1
|
Geppert M, Jellinek K, Linseis M, Bodensteiner M, Geppert J, Unterlass MM, Winter RF. Dual Fluorescence and Phosphorescence Emissions from Dye-Modified ( NCN)-Bismuth Pincer Thiolate Complexes. Inorg Chem 2024; 63:14876-14888. [PMID: 39078292 PMCID: PMC11323247 DOI: 10.1021/acs.inorgchem.4c01023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the synthesis, characterization, and photophysical properties of four new dye-modified (NCN)Bi pincer complexes with two mercaptocoumarin or mercaptopyrene ligands. Their photophysical properties were probed by UV/vis spectroscopy, photoluminescence (PL) studies, and time-dependent density functional theory (TD-DFT) calculations. Absorption spectra of the complexes are dominated by mixed pyrene or coumarin π → π*/n(pS) → pyrene or coumarin π* transitions. While unstable toward reductive elimination of the corresponding disulfide under irradiation at room temperature, the complexes provide stable emissions at 77 K. Under these conditions, coumarin complexes 2 and 4 exhibit exclusively green phosphorescence at 508 nm. In contrast, the emissive properties of pyrene complexes 1 and 3 depend on the excitation wavelength and on sample concentration. Irradiation into the lowest-energy absorption band exclusively triggers red phosphorescence from the pyrenyl residues at 640 nm. At concentrations c < 1 μM, excitation into higher excited electronic states results in blue pyrene fluorescence. With increasing c (1-100 μM), the emission profile changes to dual fluorescence and phosphorescence emission, with a steady increase of the phosphorescence intensity, until at c ≥ 1 mM only red phosphorescence ensues. Progressive red-shifts and broadening of steady-state excitation spectra with increasing sample concentration suggest the presence of static excimers, as we observe it for concentrated solutions of pyrene. Crystalline and powdered samples of 1 indeed show intermolecular association through π-stacking. TD-DFT calculations on model dimers and a tetramer of 1 support the idea of aggregation-induced intersystem crossing (AI-ISC) as the underlying reason for this behavior.
Collapse
Affiliation(s)
- Marcel Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Kai Jellinek
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Jessica Geppert
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | | | - Rainer F. Winter
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
2
|
Dai W, Yang X, Lv K, Li L, Peng Y, Ma H, An Z. Modulating Heavy Atom Effect in Germylene for Persistent Room Temperature Phosphorescence. Chemistry 2024:e202401882. [PMID: 38820203 DOI: 10.1002/chem.202401882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
It is worth but still challenging to develop the low-valent main group compounds with persistent room temperature phosphorescence (pRTP). Herein, we presented germylene-based persistent phosphors by introduction of low-valent Ge center into chromophore. A novel phosphors CzGe and its series of derivatives, namely CzGeS, CzGeSe, CzGeAu, and CzGeCu, were synthesized. Experiments and theoretical calculations reveal that the pRTP behavior were "turn on" due to the heavy atom effect of germylene. More importantly, the low-valent of oxidation state and structural traits propelled GeCz had a balance between the intersystem crossing and the shortening of lifetime caused by the heavy atoms, resulting the ultralong lifetime of 309 ms and phosphorescent quantum efficiency of 15.84 %, which is remarkable among heavy main group phosphors. This research provides valuable insights to the design of heavy atoms in phosphors and expand the applications of germylene chemistry.
Collapse
Affiliation(s)
- Wen Dai
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiaoang Yang
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaiqi Lv
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Lei Li
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanbo Peng
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
3
|
Adachi Y, Terao S, Kanematsu Y, Ohshita J. Phosphorescence Properties of Boron/Bismuth Hybrid Conjugated Materials. Chem Asian J 2024; 19:e202301142. [PMID: 38426601 DOI: 10.1002/asia.202301142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
By introducing main-group elements such as boron and bismuth to π-conjugated systems, it is possible to modify the optical properties of π-conjugated materials through orbital interactions between the orbital on the elements and π/π*-orbitals, and the heavy atom effect. Moreover, bismuth, which is the heaviest stable element, induces a significant heavy atom effect, making organobismuth compounds promising for applications as phosphorescent materials. In this study, we synthesized new room-temperature phosphorescent materials by incorporating bismuth into thiophene units. The phosphorescence properties of these materials, such as emission lifetime and wavelength, could be further controlled by combining tricoordinate boron with the thienylbismuth structures. The synthesized bismuth- and boron-containing thiophene compounds exhibited phosphorescence at room temperature in both solution and solid states. Furthermore, the introduction of boron raised the energy of the triplet state in the π-conjugated system, resulting in a blue shift of the phosphorescence wavelength. The analysis of photoluminescence properties and TD-DFT calculations revealed that the introduction of bismuth enhances phosphorescence properties, whereas the introduction of boron further promotes intersystem crossing.
Collapse
Affiliation(s)
- Yohei Adachi
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Higashi-Hiroshima, 739-8527, Japan
| | - Shota Terao
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Higashi-Hiroshima, 739-8527, Japan
| | - Yusuke Kanematsu
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Higashi-Hiroshima, 739-8527, Japan
| | - Joji Ohshita
- Smart Innovation Program, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashihiroshima, Higashi-Hiroshima, 739-8527, Japan
- Division of Materials Model-Based Research, Digital Monozukuri (Manufacturing) Education and Research Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
4
|
Rottschäfer D, Reith S, Schwarzmann J, Tambornino F, Lichtenberg C. Cyclic Hydrocarbon Frameworks Containing Two Bismuth Atoms: Towards 9,10-Dibismaanthracene. Chemistry 2024; 30:e202303363. [PMID: 38116821 DOI: 10.1002/chem.202303363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
When bismuth atoms are incorporated into cyclic organic systems, this commonly goes along with strained or distorted molecular geometries, which can be exploited to modulate the physical and chemical properties of these compounds. In six-membered heterocycles, bismuth atoms are often accompanied by oxygen, sulfur or nitrogen as a second hetero-element. In this work, we present the first examples of six-membered rings, in which two CH units are replaced by BiX moieties (X=Cl, Br, I), resulting in dihydro-anthracene analogs. Their behavior in chemically reversible reduction reactions is explored, aiming at the generation of dibisma-anthracene (bismanthrene). Heterometallic compounds (Bi/Fe, Bi/Mn) are introduced as potential bismanthrene surrogates, as supported by bismanthrene-transfer to selenium. Analytical techniques used to investigate the reported compounds include NMR spectroscopy, high-resolution mass spectrometry, single-crystal X-ray diffraction analyses, and DFT calculations.
