opening polymerization, followed by controlled modification with carboxybetaine thiol. Cross-linked supersmall zwitterionic micelles (X-CBMs) are readily prepared by straightforward self-assembly and UV cross-linking. X-CBMs exhibit prolonged blood circulation because of their cross-linked structure and zwitterion decoration, which resist protein corona formation and facilitate escaping RES recognition. Combined with the advantage of supersmall size (7.0 nm), X-CBMs mediate high tumor accumulation and deep penetration, which significantly enhance the targeted antitumor outcome against the 4T1 tumor model by administration of the paclitaxel (PTX) formulation (X-CBM@PTX).
Collapse
Affiliation(s)
- Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Suchen Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Jingfang Pan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Ke Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Yicheng Ji
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Bingbing Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing210009, China
- Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, School of Engineering, China Pharmaceutical University, Nanjing210009, China
| |
Collapse
|
24
|
Yoshie K, Ishihara K. [Solubilization of Poorly Water-soluble Drugs with Amphiphilic Phospholipid Polymers]. YAKUGAKU ZASSHI 2023; 143:745-756. [PMID: 37661440 DOI: 10.1248/yakushi.23-00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Most drug candidates developed in recent years are poorly water-soluble, which is a key challenge in pharmaceutical science. Various solubilization methods have been investigated thus far, most of which require solubilizers that provide a local hydrophobic environment wherein a drug can dissolve or induce interactions with drug molecules. We have focused on amphiphilic 2-methacryloyloxyethyl phosphoryl choline (MPC) polymers. In addition to the ease of molecular design of amphiphilic MPC polymers owing to their chemical structures, they have been reported to possess high biocompatibility in various biomaterial applications. Additionally, amphiphilic MPC polymers have been applied in the pharmaceutical field, especially in solubilization. We have qualitatively and quantitatively evaluated the effects of the chemical structure and physical properties of the solubilizer on the MPC polymers. In particular, MPC polymers with different chemical structures were designed and synthesized. The inner polarity and molecular mobility in the polymer aggregates were evaluated, indicating that the intrinsic properties reflect the chemical structure of the polymer. Additionally, amphiphilic MPC polymers were used to improve the solubility of poorly water-soluble drugs and as solid dispersion carriers, and they exhibited superior solubilizing abilities compared to a commonly used polymer. Furthermore, the solubility of biopharmaceuticals, such as peptides, was improved. It is possible to design and synthesize optimal structures based on the polarity of the hydrophobic environment and the intermolecular interaction with a drug. This research provides a unified interpretation of drugs and efficiently summarizes knowledge about drug development, which will facilitate the efficient and rapid development of drug formulations.
Collapse
Affiliation(s)
- Kensuke Yoshie
- Formulation Technology Research Laboratories, Daiichi Sankyo., Ltd
| | - Kazuhiko Ishihara
- Department of Materials Engineering, School of Engineering, The University of Tokyo
- Division of Materials and Manufacturing Science, School of Engineering, Osaka University
| |
Collapse
|
25
|
Li Q, Wen C, Yang J, Zhou X, Zhu Y, Zheng J, Cheng G, Bai J, Xu T, Ji J, Jiang S, Zhang L, Zhang P. Zwitterionic Biomaterials. Chem Rev 2022; 122:17073-17154. [PMID: 36201481 DOI: 10.1021/acs.chemrev.2c00344] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The term "zwitterionic polymers" refers to polymers that bear a pair of oppositely charged groups in their repeating units. When these oppositely charged groups are equally distributed at the molecular level, the molecules exhibit an overall neutral charge with a strong hydration effect via ionic solvation. The strong hydration effect constitutes the foundation of a series of exceptional properties of zwitterionic materials, including resistance to protein adsorption, lubrication at interfaces, promotion of protein stabilities, antifreezing in solutions, etc. As a result, zwitterionic materials have drawn great attention in biomedical and engineering applications in recent years. In this review, we give a comprehensive and panoramic overview of zwitterionic materials, covering the fundamentals of hydration and nonfouling behaviors, different types of zwitterionic surfaces and polymers, and their biomedical applications.
Collapse
Affiliation(s)
- Qingsi Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chiyu Wen
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Jing Yang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Xianchi Zhou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingnan Zhu
- Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Gang Cheng
- Department of Chemical Engineering, The University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Jie Bai
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Tong Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shaoyi Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
26
|
Braatz D, Cherri M, Tully M, Dimde M, Ma G, Mohammadifar E, Reisbeck F, Ahmadi V, Schirner M, Haag R. Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications. Angew Chem Int Ed Engl 2022; 61:e202203942. [PMID: 35575255 PMCID: PMC10091760 DOI: 10.1002/anie.202203942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/10/2022]
Abstract
Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.
Collapse
Affiliation(s)
- Daniel Braatz
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mariam Cherri
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Tully
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Mathias Dimde
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Guoxin Ma
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Ehsan Mohammadifar
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Felix Reisbeck
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Vahid Ahmadi
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Michael Schirner
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute of Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
27
|
Hao D, Meng Q, Jiang B, Lu S, Xiang X, Pei Q, Yu H, Jing X, Xie Z. Hypoxia-Activated PEGylated Paclitaxel Prodrug Nanoparticles for Potentiated Chemotherapy. ACS NANO 2022; 16:14693-14702. [PMID: 36112532 DOI: 10.1021/acsnano.2c05341] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing controlled drug-release systems is imperative and valuable for increasing the therapeutic index. Herein, we synthesized hypoxia-responsive PEGylated (PEG = poly(ethylene glycol)) paclitaxel prodrugs by utilizing azobenzene (Azo) as a cleavable linker. The as-fabricated prodrugs could self-assemble into stable nanoparticles (PAP NPs) with high drug content ranging from 26 to 44 wt %. The Azo group in PAP NPs could be cleaved at the tumorous hypoxia microenvironment and promoted the release of paclitaxel for exerting cytotoxicity toward cancer cells. In addition, comparative researches revealed that the PAP NPs with the shorter methoxy-PEG chain (molecular weight = 750) possessed enhanced tumor suppression efficacy and alleviated off-target toxicity. Our work demonstrates a promising tactic to develop smart and simple nanomaterials for disease treatment.
