1
|
Zhao L, Yang J, Yan K, Cheng X, Xiao Z, Wen J. Electrochemistry-enabled Ir-catalyzed C-H/N-N bond activation facilitates [3+2] annulation of phenidones with propiolates. Chem Commun (Camb) 2025; 61:2079-2082. [PMID: 39791194 DOI: 10.1039/d4cc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A mild and efficient [3+2] annulation of phenidones with propiolates has been developed to access N-substituted indole alkylamides, enabled by merging electrochemistry with iridium catalysis using an undivided cell at room temperature. The mechanistic studies have confirmed that the electrochemically mediated catalytic cycle of IrI-IrIII-IrV exhibits enhanced efficiency, mild reaction conditions, and unconventional selectivity.
Collapse
Affiliation(s)
- LuLu Zhao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Jianjing Yang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Xingda Cheng
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Ziyang Xiao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.
| |
Collapse
|
2
|
Wang YR, Yue M, Liu G, Zhang JL, Li Q, Shi JW, Weng JY, Li RH, Chen Y, Li SL, Lan YQ. Solid-Liquid-Gas Three-Phase Indirect Electrolysis Enabled by Affinity Auxiliary Imparted Covalent Organic Frameworks. Angew Chem Int Ed Engl 2025; 64:e202413030. [PMID: 39313470 DOI: 10.1002/anie.202413030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
The design of efficient heterogeneous redox mediators with favorable affinity to substrate and electrolyte are much desired yet still challenging for the development of indirect electrolysis system. Herein, for the first time, we have developed a solid-liquid-gas three-phase indirect electrolysis system based on a covalent organic framework (Dha-COF-Cu) as heterogeneous redox mediator for S-S coupling reaction. Dha-COF-Cu with the integration of high porosity, nanorod morphology, abundant hydroxyl groups and active Cu sites is much beneficial for the adsorption/activation of thiols, uniform dispersion and high wettability in electrolyte, and efficient interfacial electron transfer. Notably, Dha-COF-Cu as solid-phase redox mediator exhibits excellent electrocatalytic efficiency for the formation of value-added liquid-phase S-S bond product (yields up to 99 %) coupling with the generation of gas-phase product of H2 (~1.40 mmol g-1 h-1), resulting in a powerful three-phase indirect electrolysis system. This is the first work about COFs that can be applied in three-phase indirect electrolysis system, which might promote the development of porous crystalline materials in this field.
Collapse
Affiliation(s)
- Yi-Rong Wang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ming Yue
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Gang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), 266580, Qingdao, Shandong, P. R. China
| | - Jia-Li Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jing-Wen Shi
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Jia-Yong Weng
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Run-Han Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Yifa Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shun-Li Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| |
Collapse
|
3
|
Xiao F, Xu X, Zhang J, Chen X, Ruan X, Wei Q, Zhang X, Huang Q. Rhodaelectro-Catalyzed Synthesis of Pyrano[3,4- b]indol-1(9 H)-ones via the Double Dehydrogenative Heck Reaction between Indole-2-carboxylic Acids and Alkenes. J Org Chem 2024; 89:17550-17561. [PMID: 39531595 DOI: 10.1021/acs.joc.4c02271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A rhodaelectro-catalyzed double dehydrogenative Heck reaction of indole-2-carboxylic acids with alkenes has been developed for the synthesis of pyrano[3,4-b]indol-1(9H)-ones. The weakly coordinating carboxyl group is utilized twice as a directing group to activate the C-H bonds throughout the reaction. This reaction precedes an acceptorless dehydrogenation under exogenous oxidant-free conditions in an undivided cell with a constant current.
Collapse
Affiliation(s)
- Fengyi Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xinlu Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Jiaqi Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xin Ruan
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qi Wei
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
4
|
Kushwaha P, Saxena A, von Münchow T, Dana S, Saha B, Ackermann L. Metallaelectro-catalyzed alkyne annulations via C-H activations for sustainable heterocycle syntheses. Chem Commun (Camb) 2024; 60:12333-12364. [PMID: 39370984 PMCID: PMC11456994 DOI: 10.1039/d4cc03871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Alkyne annulation represents a versatile and powerful strategy for the assembly of structurally complex compounds. Recent advances successfully enabled electrocatalytic alkyne annulations, significantly expanding the potential applications of this promising technique towards sustainable synthesis. The metallaelectro-catalyzed C-H activation/annulation stands out as a highly efficient approach that leverages electricity, combining the benefits of electrosynthesis with the power of transition-metal catalyzed C-H activation. Particularly attractive is the pairing of the electro-oxidative C-H activation with the valuable hydrogen evolution reaction (HER), thereby addressing the growing demand for green energy solutions. Herein, we provide an overview of the evolution of electrochemical C-H annulations with alkynes for the construction of heterocycles, with a topical focus on the underlying mechanism manifolds.