Collapse
Affiliation(s)
- Dennis Rottschäfer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Sascha Reith
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Johannes Schwarzmann
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Frank Tambornino
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35037, Marburg, Germany
| |
Collapse
|
5
|
Huang R, He Y, Wang J, Zou J, Wang H, Sun H, Xiao Y, Zheng D, Ma J, Yu T, Huang W. Tunable afterglow for mechanical self-monitoring 3D printing structures. Nat Commun 2024; 15:1596. [PMID: 38383670 PMCID: PMC10882007 DOI: 10.1038/s41467-024-45497-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024] Open
Abstract
Self-monitoring materials have promising applications in structural health monitoring. However, developing organic afterglow materials for self-monitoring is a highly intriguing yet challenging task. Herein, we design two organic molecules with a twisted donor-acceptor-acceptor' configuration and achieve dual-emissive afterglow with tunable lifetimes (86.1-287.7 ms) by doping into various matrices. Based on a photosensitive resin, a series of complex structures are prepared using 3D printing technology. They exhibit tunable afterglow lifetime and Young's Modulus by manipulating the photocuring time and humidity level. With sufficient photocuring or in dry conditions, a long-lived bright green afterglow without apparent deformation under external loading is realized. We demonstrate that the mechanical properties of complex 3D printing structures can be well monitored by controlling the photocuring time and humidity, and quantitively manifested by afterglow lifetimes. This work casts opportunities for constructing flexible 3D printing devices that can achieve sensing and real-time mechanical detection.
Collapse
Affiliation(s)
- Rongjuan Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Yunfei He
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Juan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jindou Zou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Hailan Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Haodong Sun
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yuxin Xiao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Dexin Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemistry Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemistry Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China.
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
6
|
Mears K, Nguyen GA, Ruiz B, Lehmann A, Nelson J, Fettinger JC, Tuononen HM, Power PP. Hydrobismuthation: Insertion of Unsaturated Hydrocarbons into the Heaviest Main Group Element Bond to Hydrogen. J Am Chem Soc 2024; 146:19-23. [PMID: 38164928 PMCID: PMC10786065 DOI: 10.1021/jacs.3c06535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
The bismuth hydride (2,6-Mes2H3C6)2BiH (1, Mes = 2,4,6-trimethylphenyl), which has a Bi-H 1H NMR spectroscopic signal at δ = 19.64 ppm, was reacted with phenylacetylene at 60 °C in toluene to yield [(2,6-Mes2C6H3)2BiC(Ph)=CH2] (2) after 15 min. Compound 2 was characterized by 1H, 13C NMR, and UV-vis spectroscopy, single crystal X-ray crystallography, and calculations employing density functional theory. Compound 2 is the first example of a hydrobismuthation addition product and displays Markovnikov regioselectivity. Computational methods indicated that it forms via a radical mechanism with an associated Gibbs energy of activation of 91 kJ mol-1 and a reaction energy of -90 kJ mol-1.
Collapse
Affiliation(s)
- Kristian
L. Mears
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Gia-Ann Nguyen
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Bronson Ruiz
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Annika Lehmann
- Department
of Chemistry, NanoScience Centre, University
of Jyväskylä, P.O. Box
35, FI-40140 Jyväskylä, Finland
| | - Jonah Nelson
- Department
of Chemistry, NanoScience Centre, University
of Jyväskylä, P.O. Box
35, FI-40140 Jyväskylä, Finland
- Department
of Chemistry, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada, T2N 1N4
| | - James C. Fettinger
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Heikki M. Tuononen
- Department
of Chemistry, NanoScience Centre, University
of Jyväskylä, P.O. Box
35, FI-40140 Jyväskylä, Finland
| | - Philip P. Power
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Sikora P, Naumann R, Förster C, Heinze K. Excited state energy landscape of phosphorescent group 14 complexes. Chem Sci 2023; 14:2489-2500. [PMID: 36908954 PMCID: PMC9993841 DOI: 10.1039/d2sc06984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Great progress has been achieved on phosphorescent or photoactive complexes of the Earth-abundant transition metals, while examples for phosphorescent heavy main group element complexes are rare, in particular for group 14 complexes in the oxidation state +II. The known compounds often show only weak phosphorescence with fast non-radiative deactivation. The underlying photophysical processes and the nature of the phosphorescent electronic states have remained essentially unexplored. The present combined photophysical and theoretical study on tin(ii) and lead(ii) complexes E(bpep) with the dianionic tridentate ligand bpep2- (E = Sn, Pb; H2bpep = 2-[1,1-bis(1H-pyrrol-2-yl)ethyl]pyridine) provides unprecedented insight in the excited state energy landscape of tetrel(ii) complexes. The tin complex shows green intraligand charge transfer (ILCT) phosphorescence both in solution and in the solid state. In spite of its larger heavy-atom effect, the lead complex only shows very weak red phosphorescence from a strongly distorted ligand-to-metal charge transfer (LMCT) state at low temperatures in the solid state. Detailed (TD-)DFT calculations explain these observations and delineate the major path of non-radiative deactivation via distorted LMCT states. These novel insights provide rational design principles for tetrel(ii) complexes with long-lived phosphorescence.