Collapse
Affiliation(s)
- Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qian Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Haijun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| |
Collapse
|
28
|
Chang Y, Wang Q, Xu W, Huang X, Xu X, Han FY, Qiao R, Ediriweera GR, Peng H, Fu C, Liu K, Whittaker AK. Low-Fouling Gold Nanorod Theranostic Agents Enabled by a Sulfoxide Polymer Coating. Biomacromolecules 2022; 23:3866-3874. [PMID: 35977724 DOI: 10.1021/acs.biomac.2c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gold nanorods (GNRs) are widely used in various biomedical applications such as disease imaging and therapy due to their unique plasmonic properties. To improve their bioavailability, GNRs often need to be coated with hydrophilic polymers so as to impart stealth properties. Poly(ethylene glycol) (PEG) has been long used as such a coating material for GNRs. However, there is increasing acknowledgement that the amphiphilic nature of PEG facilitates its interaction with protein molecules, leading to immune recognition and consequent side effects. This has motivated the search for new classes of low-fouling polymers with high hydrophilicity as alternative low-fouling surface coating materials for GNRs. Herein, we report the synthesis, characterization, and application of GNRs coated with highly hydrophilic sulfoxide-containing polymers. We investigated the effect of the sulfoxide polymer coating on the cellular uptake and in vivo circulation time of the GNRs and compared these properties with pegylated GNR counterparts. The photothermal effect and photoacoustic imaging of these polymer-coated GNRs were also explored, and the results show that these GNRs are promising as nanotheranostic particles for the treatment of cancer.
Collapse
Affiliation(s)
- Yixin Chang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Qiaoyun Wang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Weizhi Xu
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xin Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gayathri R Ediriweera
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
29
|
Ko JH, Forsythe NL, Gelb MB, Messina KMM, Lau UY, Bhattacharya A, Olafsen T, Lee JT, Kelly KA, Maynard HD. Safety and Biodistribution Profile of Poly(styrenyl acetal trehalose) and Its Granulocyte Colony Stimulating Factor Conjugate. Biomacromolecules 2022; 23:3383-3395. [PMID: 35767465 DOI: 10.1021/acs.biomac.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(styrenyl acetal trehalose) (pSAT), composed of trehalose side chains linked to a polystyrene backbone via acetals, stabilizes a variety of proteins and enzymes against fluctuations in temperature. A promising application of pSAT is conjugation of the polymer to therapeutic proteins to reduce renal clearance. To explore this possibility, the safety of the polymer was first studied. Investigation of acute toxicity of pSAT in mice showed that there were no adverse effects of the polymer at a high (10 mg/kg) concentration. The immune response (antipolymer antibody and cytokine production) in mice was also studied. No significant antipolymer IgG was detected for pSAT, and only a transient and low level of IgM was elicited. pSAT was also safe in terms of cytokine response. The polymer was then conjugated to a granulocyte colony stimulating factor (GCSF), a therapeutic protein that is approved by the Federal Drug Administration, in order to study the biodistribution of a pSAT conjugate. A site-selective, two-step synthesis approach was developed for efficient conjugate preparation for the biodistribution study resulting in 90% conjugation efficiency. The organ distribution of GCSF-pSAT was measured by positron emission tomography and compared to controls GCSF and GCSF-poly(ethylene glycol), which confirmed that the trehalose polymer conjugate improved the in vivo half-life of the protein by reducing renal clearance. These findings suggest that trehalose styrenyl polymers are promising for use in therapeutic protein-polymer conjugates for reduced renal clearance of the biomolecule.
Collapse
Affiliation(s)
- Jeong Hoon Ko
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Neil L Forsythe
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Madeline B Gelb
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Kathryn M M Messina
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Uland Y Lau
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Arvind Bhattacharya
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Tove Olafsen
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jason T Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Kathleen A Kelly
- Department of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Shin K, Suh HW, Grundler J, Lynn AY, Pothupitiya JU, Moscato ZM, Reschke M, Bracaglia LG, Piotrowski-Daspit AS, Saltzman WM. Polyglycerol and Poly(ethylene glycol) exhibit different effects on pharmacokinetics and antibody generation when grafted to nanoparticle surfaces. Biomaterials 2022; 287:121676. [PMID: 35849999 DOI: 10.1016/j.biomaterials.2022.121676] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/02/2022]
Abstract
Poly(ethylene glycol) (PEG) is widely employed for passivating nanoparticle (NP) surfaces to prolong blood circulation and enhance localization of NPs to target tissue. However, the immune response of PEGylated NPs-including anti-PEG antibody generation, accelerated blood clearance (ABC), and loss of delivery efficacy-is of some concern, especially for treatments that require repeat administrations. Although polyglycerol (PG), which has the same ethylene oxide backbone as PEG, has received attention as an alternative to PEG for NP coatings, the pharmacokinetic and immunogenic impact of PG has not been studied systematically. Here, linear PG, hyperbranched PG (hPG), and PEG-coated polylactide (PLA) NPs with varying surface densities were studied in parallel to determine the pharmacokinetics and immunogenicity of PG and hPG grafting, in comparison with PEG. We found that linear PG imparted the NPs a stealth property comparable to PEG, while hPG-grafted NPs needed a higher surface density to achieve the same pharmacokinetic impact. While linear PG-grafted NPs induced anti-PEG antibody production in mice, they exhibited minimal accelerated blood clearance (ABC) effects due to the poor interaction with anti-PEG immunoglobulin M (IgM). Further, we observed no anti-polymer IgM responses or ABC effects for hPG-grafted NPs.