Collapse
Affiliation(s)
- Preeti Kushwaha
- Amity Institute of Click chemistry Research & Studies, Amity University, Noida, 201303, Uttar Pradesh, India
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Tristan von Münchow
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Suman Dana
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, 201303, Uttar Pradesh, India.
| | - Lutz Ackermann
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
5
|
Li Y, Xu J, Oliveira JC, Scheremetjew A, Ackermann L. Electrochemical Enantioselective C-H Annulation by Achiral Rhodium(III)/Chiral Brønsted Base Domino Catalysis. ACS Catal 2024; 14:8160-8167. [PMID: 38868099 PMCID: PMC11165455 DOI: 10.1021/acscatal.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Rhodium(III)-catalyzed enantioselective C-H activation has emerged as a powerful tool for assembling enabling chiral molecules. However, this approach is significantly hampered by the cumbersome synthetic routes for preparing chiral rhodium catalysts. In sharp contrast, we herein report on an electrochemical domino catalysis system that exploits an achiral Cp*-rhodium catalyst along with an easily accessible chiral Brønsted base for an enantioselective C-H activation/annulation reaction of alkenes by benzoic acids. Our strategy offers an environmentally benign and most user-friendly approach for assembling synthetically useful chiral phthalides in good enantioselectivity, employing electricity as the sustainable oxidant.
Collapse
Affiliation(s)
- Yanjun Li
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiawei Xu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Trienes S, Xu J, Ackermann L. Photoinduced C-H arylation of 1,3-azoles via copper/photoredox dual catalysis. Chem Sci 2024; 15:7293-7299. [PMID: 38756807 PMCID: PMC11095366 DOI: 10.1039/d4sc00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
The visible light-induced C-H arylation of azoles has been accomplished by dual-catalytic system with the aid of an inexpensive ligand-free copper(i)-catalyst in combination with a suitable photoredox catalyst. An organic photoredox catalyst, 10-phenylphenothiazine (PTH), was identified as effective, cost-efficient and environmentally-benign alternative to commonly-used, expensive Ir(iii)-based complexes. The method proved applicable for the C-H arylation of various azole derivatives, including oxazoles, benzoxazoles, thiazoles, benzothiazoles as well as more challenging imidazoles and benzimidazoles. Moreover, the derivatization of complex molecules and the gram scale synthesis of the natural product balsoxin reflected the synthetic utility of the developed strategy. Mechanistic studies were indicative of a single electron transfer-based (SET) mechanism with an aryl radical as key intermediate.
Collapse
Affiliation(s)
- Sven Trienes
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Potsdamer Straße 58 10875 Berlin Germany
| | - Jiawei Xu
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Tammannstraße 2 37077 Göttingen Germany
- DZHK (German Centre for Cardiovascular Research) Potsdamer Straße 58 10875 Berlin Germany
| |
Collapse
|
7
|
Lin Z, Oliveira JC, Scheremetjew A, Ackermann L. Palladium-Catalyzed Electrooxidative Double C-H Arylation. J Am Chem Soc 2024; 146:228-239. [PMID: 38150013 PMCID: PMC10785825 DOI: 10.1021/jacs.3c08479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/28/2023]
Abstract
The electrochemical transition metal-catalyzed cross-dehydrogenative reaction has emerged as a promising platform to achieve a sustainable and atom-economic organic synthesis that avoids hazardous oxidants and minimizes undesired byproducts and circuitous functional group operations. However, a poor mechanistic understanding still prevents the widespread adoption of this strategy. In this regard, we herein present an electrochemical palladium-catalyzed oxidative coupling strategy to access biaryls in the absence of a stoichiometric chemical oxidant. The robust palladaelectrocatalysis considerably suppresses the occurrence of homocoupling and oxygenation, being compatible even with electron-deficient arenes. Late-stage functionalization and Boscalid precursor synthesis further highlighted the practical importance of our electrolysis. Remarkably, mechanistic studies including the evaluation of the reaction order of each component by variable time normalization analysis (VTNA) and initial rate analysis, H/D exchange experiment, kinetic isotope effect, and stoichiometric organometallic experiments provided strong support for the involvement of transmetalation between two organopalladium complexes in the turnover limiting step. Therefore, matching the concentrations or lifetimes of two distinct organopalladium intermediates is revealed to be a pivot to the success of electrooxidative catalysis. Moreover, the presence of cationic copper(II) seems to contribute to the stabilization of the palladium(0) catalyst instead of playing a role in the oxidation of the catalyst.