Collapse
Affiliation(s)
- Philipp Sikora
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Robert Naumann
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Christoph Förster
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Katja Heinze
- Johannes Gutenberg University Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
8
|
Dunaj T, Egorycheva M, Arebi A, Dollberg K, von Hänisch C. 2,6‐Di
iso
propylphenyl substituted Bismuth Halide and Interpnictogen Compounds. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Tobias Dunaj
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Marina Egorycheva
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Ahmed Arebi
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Kevin Dollberg
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Carsten von Hänisch
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften (WZMW) Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
9
|
Santos JL, de Souza GL. Probing the water hydrogen-bonding effects on the ground and low-lying excited states of phenanthroline isomers. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
10
|
Santos JL, Janegitz BC, de Oliveira MR, de Souza GL. Exploring the water hydrogen-bonding effects on the ground and low-lying excited states of serotonin. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Yee KY, Leung MP, Tse MH, Choy PY, Kwong FY. Palladium‐Catalyzed Direct C‐H Olefination of Polyfluoroarenes with Alkenyl Tosylates. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ka Yee Yee
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| | - Man Pan Leung
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| | - Man Ho Tse
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| | - Pui Ying Choy
- The Chinese University of Hong Kong Department of Chemistry HONG KONG
| | - Fuk Yee Kwong
- The Chinese University of Hong Kong Department of Chemistry G56, Science CentreThe Chinese University of Hong KongShatin, N.T. 852 Hong Kong HONG KONG
| |
Collapse
|
12
|
Inaba R, Oka K, Iwami T, Miyake Y, Tajima K, Imoto H, Naka K. Systematic Study of Pnictogen-Fused Heterofluorenes. Inorg Chem 2022; 61:7318-7326. [PMID: 35521780 DOI: 10.1021/acs.inorgchem.2c00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heteroatom-fused π-conjugated molecules have attracted considerable attention, and various elements for such fusion have been investigated. Herein, we focused on pnictogen-fused heterofluorenes. The structures, reactivity with O2 and I2, coordination ability to AuCl, and photophysical properties were systematically studied to better understand the effects of pnictogen atoms on the nature of π-conjugated molecules.
Collapse
Affiliation(s)
- Ryoto Inaba
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kouki Oka
- Center for Future Innovation (CFI) and Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Iwami
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yusuke Miyake
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kunihiko Tajima
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
13
|
Gowda AS, Lee TS, Rosko MC, Petersen JL, Castellano FN, Milsmann C. Long-Lived Photoluminescence of Molecular Group 14 Compounds through Thermally Activated Delayed Fluorescence. Inorg Chem 2022; 61:7338-7348. [PMID: 35507416 DOI: 10.1021/acs.inorgchem.2c00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photoluminescent molecules exploiting the sizable spin-orbit coupling constants of main group metals and metalloids to access long-lived triplet excited states are relatively rare compared to phosphorescent transition metal complexes. Here we report the synthesis of three air- and moisture-stable group 14 compounds E(MePDPPh)2, where E = Si, Ge, or Sn and [MePDPPh]2- is the doubly deprotonated form of 2,6-bis(5-methyl-3-phenyl-1H-pyrrol-2-yl)pyridine. In solution, all three molecules exhibit exceptionally long-lived triplet excited states with lifetimes in the millisecond range and show highly efficient photoluminescence (Φ ≤ 0.49) due to competing prompt fluorescence and thermally activated delayed fluorescence at and around room temperature. Temperature-dependent steady-state emission spectra and photoluminescent lifetime measurements provided conclusive evidence for the two distinct emission pathways. Picosecond transient absorption spectroscopy allowed further analysis of the intersystem crossing (ISC) between singlet and triplet manifolds (τISC = 0.25-3.1 ns) and confirmed the expected trend of increased ISC rates for the heavier elements in otherwise isostructural compounds.
Collapse
Affiliation(s)
- Anitha S Gowda
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Tia S Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
14
|
|
15
|
|
16
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox‐Active Heteroatom‐Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bruno T. Luppi
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Abhishek V. Muralidharan
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Nils Ostermann
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - I T. Cheong
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Michael J. Ferguson
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| | - Inke Siewert
- University of Goettingen Institute of Inorganic Chemistry Tammannstrasse 4 37077 Goettingen Germany
| | - Eric Rivard
- Department of Chemistry University of Alberta 11227 Saskatchewan Dr Edmonton Alberta T6G 2G2 Canada
| |
Collapse
|
17
|
Roy B, Maisuls I, Zhang J, Niemeyer FC, Rizzo F, Wölper C, Daniliuc CG, Tang BZ, Strassert CA, Voskuhl J. Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light. Angew Chem Int Ed Engl 2022; 61:e202111805. [PMID: 34693600 PMCID: PMC9299909 DOI: 10.1002/anie.202111805] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Indexed: 11/25/2022]
Abstract
We mapped the entire visible range of the electromagnetic spectrum and achieved white light emission (CIE: 0.31, 0.34) by combining the intrinsic ns-fluorescence with ultralong ms-phosphorescence from purely organic dual emitters. We realized small molecular materials showing high photoluminescence quantum yields (ΦL ) in the solid state at room temperature, achieved by active exploration of the regioisomeric substitution space. Chromophore stacking-supported stabilization of triplet excitons with assistance from enhanced intersystem crossing channels in the crystalline state played the primary role for the ultra-long phosphorescence. This strategy covers the entire visible spectrum, based on organic phosphorescent emitters with versatile regioisomeric substitution patterns, and provides a single molecular source of white light with long lifetime (up to 163.5 ms) for the phosphorescent component, and high overall photoluminescence quantum yields (up to ΦL =20 %).