Collapse
Affiliation(s)
- Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Julian Grundler
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT, 06511, USA
| | - Anna Y Lynn
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Jinal U Pothupitiya
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Zoe M Moscato
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Melanie Reschke
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
| | - Laura G Bracaglia
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT, 06511, USA; Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, 06510, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
31
|
Solomun JI, Martin L, Mapfumo P, Moek E, Amro E, Becker F, Tuempel S, Hoeppener S, Rudolph KL, Traeger A. pH-sensitive packaging of cationic particles by an anionic block copolymer shell. J Nanobiotechnology 2022; 20:336. [PMID: 35842657 PMCID: PMC9287721 DOI: 10.1186/s12951-022-01528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/28/2022] [Indexed: 03/26/2024] Open
Abstract
Cationic non-viral vectors show great potential to introduce genetic material into cells, due to their ability to transport large amounts of genetic material and their high synthetic versatility. However, designing materials that are effective without showing toxic effects or undergoing non-specific interactions when applied systemically remains a challenge. The introduction of shielding polymers such as polyethylene glycol (PEG) can enhance biocompatibility and circulation time, however, often impairs transfection efficiency. Herein, a multicomponent polymer system is introduced, based on cationic and hydrophobic particles (P(nBMA46-co-MMA47-co-DMAEMA90), (PBMD)) with high delivery performance and a pH-responsive block copolymer (poly((N-acryloylmorpholine)-b-(2-(carboxy)ethyl acrylamide)) (P(NAM72-b-CEAm74), PNC)) as shielding system, with PNAM as alternative to PEG. The pH-sensitive polymer design promotes biocompatibility and excellent stability at extracellular conditions (pH 7.4) and also allows endosomal escape and thus high transfection efficiency under acidic conditions. PNC shielded particles are below 200 nm in diameter and showed stable pDNA complexation. Further, interaction with human erythrocytes at extracellular conditions (pH 7.4) was prevented, while acidic conditions (pH 6) enabled membrane leakage. The particles demonstrate transfection in adherent (HEK293T) as well as difficult-to-transfect suspension cells (K-562), with comparable or superior efficiency compared to commercial linear poly(ethylenimine) (LPEI). Besides, the toxicity of PNC-shielded particles was significantly minimized, in particular in K-562 cells and erythrocytes. In addition, a pilot in vivo experiment on bone marrow blood cells of mice that were injected with PNC-shielded particles, revealed slightly enhanced cell transfection in comparison to naked pDNA. This study demonstrates the applicability of cationic hydrophobic polymers for transfection of adherent and suspension cells in culture as well as in vivo by co-formulation with pH-responsive shielding polymers, without substantially compromising transfection performance.
Collapse
Affiliation(s)
- Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Elisabeth Moek
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Elias Amro
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Friedrich Becker
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Stefan Tuempel
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - K Lenhard Rudolph
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
32
|
Hung KY, Kowalczyk R, Desai A, Brimble MA, Marshall JF, Harris PWR. Synthesis and Systematic Study on the Effect of Different PEG Units on Stability of PEGylated, Integrin-αvβ6-Specific A20FMDV2 Analogues in Rat Serum and Human Plasma. Molecules 2022; 27:4331. [PMID: 35889207 PMCID: PMC9316855 DOI: 10.3390/molecules27144331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
A20FMDV2 is a 20-mer peptide that exhibits high selectivity and affinity for the tumour-related αvβ6 integrin that can compete with extracellular ligands for the crucial RGD binding site, playing a role as a promising αvβ6-specific inhibitor for anti-cancer therapies. Unfortunately, the clinical value of A20FMDV2 is limited by its poor half-life in blood caused by rapid renal excretion and its reported high susceptibility to serum proteases. The incorporation of poly (ethylene glycol) chains, coined PEGylation, is a well-established approach to improve the pharmacokinetic properties of drug molecules. Here, we report a systematic study on the incorporation of a varying number of ethylene glycol units (1-20) into the A20FMDV2 peptide to establish the effects of PEGylation size on the peptide stability in both rat serum and human plasma. In addition, the effect of acetyl and propionyl PEGylation handles on peptide stability is also described. Selected peptide analogues were assessed for integrin-αvβ6-targeted binding, showing good specificity and activity in vitro. Stability studies in rat serum established that all of the PEGylated peptides displayed good stability, and an A20FMDV2 peptide containing twenty ethylene glycol units (PEG20) was the most stable. Surprisingly, the stability testing in human plasma identified shorter PEGs (PEG2 and PEG5) as more resistant to degradation than longer PEGs, a trend which was also observed with affinity binding to integrin αvβ6.
Collapse
Affiliation(s)
- Kuo-yuan Hung
- The School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand; (K.-y.H.); (M.A.B.)
| | - Renata Kowalczyk
- The School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand; (K.-y.H.); (M.A.B.)
| | - Ami Desai
- Centre for Tumour Biology, Barts Cancer Institute-Cancer Research UK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Margaret A. Brimble
- The School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand; (K.-y.H.); (M.A.B.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- The School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| | - John F. Marshall
- Centre for Tumour Biology, Barts Cancer Institute-Cancer Research UK Centre of Excellence, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Paul W. R. Harris
- The School of Chemical Sciences, University of Auckland, 23 Symonds St, Auckland 1010, New Zealand; (K.-y.H.); (M.A.B.)