Collapse
Affiliation(s)
- Zhipeng Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Wöhler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
8
|
Zhang J, Xu W, Zhuang W, Chen X, Zhang X, Huang Q. Rhodaelectro-Catalyzed Decarboxylative Cross-Dehydrogenative Coupling of Indole-3-carboxylic Acids and Olefins via Weakly Coordinating Carboxyl Groups. J Org Chem 2023; 88:15198-15208. [PMID: 37863844 DOI: 10.1021/acs.joc.3c01690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
A rhodaelectro-catalyzed C2-H selectively decarboxylative alkenylation of 3-carboxy-1H-indoles employing electricity as the traceless terminal oxidant has been accomplished. The weakly coordinating carboxyl group serves as the traceless directing groups. External oxidant-free in an undivided cell with constant current in aqueous solution ensures the decarboxylative C-H alkenylation to be viable and sustainable.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weijie Xu
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Weihui Zhuang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Ximan Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Xiaofeng Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Qiufeng Huang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| |
Collapse
|
9
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
10
|
Liu G, Chen Y, Chen Y, Shi Y, Zhang M, Shen G, Qi P, Li J, Ma D, Yu F, Huang X. Indirect Electrocatalysis S─N/S─S Bond Construction by Robust Polyoxometalate Based Foams. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304716. [PMID: 37392073 DOI: 10.1002/adma.202304716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/02/2023]
Abstract
Indirect electrocatalytic conversion of cheap organic raw materials via the activation of S─H and N─H bonds into the value-added S─N/S─S bonds chemicals for industrial rubber production is a promising strategy to realize the atomic economic reaction, during which the kinetic inhibition that is associated with the electron transfer at the electrode/electrolyte interface in traditional direct electrocatalysis can be eliminated to achieve higher performance. In this work, a series of di-copper-substituted phosphotungstatebased foams (PW10 Cu2 @CMC) are fabricated with tunable loadings (17 to 44 wt%), which can be successfully applied in indirect electrocatalytic syntheses of sulfenamides and disulfides. Specifically, the optimal PW10 Cu2 @CMC (44 wt%) exhibits excellent electrocatalytic performance for the construction of S─N/S─S bonds (yields up to 99%) coupling with the efficient production of H2 (≈50 µmol g-1 h-1 ). Remarkably, it enables the scale-up production (≈14.4 g in a batch experiment) and the obtained products can serve as rubber vulcanization accelerators with superior properties to traditional industrial rubber additives in real industrial processes. This powerful catalysis system that can simultaneously produce rubber vulcanization accelerator and H2 may inaugurate a new electrocatalytic avenue to explore polyoxometalate-based foam catalysts in electrocatalysis field.
Collapse
Affiliation(s)
- Gang Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yulu Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yanqi Shi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Meiyu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Guodong Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Pengfei Qi
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| | - Jikun Li
- College of Chemistry and Chemical Engineering, Taishan University, Tai'an, Shandong, 271021, P. R. China
| | - Delong Ma
- National Rubber Additive Engineering Technology Center, Liaocheng, Shandong, 252059, P. R. China
| | - Fei Yu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
| |
Collapse
|
11
|
Changmai S, Sultana S, Saikia AK. Review of electrochemical transition‐metal‐catalyzed C−H functionalization reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology 785006 Jorhat India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | | | - Anil K. Saikia
- Indian Institute of Technology-Guwahati Department of Chemistry Guwahati 781039 Assam India
| |
Collapse
|
12
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
13
|
Hong JE, Yoon J, Baek W, Kim K, Kwak JH, Park Y. Electrochemical C(sp 3)-H Lactonization of 2-Alkylbenzoic Acids toward Phthalides. Org Lett 2023; 25:298-303. [PMID: 36583568 DOI: 10.1021/acs.orglett.2c04211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report direct electrochemical C(sp3)-H lactonization of 2-alkylbenzoic acids toward phthalides. The reaction provides a wide substrate scope of 2-alkylbenzoic acids bearing primary to tertiary C(sp3)-H bonds by utilizing a graphite anode, dichloromethane (DCM) solvent, hexafluoroisopropanol (HFIP) cosolvent, and n-Bu4NClO4 electrolyte. Our synthetic approach offers a simple, intuitive, and atom-economical protocol to synthesize various phthalides (25 examples, up to 92% yield) and obtain other 5- and 6-membered lactones (10 examples, up to 83% yield).