Collapse
Affiliation(s)
- Bibhisan Roy
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Iván Maisuls
- Institut für Anorganische und Analytische ChemieCeNTech, CiMIC, SoNWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Jianyu Zhang
- Department of ChemistryHong Kong University of Science and Technology (HKUST)Clear water BayKowloonHong Kong
| | - Felix C. Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| | - Fabio Rizzo
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.)Corrensstraße 3648149MünsterGermany
- Institute of Chemical Science and Technologies “G. Natta” (SCITEC)National Research Council (CNR)Via G. Fantoli 16/1520138MilanItaly
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 5–745117EssenGermany
| | - Constantin G. Daniliuc
- Organisch Chemisches InstitutWestfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.)Corrensstraße 3648149MünsterGermany
| | - Ben Zhong Tang
- Department of ChemistryHong Kong University of Science and Technology (HKUST)Clear water BayKowloonHong Kong
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische ChemieCeNTech, CiMIC, SoNWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745117EssenGermany
| |
Collapse
|
18
|
Roy B, Maisuls I, Zhang J, Niemeyer FC, Rizzo F, Wölper C, Daniliuc CG, Tang BZ, Strassert CA, Voskuhl J. Mapping the Regioisomeric Space and Visible Color Range of Purely Organic Dual Emitters with Ultralong Phosphorescence Components: From Violet to Red Towards Pure White Light. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bibhisan Roy
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie CeNTech, CiMIC, SoN Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Jianyu Zhang
- Department of Chemistry Hong Kong University of Science and Technology (HKUST) Clear water Bay Kowloon Hong Kong
| | - Felix C. Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| | - Fabio Rizzo
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.) Corrensstraße 36 48149 Münster Germany
- Institute of Chemical Science and Technologies “G. Natta” (SCITEC) National Research Council (CNR) Via G. Fantoli 16/15 20138 Milan Italy
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 5–7 45117 Essen Germany
| | - Constantin G. Daniliuc
- Organisch Chemisches Institut Westfälische Wilhelms-Universität Münster (F.R. and C.G.D.) and SoN (F.R.) Corrensstraße 36 48149 Münster Germany
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong University of Science and Technology (HKUST) Clear water Bay Kowloon Hong Kong
| | - Cristian A. Strassert
- Institut für Anorganische und Analytische Chemie CeNTech, CiMIC, SoN Westfälische Wilhelms-Universität Münster Heisenbergstraße 11 48149 Münster Germany
| | - Jens Voskuhl
- Faculty of Chemistry (Organic Chemistry) and Center for NanoIntegration (CENIDE) University of Duisburg-Essen Universitätsstrasse 7 45117 Essen Germany
| |
Collapse
|
19
|
Heavy main group element containing organometallic phosphorescent materials. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Watson IC, Ferguson MJ, Rivard E. Zinc-Mediated Transmetalation as a Route to Anionic N-Heterocyclic Olefin Complexes in the p-Block. Inorg Chem 2021; 60:18347-18359. [PMID: 34738790 DOI: 10.1021/acs.inorgchem.1c02961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anionic N-heterocyclic olefins (aNHOs) are suited well for the stabilization of low-coordinate inorganic complexes, due to their steric tunability and strong σ- and π-electron donating abilities. In this study, the new two-coordinate zinc complex (MeIPrCH)2Zn (MeIPrCH = [(MeCNDipp)2C═CH]-, Dipp = 2,6-diisopropylphenyl) is shown to participate in a broad range of metathesis reactions with main group element-based halides and hydrides. In the case of the group 14 halides, Cl2E·dioxane (E = Ge and Sn), transmetalation occurs to form dinuclear propellane-shaped cations, [(MeIPrCHE)2(μ-Cl)]+, while the aNHO-capped phosphine ligand MeIPrCH-PPh2 is obtained when (MeIPrCH)2Zn is combined with ClPPh2. Lastly, ZnH2 elimination drives transmetalation between (MeIPrCH)2Zn and hydroboranes and hydroalumanes, leading to Lewis acidic aNHO-supported -boryl and -alane products.
Collapse
Affiliation(s)
- Ian C Watson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada, T6G 2G2
| |
Collapse
|
21
|
Sharutin VV, Poddel’sky AI, Sharutina OK. Organic Compounds of Bismuth: Synthesis, Structure, and Applications. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Luppi BT, Muralidharan AV, Ostermann N, Cheong IT, Ferguson MJ, Siewert I, Rivard E. Redox-Active Heteroatom-Functionalized Polyacetylenes. Angew Chem Int Ed Engl 2021; 61:e202114586. [PMID: 34826183 DOI: 10.1002/anie.202114586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/11/2022]
Abstract
The discovery of metallic conductivity in polyacetylene [-HC=CH-]n upon doping represents a landmark achievement. However, the insolubility of polyacetylene and a dearth of methods for its chemical modification have limited its widespread use. Here, we employ a ring-opening metathesis polymerization (ROMP) protocol to prepare functionalized polyacetylenes (fPAs) bearing: (1) electron-deficient boryl (-BR2 ) and phosphoryl (-P(O)R2 ) side chains; (2) electron-donating amino (-NR2 ) groups, and (3) ring-fused 1,2,3-triazolium units via strain-promoted Click chemistry. These functional groups render most of the fPAs soluble and can lead to intense light absorption across the visible to near-IR region. Also, the presence of redox-active boryl and amino groups leads to opposing near-IR optical responses upon (electro)chemical reduction or oxidation. Some of the resulting fPAs show greatly enhanced air stability when compared to known polyacetylenes. Lastly, these fPAs can be cross-linked to yield network materials with the full retention of optical properties.
Collapse
Affiliation(s)
- Bruno T Luppi
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Abhishek V Muralidharan
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Nils Ostermann
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - I T Cheong
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| | - Inke Siewert
- University of Goettingen, Institute of Inorganic Chemistry, Tammannstrasse 4, 37077, Goettingen, Germany
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
23
|
Bao Y. Controlling Molecular Aggregation-Induced Emission by Controlled Polymerization. Molecules 2021; 26:6267. [PMID: 34684848 PMCID: PMC8540238 DOI: 10.3390/molecules26206267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
In last twenty years, the significant development of AIE materials has been witnessed. A number of small molecules, polymers and composites with AIE activity have been synthesized, with some of these exhibiting great potential in optoelectronics and biomedical applications. Compared to AIE small molecules, macromolecular systems-especially well-defined AIE polymers-have been studied relatively less. Controlled polymerization methods provide the efficient synthesis of well-defined AIE polymers with varied monomers, tunable chain lengths and narrow dispersity. In particular, the preparation of single-fluorophore polymers through AIE molecule-initiated polymerization enables the systematic investigation of the structure-property relationships of AIE polymeric systems. Here, the main polymerization techniques involved in these polymers are summarized and the key parameters that affect their photophysical properties are analyzed. The author endeavored to collect meaningful information from the descriptions of AIE polymer systems in the literature, to find connections by comparing different representative examples, and hopes eventually to provide a set of general guidelines for AIE polymer design, along with personal perspectives on the direction of future research.