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1010, New Zealand
- The School of Biological Sciences, University of Auckland, 3A Symonds St, Auckland 1010, New Zealand
| |
Collapse
|
33
|
Nuntawong P, Putalun W, Tanaka H, Morimoto S, Sakamoto S. Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. J Nat Med 2022; 76:521-545. [PMID: 35171397 PMCID: PMC9165253 DOI: 10.1007/s11418-022-01605-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
Phytoproducts are involved in various fields of industry. Small-molecule (Mw < 900 Da) organic compounds can be used to indicate the quality of plant samples in the perspective of efficacy by measuring the necessary secondary metabolites and in the perspective of safety by measuring the adulterant level of toxic compounds. The development of reliable detection methods for these compounds in such a complicated matrix is challenging. The lateral flow immunoassay (LFA) is one of the immunoassays well-known for its simplicity, portability, and rapidity. In this review, the general principle, components, format, and application of the LFA for phytoproducts are discussed.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen, Khon Kaen, Thailand
| | - Hiroyuki Tanaka
- School of Pharmacy, Sanyo-Onoda City University, 1-1-1 Daigakudouri, Sanyo-onoda-shi, Yamaguchi, 756-0884, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
34
|
Delille F, Pu Y, Lequeux N, Pons T. Designing the Surface Chemistry of Inorganic Nanocrystals for Cancer Imaging and Therapy. Cancers (Basel) 2022; 14:2456. [PMID: 35626059 PMCID: PMC9139368 DOI: 10.3390/cancers14102456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 12/27/2022] Open
Abstract
Inorganic nanocrystals, such as gold, iron oxide and semiconductor quantum dots, offer promising prospects for cancer diagnostics, imaging and therapy, due to their specific plasmonic, magnetic or fluorescent properties. The organic coating, or surface ligands, of these nanoparticles ensures their colloidal stability in complex biological fluids and enables their functionalization with targeting functions. It also controls the interactions of the nanoparticle with biomolecules in their environment. It therefore plays a crucial role in determining nanoparticle biodistribution and, ultimately, the imaging or therapeutic efficiency. This review summarizes the various strategies used to develop optimal surface chemistries for the in vivo preclinical and clinical application of inorganic nanocrystals. It discusses the current understanding of the influence of the nanoparticle surface chemistry on its colloidal stability, interaction with proteins, biodistribution and tumor uptake, and the requirements to develop an optimal surface chemistry.
Collapse
Affiliation(s)
- Fanny Delille
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Yuzhou Pu
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Nicolas Lequeux
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| | - Thomas Pons
- Laboratoire de Physique et d’Etude des Matériaux, Ecole Supérieure de Physique et Chimie Industrielle, Université PSL (Paris Sciences & Lettres), Centre National de Recherche Scientifique, 75005 Paris, France; (F.D.); (Y.P.); (N.L.)
- Laboratoire de Physique et d’Etude des Matériaux, Centre National de Recherche Scientifique, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
35
|
Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022; 14:pharmaceutics14040778. [PMID: 35456613 PMCID: PMC9026371 DOI: 10.3390/pharmaceutics14040778] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Liposomes are highly advantageous platforms for drug delivery. To improve the colloidal stability and avoid rapid uptake by the mononuclear phagocytic system of conventional liposomes while controlling the release of encapsulated agents, modification of liposomes with well-designed polymers to modulate the physiological, particularly the interfacial properties of the drug carriers, has been intensively investigated. Briefly, polymers are incorporated into liposomes mainly using “grafting” or “coating”, defined according to the configuration of polymers at the surface. Polymer-modified liposomes preserve the advantages of liposomes as drug-delivery carriers and possess specific functionality from the polymers, such as long circulation, precise targeting, and stimulus-responsiveness, thereby resulting in improved pharmacokinetics, biodistribution, toxicity, and therapeutic efficacy. In this review, we summarize the progress in polymer-modified liposomes for drug delivery, focusing on the change in physiological properties of liposomes and factors influencing the overall therapeutic efficacy.
Collapse
Affiliation(s)
- Yifeng Cao
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence: (Y.C.); (X.C.)
| | - Xinyan Dong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China;
| | - Xuepeng Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
- Correspondence: (Y.C.); (X.C.)
| |
Collapse
|
36
|
Talkington AM, McSweeney MD, Wessler T, Rath MK, Li Z, Zhang T, Yuan H, Frank JE, Forest MG, Cao Y, Lai SK. A PBPK model recapitulates early kinetics of anti-PEG antibody-mediated clearance of PEG-liposomes. J Control Release 2022; 343:518-527. [PMID: 35066099 PMCID: PMC9080587 DOI: 10.1016/j.jconrel.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
PEGylation is routinely used to extend the systemic circulation of various protein therapeutics and nanomedicines. Nonetheless, mounting evidence is emerging that individuals exposed to select PEGylated therapeutics can develop antibodies specific to PEG, i.e., anti-PEG antibodies (APA). In turn, APA increase both the risk of hypersensitivity to the drug as well as potential loss of efficacy due to accelerated blood clearance of the drug. Despite the broad implications of APA, the timescales and systemic specificity by which APA can alter the pharmacokinetics and biodistribution of PEGylated drugs remain not well understood. Here, we developed a physiologically based pharmacokinetic (PBPK) model designed to resolve APA's impact on both early- and late-phase pharmacokinetics and biodistribution of intravenously administered PEGylated drugs. Our model accurately recapitulates PK and biodistribution data obtained from PET/CT imaging of radiolabeled PEG-liposomes and PEG-uricase in mice with and without APA, as well as serum levels of PEG-uricase in humans. Our work provides another illustration of the power of high-resolution PBPK models for understanding the pharmacokinetic impacts of anti-drug antibodies and the dynamics with which antibodies can mediate clearance of foreign species.
Collapse
Affiliation(s)
- Anne M Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Wessler
- Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Marielle K Rath
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Tao Zhang
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Hong Yuan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC Chapel Hill, USA
| | | | - M Gregory Forest
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Department of Mathematics, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina, Chapel Hill, NC, USA
| | - Samuel K Lai
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
37
|
Liu YY, Wang ZK, Yu SB, Liu Y, Wang H, Zhou W, Li ZT, Zhang DW. Conjugating aldoxorubicin to supramolecular organic frameworks: polymeric prodrugs with enhanced therapeutic efficacy and safety. J Mater Chem B 2022; 10:4163-4171. [DOI: 10.1039/d2tb00678b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phase I-III clinical studies show that aldoxorubicin (AlDox), a prodrug of doxorubicin (Dox), displays superior cardiotocity over Dox, but does not demonstrate a survival benefit in the entire patients. Here...