Collapse
Affiliation(s)
- Jee Eun Hong
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jisong Yoon
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Woohyun Baek
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Kyumin Kim
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Jae-Hwan Kwak
- College of Pharmacy, Chungbuk National University, 194-21 Osongsaengmyeong 1-ro, Heungdeok-gu, Cheongju, Chungbuk 28160, Republic of Korea
| | - Yohan Park
- College of Pharmacy, Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| |
Collapse
|
14
|
The once-elusive Ni(IV) species is now a potent candidate for challenging organic transformations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Ghosh P, Kwon NY, Byun Y, Mishra NK, Park JS, Kim IS. Cobalt(II)-Catalyzed C–H Alkylation of N-Heterocycles with 1,4-Dihydropyridines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Jung Su Park
- Department of Chemistry, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
17
|
Aloia A, Casiello M, D'Accolti L, Fusco C, Nacci A, Monopoli A. Direct Synthesis of 3-Aryl Substituted Isocoumarins and Phthalides through Palladium Acetate Catalyzed C(sp 2 )-H Activation in Ionic Liquids. Chemistry 2022; 28:e202202350. [PMID: 35997238 PMCID: PMC9826210 DOI: 10.1002/chem.202202350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/11/2023]
Abstract
A novel Pd-catalysed oxidative coupling between benzoic acids and vinylarenes or acrylates to furnish isocoumarins and phthalides is reported. The reaction proceeds smoothly in molten tetrabutylammonium acetate via a selective C-H bond activation, with very low percentage of ligand-free palladium acetate as the catalyst, under atmospheric pressure of oxygen. Sub-stoichiometric amount of copper acetate is also required as a reoxidant for the palladium.
Collapse
Affiliation(s)
- Andrea Aloia
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
| | - Michele Casiello
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
| | - Lucia D'Accolti
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| | - Caterina Fusco
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| | - Angelo Nacci
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| | - Antonio Monopoli
- Chemistry DepartmentUniversità degli Studi di Bari Aldo MoroVia Orabona 470126BariItaly
- CNR – Istituto di Chimica dei Composti Organometallici (ICCOM) Bari SectionConsiglio Nazionale delle RicercheVia Orabona 470126BariItaly
| |
Collapse
|
18
|
Zhang J, Das B, Verho O, Bäckvall J. Electrochemical Palladium‐Catalyzed Oxidative Carbonylation‐Cyclization of Enallenols. Angew Chem Int Ed Engl 2022; 61:e202212131. [PMID: 36222322 PMCID: PMC10098644 DOI: 10.1002/anie.202212131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report an electrochemical oxidative palladium-catalyzed carbonylation-carbocyclization of enallenols to afford γ-lactones and spirolactones, which proceeds with excellent chemoselectivity. Interestingly, electrocatalysis was found to have an accelerating effect on the rate of the tandem process, leading to a more efficient reaction than that under chemical redox conditions.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| | - Oscar Verho
- Department of Medicinal Chemistry Uppsala Biomedical Center, BMC Uppsala University 75236 Uppsala Sweden
| | - Jan‐E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University 10691 Stockholm Sweden
| |
Collapse
|
19
|
Wang Y, Simon H, Chen X, Lin Z, Chen S, Ackermann L. Distal Ruthenaelectro-Catalyzed meta-C-H Bromination with Aqueous HBr. Angew Chem Int Ed Engl 2022; 61:e202201595. [PMID: 35172030 PMCID: PMC9310730 DOI: 10.1002/anie.202201595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/13/2022]
Abstract
While electrochemical ortho-selective C-H activations are well established, distal C-H activations continue to be underdeveloped. In contrast, we herein describe the electrochemical meta-C-H functionalization. The remote C-H bromination was accomplished in an undivided cell by RuCl3 ⋅3 H2 O with aqueous HBr. The electrohalogenation proceeded under exogenous ligand- and electrolyte-free conditions. Notably, pyrazolylarenes were meta-selectively brominated at the benzenoid moiety, rather than on the electron-rich pyrazole ring for the first time. Mechanistic studies were suggestive of an initial ruthenacycle formation, and a subsequent ligand-to-ligand hydrogen transfer (LLHT) process to liberate the brominated product.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Hendrik Simon
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
- Department of ChemistryZhejiang UniversityHangzhou310027China
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Shan Chen
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| |
Collapse
|
20
|
Wang Y, Simon H, Chen X, Lin Z, Chen S, Ackermann L. Distale Ruthenaelektro‐katalysierte
meta
‐C−H‐Bromierung mit wässriger HBr. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Hendrik Simon
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
- Institut für Chemie Zhejiang Universität Hangzhou 310027 China
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Shan Chen
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie und Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
21
|
Liu Q, Zhou Z, Kuang M, Gao H, Yi W, Wang S. Direct Assembly of Phthalides via Calcium(II)-Catalyzed Cascade ortho-C-Alkenylation/Hydroacyloxylation of 3-Aminobenzoic Acids with Alkynes in Hexafluoroisopropanol. Org Lett 2022; 24:1575-1580. [PMID: 35195430 DOI: 10.1021/acs.orglett.1c04274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By virtue of a calcium(II)/hexafluoroisopropanol cocatalytic system, the efficient and practical coupling of 3-aminobenzoic acids with alkynes has been realized, giving direct and regioselective access to the phthalide framework with good substrate/functional group compatibility. Mechanistic studies identified 3-amino-2-vinylbenzoic acid species as the active intermediate, thereby revealing an ortho-C-alkenylation/hydroacyloxylation cascade for this transformation.