Collapse
Affiliation(s)
- Yinyin Bao
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
24
|
Kihara H, Imoto H, Naka K. Practical Syntheses and Luminescent Properties of Arene‐substituted Arsines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyota Kihara
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering Graduate School of Science and Technology Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
- Materials Innovation Lab Kyoto Institute of Technology Goshokaido-cho, Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| |
Collapse
|
25
|
Santos JL, de Souza GL. Water hydrogen-bonding effects on the ground and low-lying excited states of dipyridyl isomers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Yu HJ, Zhou Q, Dai X, Shen FF, Zhang YM, Xu X, Liu Y. Photooxidation-Driven Purely Organic Room-Temperature Phosphorescent Lysosome-Targeted Imaging. J Am Chem Soc 2021; 143:13887-13894. [PMID: 34410118 DOI: 10.1021/jacs.1c06741] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The construction of host-guest-binding-induced phosphorescent supramolecular assemblies has become one of increasingly significant topics in biomaterial research. Herein, we demonstrate that the cucurbit[8]uril host can induce the anthracene-conjugated bromophenylpyridinium guest to form a linear supramolecular assembly, thus facilitating the enhancement of red fluorescence emission by the host-stabilized charge-transfer interactions. When the anthryl group is photo-oxidized to anthraquinone, the obtained linear nanoconstructs can be readily converted into the homoternary inclusion complex, accompanied by the emergence of strong green phosphorescence in aqueous solution. More intriguingly, dual organelle-targeted imaging abilities have been also distinctively achieved in nuclei and lysosomes after undergoing photochemical reaction upon UV irradiation. This photooxidation-driven purely organic room-temperature phosphorescence provides a convenient and feasible strategy for supramolecular organelle identification to track specific biospecies and physiological events in the living cells.
Collapse
Affiliation(s)
- Hua-Jiang Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Qingyang Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Fang-Fang Shen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
27
|
Maurer LA, Pearce OM, Maharaj FDR, Brown NL, Amador CK, Damrauer NH, Marshak MP. Open for Bismuth: Main Group Metal-to-Ligand Charge Transfer. Inorg Chem 2021; 60:10137-10146. [PMID: 34181403 DOI: 10.1021/acs.inorgchem.0c03818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The synthesis, characterization, and photophysical properties of 4- and 6-coordinate Bi3+ coordination complexes are reported. Bi(bzq)3 (1) and [Bi(bzq)2]Br (2) (bzq = benzo[h]quinoline) are synthesized by reaction of 9-Li-bzq with BiCl3 and BiBr3, respectively. Absorption spectroscopy, electrochemistry, and DFT studies suggest that 1 has 42% Bi 6s character in its highest-occupied molecular orbital (HOMO) as a result of six σ* interactions with the bzq ligands. Excitation of 1 at 450 nm results in a broad emission feature at 520 nm, which is rationalized as a metal-to-ligand charge transfer (MLCT) and phosphorescent emission resulting from bismuth-mediated intersystem crossing (ISC) to a triplet excited state. This excited state revealed a 35 μs lifetime and was quenched in the presence of oxygen. These results demonstrate that useful optoelectronic properties of Bi3+ can be accessed through hypercoordination with covalent organobismuth interactions that mimic the electronic structure of lead perovskites.
Collapse
Affiliation(s)
- Laura A Maurer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Orion M Pearce
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Franklin D R Maharaj
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niamh L Brown
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Camille K Amador
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Niels H Damrauer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute, Boulder, Colorado 80309, United States
| | - Michael P Marshak
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Renewable and Sustainable Energy Institute, Boulder, Colorado 80309, United States
| |
Collapse
|
28
|
Xie Z, Zhang X, Wang H, Huang C, Sun H, Dong M, Ji L, An Z, Yu T, Huang W. Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nat Commun 2021; 12:3522. [PMID: 34112793 PMCID: PMC8192513 DOI: 10.1038/s41467-021-23742-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/15/2021] [Indexed: 02/05/2023] Open
Abstract
The rational lifetime-tuning strategy of ultralong organic phosphorescence is extraordinarily important but seldom reported. Herein, a series of multi-host/guest ultralong organic phosphorescence materials with dynamic lifetime-tuning properties were reported. By doping a non-room-temperature phosphorescence emitter into various solid host matrices with continuously reduced triplet energy levels, a wide-range lifetime (from 3.9 ms gradually to 376.9 ms) phosphorescence with unchangeable afterglow colors were realized. Further studies revealed that the host matrices were employed to afford rigid environment and proper energy levels to generate and stabilize the long-live triplet excitons. Meanwhile, these multi-host/guest ultralong organic phosphorescence materials also exhibited excitation-dependent phosphorescence and temperature-controlled afterglow on/off switching properties, according to the virtue of various photophysical and thermal properties of the host matrices. This work provides a guiding strategy to realize lifetime-tuning ultralong organic phosphorescence with lifetime-order encoding characteristic towards widespread applications in time-resolved information displaying, higher-level security protection, and dynamic multi-dimensional anti-counterfeiting.
Collapse
Affiliation(s)
- Zongliang Xie
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Xiayu Zhang
- grid.411431.20000 0000 9731 2422School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, P. R. China
| | - Hailan Wang
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Cheng Huang
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Haodong Sun
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Mengyang Dong
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Lei Ji
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Zhongfu An
- grid.412022.70000 0000 9389 5210Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Tao Yu
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China
| | - Wei Huang
- grid.440588.50000 0001 0307 1240Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi’an, China ,grid.412022.70000 0000 9389 5210Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China ,grid.453246.20000 0004 0369 3615Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
29
|
Ishijima K, Tanaka S, Imoto H, Naka K. 2,3-Diarylbenzo[b]arsole: Structural Modification and Polymerization for Tuning of Photophysical Properties. Chemistry 2021; 27:4676-4682. [PMID: 33415783 DOI: 10.1002/chem.202005001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Indexed: 11/09/2022]
Abstract
2,3-Diarylbenzo[b]arsoles were synthesized from zirconacycles and diiodophenylarsine. The structural modification to the luminophore was attained through diarylacetylene precursors, Suzuki-Miyaura coupling, and oxidation of the arsenic atom. The emission properties were controlled according to these modifications. The 2,3-diarylbenzo[b]arsoles showed aggregation-induced emission enhancement; the stronger emission was observed in the solid states than in solutions. In addition, Suzuki-Miyaura polycondensation and olefin metathesis polymerization produced main- and side-chain polymers, respectively. The resultant polymers showed different emission behaviors such as aggregation caused quenching and aggregation induced emission enhancement.