Collapse
|
38
|
McMullen P, Qiao Q, Luozhong S, Cai L, Fang L, Shao Q, Jiang S. Motif-based zwitterionic peptides impact their structure and immunogenicity. Chem Sci 2022; 13:10961-10970. [PMID: 36320710 PMCID: PMC9491220 DOI: 10.1039/d2sc03519g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/30/2022] [Indexed: 12/18/2022] Open
Abstract
The linkage of zwitterionic peptides containing alternating glutamic acid (E) and lysine (K) amino acids exhibits protective effects on protein drugs due to their high hydration capacity. Previously, short EK peptides covering the surface of a protein drug showed significant protective effects and low immunogenicity. However, for high-molecular-weight single-chain (HMWSC) zwitterionic peptides, the incorporation of structure-disrupting amino acids such as proline (P), serine (S), and glycine (G) is necessary to improve their protective ability. Herein, we first probe the immunogenicity of eight EK-containing motif-based peptides, six of which incorporate structure-disrupting amino acids P, S, and G, linked to keyhole limpet hemocyanin (KLH). These studies uncover two sequence motifs, EKS and EKG, which show uniquely higher immunogenicity, while the other motifs, especially those containing P, exhibit lower immunogenicity. Additionally, the structure and dynamics of these sequence motifs are computationally modeled by Rosetta protein predictions and molecular dynamics (MD) simulations to predict properties of higher and lower immunogenicity peptides. These simulations revealed peptides with higher immunogenicity, namely EKS and EKG, exhibit regions of charge imbalance. Then, HMWSC zwitterionic sequences were linked to a typical protein drug, interferon-alpha 2a (IFN), which showed consistent immunogenic behaviors. Finally, epitope mapping and alanine scanning experiments using the serum collected from mice injected with HMWSC sequences also implicated a link between charge imbalance and peptide immunogenicity. Structure breaking amino acids, P, S, and G, are incorporated into low immunogenic unstructured zwitterionic peptide fusion proteins. We find unique sequence motifs that exhibit charge balanced conformations and low immunogenicity.![]()
Collapse
Affiliation(s)
- Patrick McMullen
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Qi Qiao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Sijin Luozhong
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lirong Cai
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Liang Fang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506, USA
| | - Shaoyi Jiang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: Immunological properties of nanomedicine's most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev 2022; 180:114079. [PMID: 34902516 PMCID: PMC8899923 DOI: 10.1016/j.addr.2021.114079] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/03/2023]
Abstract
Polyethylene glycol or PEG has a long history of use in medicine. Many conventional formulations utilize PEG as either an active ingredient or an excipient. PEG found its use in biotechnology therapeutics as a tool to slow down drug clearance and shield protein therapeutics from undesirable immunogenicity. Nanotechnology field applies PEG to create stealth drug carriers with prolonged circulation time and decreased recognition and clearance by the mononuclear phagocyte system (MPS). Most nanomedicines approved for clinical use and experimental nanotherapeutics contain PEG. Among the most recent successful examples are two mRNA-based COVID-19 vaccines that are delivered by PEGylated lipid nanoparticles. The breadth of PEG use in a wide variety of over the counter (OTC) medications as well as in drug products and vaccines stimulated research which uncovered that PEG is not as immunologically inert as it was initially expected. Herein, we review the current understanding of PEG's immunological properties and discuss them in the context of synthesis, biodistribution, safety, efficacy, and characterization of PEGylated nanomedicines. We also review the current knowledge about immunological compatibility of other polymers that are being actively investigated as PEG alternatives.
Collapse
Key Words
- Poly(ethylene)glycol, PEG, immunogenicity, immunology, nanomedicine, toxicity, anti-PEG antibodies, hypersensitivity, synthesis, drug delivery, biotherapeutics
Collapse
Affiliation(s)
- Da Shi
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA
| | - Damian Beasock
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Adam Fessler
- University of North Carolina Charlotte, Charlotte, NC, USA
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | | | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Frederick National Laboratory for Cancer Research Sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
40
|
Trital A, Xue W, Wang L, Chen S. Development of an Integrated High Serum Stability Zwitterionic Polypeptide-Based Nanodrug with Both Rapid Internalization and Endocellular Drug Releasing for Efficient Targeted Chemotherapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14015-14025. [PMID: 34812041 DOI: 10.1021/acs.langmuir.1c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic nanodrugs have to penetrate through many biological barriers before reaching the tumor cells. Thus, high stability of the nanocarrier before reaching tumor cells and fast release of the carried drugs in targeted tumor cells are required. In this work, inspired by the intrinsic zwitterionic surface property, mainly formed by glutamic acid and lysine residues, of the plasma protein surface, the zwitterionic poly(glutamyl lysine-co-aspartic acid-co-cysteine) peptide (P(EK-D-C)) was synthesized for conjugating n-mercaptoalkanoic acid (MA) with different chain lengths on cysteine residues through a disulfide linkage to load hydrophobic doxorubicin (DOX). The results showed that the slightly negative-biased zwitterionic nanodrugs were very stable in both resistance to nonspecific plasma protein adsorption and prevention of premature DOX release at physiological pH 7.4 due to the zwitterionic polypeptide shell and the sharp contrast in polarity between the shell and DOX-loaded core, while they can quickly release the loaded DOX through responding to both low pH values in the endosome/lysosome and high glutathione concentrations in the tumor cell cytoplasm. Furthermore, the enhanced internalization of these nanodrugs led to about 60% higher in vitro cytotoxicity against MCF-7 cells at pH 6.7 than at pH 7.4, whereas the in vitro cytotoxicity of DOX·HCl at pH 6.7 was only 75% of the value at pH 7.4. In vivo results revealed that the stable nanodrugs conjugated with the long hydrophobic 12-mercaptododecanoic acid had higher tumor inhibition rate and lower systematic toxicity on MCF-7 tumor-bearing mice than the less stable nanodrugs conjugated with the short 8-mercaptooctaoic acid and were significantly superior to DOX·HCl. These results indicate that the combination of high stability in circulation and fast release in tumor cells of nanodrugs can enhance high efficacy targeted chemotherapy. This pH/redox-sensitive zwitterionic polypeptide nanocarrier might provide an excellent vehicle for solid tumor treatment.