Collapse
Affiliation(s)
- Qingmei Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Minyao Kuang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Yi
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shengdong Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
22
|
Feng T, Wang S, Liu Y, Liu S, Qiu Y. Electrochemical Desaturative β‐Acylation of Cyclic
N
‐Aryl Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Shouzhuo Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry Frontiers Science Center for New Organic Matter College of Chemistry Nankai University 94 Weijin Road Tianjin 300071 China
| |
Collapse
|
23
|
Wang Y, Xu X, Wu G, Pang B, Liao S, Ji Y. Ligand-Enabled C-H Olefination and Lactonization of Benzoic Acids and Phenylacetic Acids via Palladium Catalyst. Org Lett 2022; 24:821-825. [PMID: 35025521 DOI: 10.1021/acs.orglett.1c04000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel ligand propan-2-one O-(p-tolylcarbamoyl) oxime (L7) has been developed to promote C(sp2)-H olefination of benzoic acids and phenylacetic acids via a palladium catalyst. With the subsequent lactonization of the olefinated products through 1,4-addition, highly monoselective cyclic lactone products of benzofuranones and benzopyrones were obtained in moderate to excellent yields. The DFT calculation demonstrated that the novel ligand propan-2-one O-(p-tolylcarbamoyl) oxime (L7) could improve the C-H activation reaction to give cyclic lactone products elegantly.
Collapse
Affiliation(s)
- Yangyang Wang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaobo Xu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Gaorong Wu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Binghan Pang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shaowen Liao
- Shanghai Jinli Pharmaceutical Co. Ltd., 108 Yuegong Road, Shanghai 201507, P. R. China
| | - Yafei Ji
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
24
|
Gong T, Chen Z, Liu M, Cheng J. Recent Progress in the Synthesis of 2-Benzofuran-1(3 H)-one. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Xie W, Chen X, Li Y, Lin J, Chen W, Shi J. Electrooxidative Annulation of Unsaturated Molecules via Directed C—H Activation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site‐ and Chemoselective C−H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Tammanstraße 2 37077 Göttingen Germany
| |
Collapse
|
27
|
Choi I, Messinis AM, Hou X, Ackermann L. A Strategy for Site- and Chemoselective C-H Alkenylation through Osmaelectrooxidative Catalysis. Angew Chem Int Ed Engl 2021; 60:27005-27012. [PMID: 34665924 PMCID: PMC9298884 DOI: 10.1002/anie.202110616] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Indexed: 01/06/2023]
Abstract
Herein, we disclose osmaelectrocatalyzed C-H activations that set the stage for electrooxidative alkyne annulations by benzoic acids. The osmium electrocatalysis enables site- and chemoselective electrooxidative C-H activations with unique levels of selectivity. The isolation of unprecedented osmium(0) and osmium(II) intermediates, along with crystallographic characterization and analyses by spectrometric and spectroscopic in operando techniques delineate a synergistic osmium redox catalyst regime. Detailed mechanistic studies revealed a facile C-H cleavage, which allows for an ample substrate scope, providing provide robust and user-friendly access to annulated heterocycles.
Collapse
Affiliation(s)
- Isaac Choi
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Antonis M. Messinis
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry (WISCh)Georg-August-UniversitätTammanstraße 237077GöttingenGermany
| |
Collapse
|
28
|
Feng T, Wang S, Liu Y, Liu S, Qiu Y. Electrochemical Desaturative β-Acylation of Cyclic N-Aryl Amines. Angew Chem Int Ed Engl 2021; 61:e202115178. [PMID: 34878215 DOI: 10.1002/anie.202115178] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Herein, we disclose a straightforward, robust, and simple route to access β-substituted desaturated cyclic amines via an electrochemically driven desaturative β-functionalization of cyclic amines. This transformation is based on multiple single-electron oxidation processes using catalytic amounts of ferrocene. The reaction proceeds in the absence of stoichiometric amounts of electrolyte under mild conditions, affording the desired products with high chemo- and regioselectivity. The reaction was tolerant of a broad range of substrates and also enables late-stage β-C(sp3 )-H acylation of potentially valuable products. Preliminary mechanistic studies using cyclic voltammetry reveal the key role of ferrocene as a redox mediator in the reaction.