Collapse
Affiliation(s)
- Kosuke Ishijima
- Faculty of Molecular Chemistry and Engineering, Graduate School of, Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of, Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Graduate School of, Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of, Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
30
|
Matsumura M, Matsuhashi Y, Kawakubo M, Hyodo T, Murata Y, Kawahata M, Yamaguchi K, Yasuike S. Synthesis, Structural Characterization, and Optical Properties of Benzene-Fused Tetracyclic and Pentacyclic Stiboles. Molecules 2021; 26:molecules26010222. [PMID: 33406769 PMCID: PMC7795936 DOI: 10.3390/molecules26010222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/16/2023] Open
Abstract
The expectation that antimony (Sb) compounds should display phosphorescence emissions based on the “heavy element effect” prompted our interest in the introduction of antimony to a biaryl as the bridging atom in a fused heterole system. Herein, the synthesis, molecular structures, and optical properties of novel benzene-fused heteroacenes containing antimony or arsenic atoms are described. The stiboles and arsole were prepared by the condensation of dibromo(phenyl)stibane or dichloro(phenyl)arsine with dilithium intermediates derived from the corresponding dibromo compounds. Nuclear magnetic resonance (NMR) spectroscopy and X-ray crystal analysis revealed that the linear pentacyclic stibole was highly symmetric in both the solution and crystal states. In contrast, the curved pentacyclic stibole adopted a helical structure in solution, and surprisingly, only M helical molecules were crystallized from the racemate. All synthesized compounds produced very weak or no emissions at room temperature or in the solid state. In contrast, the linear penta- and tetracyclic stiboles exhibited clear phosphorescence emissions in the CHCl3 frozen matrix at 77 K under aerobic conditions.
Collapse
Affiliation(s)
- Mio Matsumura
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (M.M.); (Y.M.); (M.K.); (Y.M.)
| | - Yuki Matsuhashi
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (M.M.); (Y.M.); (M.K.); (Y.M.)
| | - Masato Kawakubo
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (M.M.); (Y.M.); (M.K.); (Y.M.)
| | - Tadashi Hyodo
- Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan; (T.H.); (M.K.); (K.Y.)
| | - Yuki Murata
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (M.M.); (Y.M.); (M.K.); (Y.M.)
| | - Masatoshi Kawahata
- Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan; (T.H.); (M.K.); (K.Y.)
| | - Kentaro Yamaguchi
- Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan; (T.H.); (M.K.); (K.Y.)
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; (M.M.); (Y.M.); (M.K.); (Y.M.)
- Correspondence: ; Tel.: +81-52-757-6774
| |
Collapse
|
31
|
Ma W, Xu L, Zhang S, Li G, Ma T, Rao B, Zhang M, He G. Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. J Am Chem Soc 2021; 143:1590-1597. [DOI: 10.1021/jacs.0c12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Sikun Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Tianyu Ma
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Bin Rao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
32
|
Cappello D, Watson AER, Gilroy JB. A Boron Difluoride Hydrazone (BODIHY) Polymer Exhibits Aggregation-Induced Emission. Macromol Rapid Commun 2020; 42:e2000553. [PMID: 33274808 DOI: 10.1002/marc.202000553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Indexed: 11/08/2022]
Abstract
Polymers that exhibit aggregation-induced emission (AIE) find use, for example, as cell-imaging agents and as fluorometric sensors due to their unique optical properties. However, the structural diversity of AIE-active polymers has not necessarily advanced at the same rate as their applications. In this work, ring-opening metathesis polymerization is used to synthesize the first example of a polymer (Mn = 61,600 g mol-1 , Đ = 1.32) containing boron difluoride hydrazone (BODIHY) heterocycles in its repeating unit. The BODIHY monomer and polymer described absorb and emit in the visible region in solution (λabs = 428 and 429 nm, λem = 528 and 526 nm) and as thin films (λabs = 443 and 440 nm, λem = 535 and 534 nm). Monomer (ΦFilm = 10%) and polymer (ΦFilm = 6%) exhibit enhanced emission as thin films compared to solution (ΦSoln ≤ 1%) as well as AIE upon the addition of water to DMF solutions as a result of restriction of intramolecular motion. Enhancement factors for the monomer and polymer are determined to be 58 and 15, respectively. The title BODIHY polymer exhibited an earlier onset of AIE and enhanced sensitivity to solution viscosity when compared to the parent monomer.
Collapse
Affiliation(s)
- Daniela Cappello
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Alexander E R Watson
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Joe B Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
33
|
Ishijima K, Tanaka S, Imoto H, Naka K. 2-Arylbenzo[ b]arsoles: an experimental and computational study on the relationship between structural and photophysical properties. Dalton Trans 2020; 49:15612-15621. [PMID: 32966454 DOI: 10.1039/d0dt02669g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzo[b]arsole derivatives, being arsenic analogues of indole, were synthesized by utilizing a safely prepared arsenic precursor. The structural and photophysical properties of the obtained 2-arylbenzo[b]arsoles were experimentally and computationally studied in comparison with those of 1,2,5-triarylarsoles and 9-phenylarsafluorene. It was found that the emission color and/or quantum yield were significantly affected by substituents on the luminescent center and metal-coordination to the arsenic atom. This is the first study on the structure-property relationship of benzo[b]arsole derivatives.
Collapse
Affiliation(s)
- Kosuke Ishijima
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. and Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Gashokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. and Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
34
|
Mendes RA, de Freitas RG, Brown A, de Souza GL. Exploring ground and low-lying excited states for diquat, paraquat, and dipyridyl isomers. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101278] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Li J, Wu P, Jiang W, Li B, Wang B, Zhu H, Roesky HW. An Unusual and Facile Synthetic Route to Alumoles. Angew Chem Int Ed Engl 2020; 59:10027-10031. [PMID: 32160361 PMCID: PMC7318123 DOI: 10.1002/anie.202000899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 12/13/2022]
Abstract
Reaction of the aluminum dialkynyl LAl(CCR)2 (L=N,N‐chelate ligand and R=organic group) with B(C6F5)3 proceeds through an intermediate with Al⋅⋅⋅η2‐C≡C side‐on coordination to form the alumoles (2, 4, 6). A distinctive reaction pattern indicates a new facile synthetic route to aluminum‐containing heterocycles. The synthetic process is described, and the characterization of compounds and computational calculations were carried out. Furthermore, alumoles 2 and 4 exhibit an aggregation‐induced emission (AIE) of the bright yellow fluorescence.