Collapse
Affiliation(s)
- Ashish Trital
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Weili Xue
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Longgang Wang
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou, Zhejiang 324000, China
| |
Collapse
|
41
|
Li G, Sun B, Zheng S, Xu L, Tao W, Zhao D, Yu J, Fu S, Zhang X, Zhang H, Zhai Y, Luo C, Ding H, He Z, Sun J. Zwitterion-Driven Shape Program of Prodrug Nanoassemblies with High Stability, High Tumor Accumulation, and High Antitumor Activity. Adv Healthc Mater 2021; 10:e2101407. [PMID: 34601824 DOI: 10.1002/adhm.202101407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Prodrug nanoassemblies have emerged as a promising platform for the delivery of anticancer drugs. PEGylation is a "gold standard" to improve colloidal stability and pharmacokinetics of nanomedicines. However, the clinical application of PEG materials is challenged by in vivo oxidative degradation and immunogenicity. Rational design of advanced biomaterials for the surface modification of nanomedicines is the hot spot of research. Here, a zwitterionic sulfobetaine surfactant is constructed as a novel surface modifier to coassemble with 10-hydroxycamptothecin-linoleic acid conjugate, with the classical PEGylated material as control. Interestingly, both the type and ratio of surfactants have profound impacts on the molecular mechanisms of the assembly of prodrugs, thereby affecting the pharmaceutical properties. Compared with PEGylated spherical prodrug nanoassemblies, zwitterion-modified prodrug nanoassemblies have distinct rod shape and superhydrophilic surface, and exhibit potent antitumor activity due to the combination of multiple advantages in terms of colloidal stability, cellular uptake, and pharmacokinetics. The findings illustrate the crucial role of zwitterionic surfactants as the surface modifier in the determination of in vivo fate of the prodrug nanoassemblies, and pave the way for the development of advanced nanomedicines.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Bingjun Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Shunzhe Zheng
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Lu Xu
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Wenhui Tao
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Dongyang Zhao
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Jiang Yu
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Shuwen Fu
- School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Xuanbo Zhang
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Haotian Zhang
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Yinglei Zhai
- School of Medical Device Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Cong Luo
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Huaiwei Ding
- School of Pharmaceutical and Engineering Shenyang Pharmaceutical University Shenyang Liaoning 110016 P. R. China
| | - Zhonggui He
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Jin Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|
42
|
Jeong Y, Jo YK, Kim MS, Joo KI, Cha HJ. Tunicate-Inspired Photoactivatable Proteinic Nanobombs for Tumor-Adhesive Multimodal Therapy. Adv Healthc Mater 2021; 10:e2101212. [PMID: 34626527 DOI: 10.1002/adhm.202101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Near-IR (NIR) light-responsive multimodal nanotherapeutics have been proposed to achieve improved therapeutic efficacy and high specificity in cancer therapy. However, their clinical application is still elusive due to poor biometabolization and short retention at the target site. Here, innovative photoactivatable vanadium-doped adhesive proteinic nanoparticles (NPs) capable of allowing biological photoabsorption and NIR-responsive anticancer therapeutic effects to realize trimodal photothermal-gas-chemo-therapy treatments in a highly biocompatible, site-specific manner are proposed. The photoactivatable tumor-adhesive proteinic NPs can enable efficient photothermal conversion via tunicate-inspired catechol-vanadium complexes as well as prolonged tumor retention by virtue of mussel protein-driven distinctive adhesiveness. The incorporation of a thermo-sensitive nitric oxide donor and doxorubicin into the photoactivatable adhesive proteinic NPs leads to synergistic anticancer therapeutic effects as a result of photothermal-triggered "bomb-like" multimodal actions. Thus, this protein-based phototherapeutic tumor-adhesive NPs have great potential as a spatiotemporally controllable therapeutic system to accomplish effective therapeutic implications for the complete ablation of cancer.
Collapse
Affiliation(s)
- Yeonsu Jeong
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Korea
| | - Yun Kee Jo
- Department of Biomedical Convergence Science and Technology School of Convergence Kyungpook National University Daegu 41566 Korea
- Cell and Matrix Research Institute Kyungpook National University Daegu 41566 Korea
| | - Mou Seung Kim
- Department of Biomedical Convergence Science and Technology School of Convergence Kyungpook National University Daegu 41566 Korea
| | - Kye Il Joo
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Korea
- Division of Chemical Engineering and Materials Science Ewha Womans University Seoul 03760 Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Korea
| |
Collapse
|
43
|
Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release 2021; 341:314-328. [PMID: 34838929 DOI: 10.1016/j.jconrel.2021.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Erythrocytes capture pathogens in circulation and present them to antigen-presenting cells (APCs) in the spleen. Senescent or apoptotic erythrocytes are physiologically eliminated by splenic APCs in a non-inflammatory manner as to not induce an immune reaction, while damaged erythrocytes tend to induce immune activation. The distinct characteristics of erythrocytes in their lifespan or different states inspire the design of targeting splenic APCs for vaccine delivery. Specifically, normal or damaged erythrocyte-driven immune targeting can induce antigen-specific immune activation, whereas senescent or apoptotic erythrocytes can be tailored to achieve antigen-specific immune tolerance. Recent studies have revealed the potential of erythrocyte-based vaccine delivery; however, there is still no in-depth review to describe the latest progress. This review summarizes the characteristics, different immune functions, and diverse vaccine delivery behaviors and biomedical applications of erythrocytes in different states. This review aims to contribute to the rational design and development of erythrocyte-based vaccine delivery systems for treating various infections, tumors, inflammatory diseases, and autoimmune diseases.