Collapse
Affiliation(s)
- Tian Feng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shouzhuo Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
29
|
Li X, Li W, Wei W, Fan J, Liu Z, Shi X. Sequential Cobalt/Rhodium‐Catalyzed Tandem Cyclization of Aromatic Aldehydes with Acrylates for Preparing 3‐Substituted Phthalides in Oxygen Atmosphere and Neat Water. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xin‐Ran Li
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Wan‐Di Li
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Wen‐Ting Wei
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Juan Fan
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Zhong‐Wen Liu
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Xian‐Ying Shi
- Key Laboratory of Syngas Conversion of Shaanxi Province Key Laboratory for Macromolecular Science of Shaanxi Province School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| |
Collapse
|
30
|
Liang K, Lu L, Liu X, Yang D, Wang S, Gao Y, Alhumade H, Yi H, Lei A. Electrochemical Cobalt-catalyzed Cyclotrimerization of Alkynes to 1,2,4-Substituted Arenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kailun Liang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Xing Liu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Dali Yang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Center of Research Excellence in Renewable Energy and Power Ststems, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- Department of Chemical and Materials Engineering, Abdulaziz University. Jeddah 21589, Saudi Arabia
| |
Collapse
|
31
|
Kim Y, Kim D, Chang S. Ir(III)-Catalysed electrooxidative intramolecular dehydrogenative C-H/N-H coupling for the synthesis of N-H indoles. Chem Commun (Camb) 2021; 57:12309-12312. [PMID: 34734951 DOI: 10.1039/d1cc05882g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, an iridium(III)-catalysed electrooxidative intramolecular dehydrogenative C-H/N-H coupling of unprotected 2-alkenyl anilines is described. The developed method allows the synthesis of a variety of 3-substituted N-H indole scaffolds under undivided electrolytic conditions. Mechanistic studies suggest that the reaction proceeds through the electro-oxidation induced reductive elimination pathway.
Collapse
Affiliation(s)
- Youyoung Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea. .,Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea. .,Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea. .,Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
32
|
Massignan L, Zhu C, Hou X, Oliveira JCA, Salamé A, Ackermann L. Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Aude Salamé
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| |
Collapse
|
33
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 452] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Li S, Su M, Sun J, Hu K, Jin J. Visible Light-Promoted Magnesium, Iron, and Nickel Catalysis Enabling C(sp 3)-H Lactonization of 2-Alkylbenzoic Acids. Org Lett 2021; 23:5842-5847. [PMID: 34236198 DOI: 10.1021/acs.orglett.1c01984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and practical C(sp3)-H lactonization protocol has been achieved by merging photocatalysis and magnesium (iron, nickel) catalysis. A diverse range of 2-alkylbenzoic acids with a variety of substitution patterns could be transformed into the corresponding phthalide products. Based on the mechanistic experimentation and reported prior studies, a possible mechanism for the benzylic oxidative lactonization reaction was proposed with the hypothetic photoactive ternary complex formed between the 2-alkylbenzoic acid substrate, magnesium ion, and bromate anion.
Collapse
Affiliation(s)
- Sasa Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Mincong Su
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kunjun Hu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
35
|
Wang S, Wang K, Chang B, Huang D, Hu Y. Synthesis of 1‐(3
H
)isobenzofuranone compounds by tin powder promoted cascade condensation reaction. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Shangxian Wang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Ke‐Hu Wang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Bo Chang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou China
| |
Collapse
|
36
|
Rogge T, Kaplaneris N, Chatani N, Kim J, Chang S, Punji B, Schafer LL, Musaev DG, Wencel-Delord J, Roberts CA, Sarpong R, Wilson ZE, Brimble MA, Johansson MJ, Ackermann L. C–H activation. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00041-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Samanta RC, Ackermann L. Evolution of Earth-Abundant 3 d-Metallaelectro-Catalyzed C-H Activation: From Chelation-Assistance to C-H Functionalization without Directing Groups. CHEM REC 2021; 21:2430-2441. [PMID: 34028175 DOI: 10.1002/tcr.202100096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023]
Abstract
Catalyzed C-H functionalizations have emerged as a transformative platform for molecular syntheses. Despite of indisputable advances, oxidative C-H activations have been largely restricted to precious transition metals and stoichiometric amounts of chemical oxidants. In contrast, we herein discuss the potential of earth-abundant, environmentally-benign 3d transition metals for C-H activation, which has recently gained major momentum. Thus, a strategy for full resource economy has been established in our group, with green electricity as a renewable redox agent, giving valuable hydrogen as the sole byproduct under redox mediator-free conditions. In this account, we detail our accomplishments in 3d metallaelectrocatalysis towards green syntheses until March 2021.