Collapse
Affiliation(s)
- Jiancheng Li
- State Key Laboratory of Physical Chemistry of Solid Surface, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surface, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350002, China
| | - Wenjun Jiang
- State Key Laboratory of Physical Chemistry of Solid Surface, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Bin Li
- State Key Laboratory of Physical Chemistry of Solid Surface, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surface, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Herbert W Roesky
- Institüt für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| |
Collapse
|
37
|
Li J, Wu P, Jiang W, Li B, Wang B, Zhu H, Roesky HW. An Unusual and Facile Synthetic Route to Alumoles. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiancheng Li
- State Key Laboratory of Physical Chemistry of Solid SurfaceNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid SurfaceNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of Science Fuzhou Fujian 350002 China
| | - Wenjun Jiang
- State Key Laboratory of Physical Chemistry of Solid SurfaceNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Bin Li
- State Key Laboratory of Physical Chemistry of Solid SurfaceNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid SurfaceNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Hongping Zhu
- State Key Laboratory of Physical Chemistry of Solid SurfaceNational Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-EstersCollege of Chemistry and Chemical EngineeringXiamen University Xiamen Fujian 361005 China
| | - Herbert W. Roesky
- Institüt für Anorganische ChemieUniversität Göttingen Tammannstrasse 4 37077 Göttingen Germany
| |
Collapse
|
38
|
Mackenzie HK, Rawe BW, Samedov K, Walsgrove HTG, Uva A, Han Z, Gates DP. A Smart Phosphine–Diyne Polymer Displays “Turn-On” Emission with a High Selectivity for Gold(I/III) Ions. J Am Chem Soc 2020; 142:10319-10324. [DOI: 10.1021/jacs.0c04330] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Harvey K. Mackenzie
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Benjamin W. Rawe
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Kerim Samedov
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Henry T. G. Walsgrove
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Azalea Uva
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Zeyu Han
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| | - Derek P. Gates
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
39
|
Deka R, Sarkar A, Butcher RJ, Junk PC, Turner DR, Deacon GB, Singh HB. Isolation of Homoleptic Dicationic Tellurium and Monocationic Bismuth Analogues of Non-N-Heterocyclic Carbene Derivatives. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rajesh Deka
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, United States
| | - Peter C. Junk
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- College of Science & Engineering, James Cook University, Townsville 4811, QLD, Australia
| | - David R. Turner
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Glen B. Deacon
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Harkesh B. Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IITB-Monash Research Academy, Powai, Mumbai 400076, India
| |
Collapse
|
40
|
Filho AHDS, de Souza GLC. Examining the degradation of environmentally-daunting per- and poly-fluoroalkyl substances from a fundamental chemical perspective. Phys Chem Chem Phys 2020; 22:17659-17667. [DOI: 10.1039/d0cp02445g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, ground and excited-state properties were used as descriptors for probing mechanisms as well as to assess potential alternatives for tackling the elimination of per- and poly-fluoroalkyl substances (PFAS).
Collapse
Affiliation(s)
| | - Gabriel L. C. de Souza
- Departamento de Química
- Universidade Federal de Mato Grosso
- Cuiabá
- Brazil
- Department of Chemistry
| |
Collapse
|
41
|
|
42
|
Motta RM, Santos FB, da Silva SC, de Souza GL. Examining NO releasing prospects from a fundamental chemical perspective. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Rivard E. Metallacycle Transfer and its Link to Light-Emitting Materials and Conjugated Polymers. CHEM REC 2019; 20:640-648. [PMID: 31833670 DOI: 10.1002/tcr.201900095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/26/2019] [Indexed: 02/05/2023]
Abstract
Major advances in optoelectronic technologies (e. g., solar cells, organic light-emitting diodes, etc…) are prefaced by the discovery of new synthetic methodologies. In this review, the key role of the Fagan-Nugent reaction in enabling our team (and others) to gain access to new building blocks for luminescent materials and conjugated polymers bearing p-block elements will be described. The Fagan-Nugent reaction is extremely powerful as a synthetic tool since the efficient zirconium-element atom exchange involved affords a wide range of unsaturated inorganic heterocycles of controllable composition and function.
Collapse
Affiliation(s)
- Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
44
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Dang D, Zhang H, Xu Y, Xu R, Wang Z, Kwok RTK, Lam JWY, Zhang L, Meng L, Tang BZ. Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS NANO 2019; 13:11863-11873. [PMID: 31584798 DOI: 10.1021/acsnano.9b05914] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Organic fluorophores for stimulated emission depletion (STED) nanoscopy usually suffer from quenched emission in the aggregate state and inferior photostability, which largely limit their application in real-time, in situ, and long-term imaging at an ultrahigh resolution. Herein, an aggregation-induced emission (AIE) luminogen of DP-TBT with bright emission in solid state (photoluminescence quantum yields = 25%) and excellent photostability was designed to meet the requirements in STED nanoscopy. In addition to its excellent fluorescence properties, DP-TBT could also easily form self-assembling helixes and finally be well-visualized by super-resolution STED nanoscopy. The observations showed that helical fibers of DP-TBT as dashed lines had a much decreased fiber width with also a full width at half-maximum value of only 178 nm, which is ∼6 times higher than solid lines obtained by confocal microscopy (1154 nm). The STED nanoscopic data were also used to reconstruct 3D images of assembled helixes. Finally, by long-term tracking and dynamic monitoring, the formation and growth of helical fibers by DP-TBT in self-assembly processes were successfully obtained. These findings imply that highly emissive AIEgens with good photostability are highly suitable for real-time, in situ, and dynamic imaging at super-resolution using STED nanoscopy.