Collapse
|
44
|
Won C, Kwon C, Park K, Seo J, Lee T. Electronic Drugs: Spatial and Temporal Medical Treatment of Human Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005930. [PMID: 33938022 DOI: 10.1002/adma.202005930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in diagnostics and medicines emphasize the spatial and temporal aspects of monitoring and treating diseases. However, conventional therapeutics, including oral administration and injection, have difficulties meeting these aspects due to physiological and technological limitations, such as long-term implantation and a narrow therapeutic window. As an innovative approach to overcome these limitations, electronic devices known as electronic drugs (e-drugs) have been developed to monitor real-time body signals and deliver specific treatments to targeted tissues or organs. For example, ingestible and patch-type e-drugs could detect changes in biomarkers at the target sites, including the gastrointestinal (GI) tract and the skin, and deliver therapeutics to enhance healing in a spatiotemporal manner. However, medical treatments often require invasive surgical procedures and implantation of medical equipment for either short or long-term use. Therefore, approaches that could minimize implantation-associated side effects, such as inflammation and scar tissue formation, while maintaining high functionality of e-drugs, are highly needed. Herein, the importance of the spatial and temporal aspects of medical treatment is thoroughly reviewed along with how e-drugs use cutting-edge technological innovations to deal with unresolved medical challenges. Furthermore, diverse uses of e-drugs in clinical applications and the future perspectives of e-drugs are discussed.
Collapse
Affiliation(s)
- Chihyeong Won
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chaebeen Kwon
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kijun Park
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jungmok Seo
- Biological Interfaces and Sensor Systems Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- Nanobio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
45
|
Tully M, Hauptstein N, Licha K, Meinel L, Lühmann T, Haag R. Linear Polyglycerol for N-terminal-selective Modification of Interleukin-4. J Pharm Sci 2021; 111:1642-1651. [PMID: 34728175 DOI: 10.1016/j.xphs.2021.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 01/13/2023]
Abstract
Polymer conjugation to biologics is of key interest to the pharmaceutical industry for the development of potent and long acting biotherapeutics, with poly(ethylene glycol) (PEG) being the gold standard. Within the last years, unwanted PEG-related side effects (immunological reactions, antibody formation) arose, therefore creating several attempts to establish alternative polymers with similar potential to PEG. In this article, we synthesized N-terminal bioconjugates of the potential therapeutic human interleukin-4 (hIL-4 WT) with linear polyglycerol (LPG) of 10 and 40 kDa and compared it with its PEG analogs of same nominal weights. Polyglycerol is a highly hydrophilic polymer with good biocompatibility and therefore represents an alternative polymer to PEG. Both polymer types resulted in similar conjugation yields, comparable hydrodynamic sizes and an unaltered secondary structure of the protein after modification. LPG- and PEG-bioconjugates remained stable in human plasma, whereas binding to human serum albumin (HSA) decreased after polymer modification. Furthermore, only minor differences in bioactivity were observed between LPG- and PEG-bioconjugates of same nominal weights. The presented findings are promising for future pharmacokinetic evaluation of hIL-4-polymer bioconjugates.
Collapse
Affiliation(s)
- Michael Tully
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin Germany
| | - Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin Germany.
| |
Collapse
|
46
|
Talkington AM, McSweeney MD, Zhang T, Li Z, Nyborg AC, LaMoreaux B, Livingston EW, Frank JE, Yuan H, Lai SK. High MW polyethylene glycol prolongs circulation of pegloticase in mice with anti-PEG antibodies. J Control Release 2021; 338:804-812. [PMID: 34481925 DOI: 10.1016/j.jconrel.2021.08.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Pegloticase is an enzyme used to reduce serum uric acid levels in patients with chronic, treatment-refractory gout. Clinically, about 40% of patients develop high titers of anti-PEG antibodies (APA) after initial treatment, which in turn quickly eliminate subsequent doses of pegloticase from the systemic circulation and render the treatment ineffective. We previously found that pre-infusion with high MW free PEG (40 kDa) can serve as a decoy to saturate circulating APA, preventing binding to a subsequently administered dose of PEG-liposomes and restoring their prolonged circulation in mice, without any detectible toxicity. Here, we investigated the use of 40 kDa free PEG to restore the circulation of radio-labeled pegloticase in mice using longitudinal Positron Emission Tomography (PET) imaging over 4 days. Mice injected with pegloticase developed appreciable APA titers by Day 9, which further increased through Day 14. Compared to naïve mice, mice with pegloticase-induced APA rapidly cleared 89Zr-labeled pegloticase, with ~75% lower pegloticase concentrations in the circulation at four hours after treatment. The 96-h AUC in APA+ mice was less than 30% of the AUC in naïve mice. In contrast, pre-infusion of free PEG into PEG-sensitized mice restored the AUC of pegloticase to ~80% of that seen in naïve mice, resulting in a similar biodistribution to pegloticase in naïve mice over time. These results suggest that pre-infusion of free PEG may be a promising strategy to enable the safe and efficacious use of pegloticase and other PEGylated drugs in patients that have previously failed therapy due to induced APA.
Collapse
Affiliation(s)
- Anne M Talkington
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Morgan D McSweeney
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Tao Zhang
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Zibo Li
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC, Chapel Hill, USA
| | | | | | | | | | - Hong Yuan
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, UNC, Chapel Hill, USA
| | - Samuel K Lai
- Program in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Richter F, Leer K, Martin L, Mapfumo P, Solomun JI, Kuchenbrod MT, Hoeppener S, Brendel JC, Traeger A. The impact of anionic polymers on gene delivery: how composition and assembly help evading the toxicity-efficiency dilemma. J Nanobiotechnology 2021; 19:292. [PMID: 34579715 PMCID: PMC8477462 DOI: 10.1186/s12951-021-00994-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 02/02/2023] Open
Abstract
Cationic polymers have been widely studied for non-viral gene delivery due to their ability to bind genetic material and to interact with cellular membranes. However, their charged nature carries the risk of increased cytotoxicity and interaction with serum proteins, limiting their potential in vivo application. Therefore, hydrophilic or anionic shielding polymers are applied to counteract these effects. Herein, a series of micelle-forming and micelle-shielding polymers were synthesized via RAFT polymerization. The copolymer poly[(n-butyl acrylate)-b-(2-(dimethyl amino)ethyl acrylamide)] (P(nBA-b-DMAEAm)) was assembled into cationic micelles and different shielding polymers were applied, i.e., poly(acrylic acid) (PAA), poly(4-acryloyl morpholine) (PNAM) or P(NAM-b-AA) block copolymer. These systems were compared to a triblock terpolymer micelle comprising PAA as the middle block. The assemblies were investigated regarding their morphology, interaction with pDNA, cytotoxicity, transfection efficiency, polyplex uptake and endosomal escape. The naked cationic micelle exhibited superior transfection efficiency, but increased cytotoxicity. The addition of shielding polymers led to reduced toxicity. In particular, the triblock terpolymer micelle convinced with high cell viability and no significant loss in efficiency. The highest shielding effect was achieved by layering micelles with P(NAM-b-AA) supporting the colloidal stability at neutral zeta potential and completely restoring cell viability while maintaining moderate transfection efficiencies. The high potential of this micelle-layer-combination for gene delivery was illustrated for the first time.