Collapse
Affiliation(s)
- Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
38
|
Zeng Z, Goebel JF, Liu X, Gooßen LJ. 2,2′-Biaryldicarboxylate Synthesis via Electrocatalytic Dehydrogenative C–H/C–H Coupling of Benzoic Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhongyi Zeng
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Jonas F. Goebel
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Xianming Liu
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Lukas J. Gooßen
- Fakultät Chemie und Biochemie, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
39
|
Weng Y, Chen H, Li N, Yang L, Ackermann L. Electrooxidative Metal‐Free Cyclization of 4‐Arylaminocoumarins with DMF as C1‐Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yiyi Weng
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou People's Republic of China
- Institut fuer Organische und Biomolekulare Chemie Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Hantao Chen
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou People's Republic of China
| | - Nanhui Li
- College of Pharmaceutical Sciences Zhejiang University of Technology 310014 Hangzhou People's Republic of China
| | - Long Yang
- Institut fuer Organische und Biomolekulare Chemie Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie Georg-August-Universitaet Gottingen Tammannstrasse 2 37077 Goettingen Germany
| |
Collapse
|
40
|
Zhu C, Ang NWJ, Meyer TH, Qiu Y, Ackermann L. Organic Electrochemistry: Molecular Syntheses with Potential. ACS CENTRAL SCIENCE 2021; 7:415-431. [PMID: 33791425 PMCID: PMC8006177 DOI: 10.1021/acscentsci.0c01532] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Indexed: 05/05/2023]
Abstract
Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Collapse
Affiliation(s)
- Cuiju Zhu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nate W. J. Ang
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tjark H. Meyer
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Youai Qiu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler
Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| |
Collapse
|
41
|
Wang Y, Oliveira JCA, Lin Z, Ackermann L. Electrooxidative Rhodium-Catalyzed [5+2] Annulations via C-H/O-H Activations. Angew Chem Int Ed Engl 2021; 60:6419-6424. [PMID: 33471952 PMCID: PMC7986427 DOI: 10.1002/anie.202016895] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Indexed: 01/28/2023]
Abstract
Electrooxidative annulations involving mild transition metal-catalyzed C-H activation have emerged as a transformative strategy for the rapid construction of five- and six-membered heterocycles. In contrast, we herein describe the first electrochemical metal-catalyzed [5+2] cycloadditions to assemble valuable seven-membered benzoxepine skeletons by C-H/O-H activation. The efficient alkyne annulation featured ample substrate scope, using electricity as the only oxidant. Mechanistic studies provided strong support for a rhodium(III/I) regime, involving a benzoxepine-coordinated rhodium(I) sandwich complex as the catalyst resting state, which was re-oxidized to rhodium(III) by anodic oxidation.
Collapse
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, and Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
42
|
Budnikova YH. Electrochemical Insight into Mechanisms and Metallocyclic Intermediates of C-H Functionalization. CHEM REC 2021; 21:2148-2163. [PMID: 33629800 DOI: 10.1002/tcr.202100009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/19/2022]
Abstract
Transition metal-catalyzed C-H activation has emerged as a powerful tool in organic synthesis and electrosynthesis as well as in the development of new methodologies for producing fine chemicals. In order to achieve efficient and selective C-H functionalization, different strategies have been used to accelerate the C-H activation step, including the incorporation of directing groups in the substrate that facilitate coordination to the catalyst. In this review, we try to underscore that the understanding the mechanisms of the catalytic cycle and the reactivity or redox activity of the key metal cyclic intermediates in these reactions is the basis for controlling the selectivity of synthesis and electrosynthesis. Combination of the electrosynthesis and voltammetry with traditional synthetic and physico-chemical methods allows one to achieve selective transformation of C-H bonds to functionalized C-C or C-X (X=heteroatom or halogen) bonds which may encourage organic chemists to use it in the future more often. The possibilities and the benefits of electrochemical techniques are analyzed and summarized.
Collapse
Affiliation(s)
- Yulia H Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088, Kazan, Russia.,Kazan National Research Technological University, Karl Marx street, 68, 420015, Kazan, Russia
| |
Collapse
|
43
|
Tan X, Hou X, Rogge T, Ackermann L. Ruthenaelectro-Catalyzed Domino Three-Component Alkyne Annulation for Expedient Isoquinoline Assembly. Angew Chem Int Ed Engl 2021; 60:4619-4624. [PMID: 33270973 PMCID: PMC7985882 DOI: 10.1002/anie.202014289] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/27/2020] [Indexed: 12/14/2022]
Abstract
The electrochemical three-component assembly of isoquinolines has been accomplished by ruthenaelectro-catalyzed C-H/N-H functionalization. The robustness of the electrocatalysis was reflected by an ample substrate scope, an efficient electrooxidation, and an operationally friendly procedure. The isolation of key intermediates and detailed mechanistic studies, including unprecedented cyclovoltammetric analysis of a seven-membered ruthenacycle, provided support for an unusual ruthenium(II/III/I) regime.