Collapse
Affiliation(s)
- Dongfeng Dang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Haoke Zhang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Yanzi Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ruohan Xu
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Zhi Wang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ryan T K Kwok
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Jacky W Y Lam
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| | - Lei Zhang
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Lingjie Meng
- School of Science, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter , Xi'an Jiao Tong University , Xi'an 710049 , People's Republic of China
| | - Ben Zhong Tang
- Department of Chemistry , The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon 999077 , Hong Kong , People's Republic of China
| |
Collapse
|
46
|
Parke SM, Tanaka S, Yu H, Hupf E, Ferguson MJ, Zhou Y, Naka K, Rivard E. Highly Fluorescent Benzophosphole Oxide Block-Copolymer Micelles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sarah M. Parke
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Susumu Tanaka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Haoyang Yu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Emanuel Hupf
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Michael J. Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
47
|
Hupf E, Tsuchiya Y, Moffat W, Xu L, Hirai M, Zhou Y, Ferguson MJ, McDonald R, Murai T, He G, Rivard E. A Modular Approach to Phosphorescent π-Extended Heteroacenes. Inorg Chem 2019; 58:13323-13336. [PMID: 31503465 DOI: 10.1021/acs.inorgchem.9b02213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A modular route to previously inaccessible classes of ring-fused π-extended heteroacenes bearing the heavy inorganic element tellurium (Te) is presented. These new materials can be viewed as n-doped analogs of molecular graphene subunits that exhibit color tunable visible light phosphorescence in the solid state and in the presence of air. The general mechanism of phosphorescence in these systems was probed experimentally and computationally via time-dependent density functional theory (TD-DFT). The incorporation of Te into π-extended oligoacene frameworks was achieved by an efficient Zr/Te transmetalation protocol; related zirconium-element exchange reactions have been used to prepare both electron-rich and electron-deficient heterocycles containing different elements from throughout the p-block. Therefore, the current study provides a clear path to incorporate inorganic elements into heteroacenes of greater complexity and side group selectivity compared to existing synthetic routes.
Collapse
Affiliation(s)
- Emanuel Hupf
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Yuki Tsuchiya
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada.,Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido , Gifu 501-1193 , Japan
| | - Wayne Moffat
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Letian Xu
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi Province 710054 , China
| | - Masato Hirai
- Department of Chemistry, Graduate School of Science, Institute of Transformative Bio-Molecules (WPI-ITbM), and Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Furo, Chikusa, Nagoya 464-8602 , Japan
| | - Yuqiao Zhou
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Michael J Ferguson
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Robert McDonald
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering , Gifu University , Yanagido , Gifu 501-1193 , Japan
| | - Gang He
- Frontier Institute of Science and Technology , Xi'an Jiaotong University , Xi'an , Shaanxi Province 710054 , China
| | - Eric Rivard
- Department of Chemistry , University of Alberta , 11227 Saskatchewan Drive , Edmonton , Alberta T6G 2G2 , Canada
| |
Collapse
|
48
|
Zhang ZY, Liu Y. Ultralong room-temperature phosphorescence of a solid-state supramolecule between phenylmethylpyridinium and cucurbit[6]uril. Chem Sci 2019; 10:7773-7778. [PMID: 31588325 PMCID: PMC6764277 DOI: 10.1039/c9sc02633a] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022] Open
Abstract
Long-lived organic room-temperature phosphorescence (RTP) has received great attention because of its various potential applications. Herein, we report a persistent RTP of a solid-state supramolecule between a cucurbit[6]uril (CB[6]) host and a heavy-atom-free phenylmethylpyridinium guest. Significantly, the long-lived phosphorescence completely depends on the host-guest complexation, revealing that the non-phosphorescent guest exhibits a 2.62 s ultralong lifetime after being complexed by CB[6] under ambient conditions. The ultralong RTP is because of tight encapsulation of CB[6], which boosts intersystem crossing, suppresses nonradiative relaxation and possibly shields quenchers. Moreover, several phosphorescent complexes possessing different lifetimes are prepared and successfully applied in triple lifetime-encoding for data encryption and anti-counterfeiting. This strategy provides a new insight for realizing purely organic RTP with ultralong lifetime and expands its application in the field of information protection.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Department of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| | - Yu Liu
- Department of Chemistry , State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin 300071 , P. R. China .
| |
Collapse
|
49
|
Braun CA, Martinek N, Zhou Y, Ferguson MJ, Rivard E. Using boryl-substitution and improved Suzuki-Miyaura cross-coupling to access new phosphorescent tellurophenes. Dalton Trans 2019; 48:10210-10219. [PMID: 31192334 DOI: 10.1039/c9dt02095k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new di(isopropoxy)boryl -B(OiPr)2 tellurophene precursor is described, from which several previously inaccessible phosphorescent borylated tellurophenes are formed via exchange of the -OiPr groups. One such tellurophene Mes(iPrO)B-Te-6-B(OiPr)Mes, bearing a sterically encumbered mesityl (Mes) substituent at each boron center, exhibits bright yellow-orange phosphorescence in the solid state at room temperature and in the presence of the known quencher O2. Furthermore, Suzuki-Miyaura cross-coupling between the newly prepared borylated tellurophenes and the test substrate 2-bromothiophene was examined with the pre-catalyst Cl(XPhos)Pd(aminobiphenyl). While more electron deficient boryl groups such as catecholatoboryl (-Bcat) yield significant protodeboronation in place of productive C-C bond formation, efficient formation of the desired thiophene-capped tellurophene thienyl-Te-6-thienyl was noted from tellurophenes bearing the readily accessible pinacolatoboryl (-Bpin) and 1,8-naphthalenediaminatoboryl (-Bdan) functional groups. These findings open the door for the efficient synthesis of aryl tellurophenes and polytellurophenes via the ubiquitous Suzuki-Miyaura coupling of borylated tellurophenes, which was previously hampered by protodeboronation.
Collapse
Affiliation(s)
- Christina A Braun
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Nicole Martinek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Yuqiao Zhou
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Michael J Ferguson
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| | - Eric Rivard
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr, Edmonton, Alberta, Canada T6G 2G2.
| |
Collapse
|
50
|
Takahashi K, Shimo S, Hupf E, Ochiai J, Braun CA, Torres Delgado W, Xu L, He G, Rivard E, Iwasawa N. Self‐Assembly of Macrocyclic Boronic Esters Bearing Tellurophene Moieties and Their Guest‐Responsive Phosphorescence. Chemistry 2019; 25:8479-8483. [DOI: 10.1002/chem.201901319] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Kohei Takahashi
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Shunsuke Shimo
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Emanuel Hupf
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Junichi Ochiai
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| | - Christina A. Braun
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - William Torres Delgado
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Letian Xu
- Frontier Institute of Science and TechnologyXi'an Jiaotong University Xian Shaanxi Province 710054 P.R. China
| | - Gang He
- Frontier Institute of Science and TechnologyXi'an Jiaotong University Xian Shaanxi Province 710054 P.R. China
| | - Eric Rivard
- Department of ChemistryUniversity of Alberta 11227 Saskatchewan Dr. Edmonton Alberta T6G 2G2 Canada
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|