Collapse
Affiliation(s)
- Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Katharina Leer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Prosper Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany.
| |
Collapse
|
48
|
Ceylan H, Dogan NO, Yasa IC, Musaoglu MN, Kulali ZU, Sitti M. 3D printed personalized magnetic micromachines from patient blood-derived biomaterials. SCIENCE ADVANCES 2021; 7:eabh0273. [PMID: 34516907 PMCID: PMC8442928 DOI: 10.1126/sciadv.abh0273] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While recent wireless micromachines have shown increasing potential for medical use, their potential safety risks concerning biocompatibility need to be mitigated. They are typically constructed from materials that are not intrinsically compatible with physiological environments. Here, we propose a personalized approach by using patient blood–derivable biomaterials as the main construction fabric of wireless medical micromachines to alleviate safety risks from biocompatibility. We demonstrate 3D printed multiresponsive microswimmers and microrollers made from magnetic nanocomposites of blood plasma, serum albumin protein, and platelet lysate. These micromachines respond to time-variant magnetic fields for torque-driven steerable motion and exhibit multiple cycles of pH-responsive two-way shape memory behavior for controlled cargo delivery and release applications. Their proteinaceous fabrics enable enzymatic degradability with proteinases, thereby lowering risks of long-term toxicity. The personalized micromachine fabrication strategy we conceptualize here can affect various future medical robots and devices made of autologous biomaterials to improve biocompatibility and smart functionality.
Collapse
Affiliation(s)
- Hakan Ceylan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Nihal Olcay Dogan
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Immihan Ceren Yasa
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Mirac Nur Musaoglu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| | - Zeynep Umut Kulali
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, 8092 Zürich, Switzerland
- School of Medicine and College of Engineering, Koç University, 34450 Istanbul, Turkey
- Corresponding author.
| |
Collapse
|
49
|
Bai Y, Jiang H, Zhang Y, Dou L, Liu M, Yu W, Wen K, Shen J, Ke Y, Yu X, Wang Z. Hydrophobic Moiety of Capsaicinoids Haptens Enhancing Antibody Performance in Immunoassay: Evidence from Computational Chemistry and Molecular Recognition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9957-9967. [PMID: 34410117 DOI: 10.1021/acs.jafc.1c03657] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We previously found that the immune response to haptens is positively correlated with molecular hydrophobicity. The antibodies used in immunoassays for capsaicinoids (CPCs) in waste oil suffer from low affinity and loose recognition to structural analogues. To address this issue, four new haptens (hapten1-4), maximally exposing the hydrophobic alkane chain (noncommon moiety of CPCs), were designed and expected to produce antibodies with high affinity and accurate recognition to CPCs based upon our findings. The assumption was first evidenced by computational chemistry and animal immunization successively. Compared with four reported haptens (hapten5-8) that expose the hydrophilic vanillyl amide moiety (common structure of CPCs and other vanillin alkaloids), antisera from hapten1-4 showed an approximately 1000-fold increase in affinity and significantly improved recognition profiles for CPCs. The molecular recognition study showed that the high affinity of the antibody from new haptens mainly originated from hydrophobic forces. An indirect competitive enzyme-linked immunosorbent assay based on a monoclonal antibody from hapten1 was developed and exhibited limits of detection as low as 0.73-3.29 μg/kg for four CPCs in oils and with insignificant cross-reactivities for other eight vanillin alkaloids, which have been never achieved in previous reports.
Collapse
Affiliation(s)
- Yuchen Bai
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hui Jiang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yingjie Zhang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Leina Dou
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Minggang Liu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Wenbo Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Kai Wen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yuebin Ke
- Key Laboratory of Molecular Epidemiology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 8 Longyuan Road, Nanshan District, Shenzhen City 518055, China
| | - Xuezhi Yu
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Zhanhui Wang
- Beijing Key Laboratory of Detection Technology for Animal Derived Food Safety, Beijing Laboratory for Food Quality and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
50
|
Shi L, Zhang J, Zhao M, Tang S, Cheng X, Zhang W, Li W, Liu X, Peng H, Wang Q. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. NANOSCALE 2021; 13:10748-10764. [PMID: 34132312 DOI: 10.1039/d1nr02065j] [Citation(s) in RCA: 264] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The rapid development of drug nanocarriers has benefited from the surface hydrophilic polymers of particles, which has improved the pharmacokinetics of the drugs. Polyethylene glycol (PEG) is a kind of polymeric material with unique hydrophilicity and electrical neutrality. PEG coating is a crucial factor to improve the biophysical and chemical properties of nanoparticles and is widely studied. Protein adherence and macrophage removal are effectively relieved due to the existence of PEG on the particles. This review discusses the PEGylation methods of nanoparticles and related techniques that have been used to detect the PEG coverage density and thickness on the surface of the nanoparticles in recent years. The molecular weight (MW) and coverage density of the PEG coating on the surface of nanoparticles are then described to explain the effects on the biophysical and chemical properties of nanoparticles.
Collapse
Affiliation(s)
- Liwang Shi
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd., Daqing 163319, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|