Collapse
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Torben Rogge
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
- Wöhler Research Institute for Sustainable ChemistryGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
44
|
Yang QL, Jia HW, Liu Y, Xing YK, Ma RC, Wang MM, Qu GR, Mei TS, Guo HM. Electrooxidative Iridium-Catalyzed Regioselective Annulation of Benzoic Acids with Internal Alkynes. Org Lett 2021; 23:1209-1215. [PMID: 33538167 DOI: 10.1021/acs.orglett.0c04168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemically driven, Cp*Ir(III)-catalyzed regioselective annulative couplings of benzoic acids with alkynes have been established herein. The combination of iridium catalyst and electricity not only circumvents the need for stoichiometric amount of chemical oxidant, but also ensures broad reaction compatibility with a wide array of sterically and electronically diverse substrates. This electrochemical approach represents a sustainable strategy as an ideal alternative and supplement to the oxidative annulations methodology to be engaged in the synthesis of isocoumarin derivatives.
Collapse
Affiliation(s)
- Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Wei Jia
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Rui-Cong Ma
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Man-Man Wang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
45
|
Xing YK, Chen XR, Yang QL, Zhang SQ, Guo HM, Hong X, Mei TS. Divergent rhodium-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes. Nat Commun 2021; 12:930. [PMID: 33568643 PMCID: PMC7876044 DOI: 10.1038/s41467-021-21190-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022] Open
Abstract
α-Pyridones and α-pyrones are ubiquitous structural motifs found in natural products and biologically active small molecules. Here, we report an Rh-catalyzed electrochemical vinylic C-H annulation of acrylamides with alkynes, affording cyclic products in good to excellent yield. Divergent syntheses of α-pyridones and cyclic imidates are accomplished by employing N-phenyl acrylamides and N-tosyl acrylamides as substrates, respectively. Additionally, excellent regioselectivities are achieved when using unsymmetrical alkynes. This electrochemical process is environmentally benign compared to traditional transition metal-catalyzed C-H annulations because it avoids the use of stoichiometric metal oxidants. DFT calculations elucidated the reaction mechanism and origins of substituent-controlled chemoselectivity. The sequential C-H activation and alkyne insertion under rhodium catalysis leads to the seven-membered ring vinyl-rhodium intermediate. This intermediate undergoes either the classic neutral concerted reductive elimination to produce α-pyridones, or the ionic stepwise pathway to produce cyclic imidates.
Collapse
Affiliation(s)
- Yi-Kang Xing
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, Xinxiang, Henan, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
46
|
Wang Y, Oliveira JCA, Lin Z, Ackermann L. Elektrooxidative Rhodium‐katalysierte [5+2]‐Anellierung durch C‐H/O‐H‐Aktivierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yulei Wang
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Zhipeng Lin
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, und Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
47
|
Chen J, Yang H, Zhang M, Chen H, Liu J, Yin K, Chen S, Shao A. Electrochemical-induced regioselective C-3 thiocyanation of imidazoheterocycles with hydrogen evolution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Tan X, Hou X, Rogge T, Ackermann L. Ruthenaelektro‐katalysierte Domino‐Drei‐Komponenten‐Alkinanellierung für nützliche Isochinolin‐Synthesen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xuefeng Tan
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Torben Rogge
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
- Wöhler Research Institute for Sustainable Chemistry Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Deutschland
| |
Collapse
|
49
|
Zhong JS, Yu Y, Shi Z, Ye KY. An electrochemical perspective on the roles of ligands in the merger of transition-metal catalysis and electrochemistry. Org Chem Front 2021. [DOI: 10.1039/d0qo01227k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A perspective on the roles of ligands in transition-metal catalysis under electrochemical conditions is provided.
Collapse
Affiliation(s)
- Jun-Song Zhong
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Zhaojiang Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University)
- College of Chemistry
- Fuzhou University
- Fuzhou 350108
- China
| |
Collapse
|
50
|
Dhawa U, Kaplaneris N, Ackermann L. Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Org Chem Front 2021. [DOI: 10.1039/d1qo00727k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sustainable strategies for the activation of inert C–H bonds towards improved resource-economy.
Collapse
Affiliation(s)
- Uttam Dhawa
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|