1
|
Jiao Y, Liu J, Mao W, Fang R, Xia T, Lang Q, Luo T. Synthesis of (+)-Saxitoxin Facilitated by a Chiral Auxiliary for Photocycloadditions Involving Alkenylboronate Esters. J Am Chem Soc 2025; 147:9091-9097. [PMID: 40062953 DOI: 10.1021/jacs.5c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
(+)-Saxitoxin, a potent neurotoxin and NaV blocker, poses significant synthetic challenges due to its compact tricyclic framework and guanidinium moieties. We report a concise and asymmetric total synthesis featuring an intramolecular [2 + 2] photocycloaddition of an alkenylboronate ester equipped with a new chiral auxiliary. This auxiliary, compatible with UV light and easily exchangeable on B(pin) derivatives, enabled high stereocontrol through hydrogen-bond-mediated transition-state stabilization. Our approach not only introduces an innovative surrogate for intramolecular Michael addition, particularly addressing transformations with contra-thermodynamic barriers, but also highlights the potential of boron-enabled photochemistry for synthesizing complex molecules.
Collapse
Affiliation(s)
- Yang Jiao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Weijie Mao
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Runting Fang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianrun Xia
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiaorui Lang
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education and Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Zhang X, Li J, Rotella ME, Zhang R, Kozlowski MC, Jia T. Dearomative Mislow-Braverman-Evans Rearrangement of Aryl Sulfoxides. JACS AU 2025; 5:998-1006. [PMID: 40017778 PMCID: PMC11863165 DOI: 10.1021/jacsau.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
The Mislow-Braverman-Evans rearrangement, the reversible [2,3]-sigmatropic rearrangement of allylic sulfoxides to allylic sulfenate esters, finds widespread applications in organic synthesis and medicinal chemistry. However, the products of this powerful strategy have primarily been limited to derivatives of allylic alcohols. In contrast, access to structurally similar benzylic alcohols has not yet been established. Described herein is an unprecedented dearomative Mislow-Braverman-Evans rearrangement of aryl sulfoxides to afford benzylic alcohols. A variety of heteroaryl sulfoxides as well as α-naphthyl sulfoxides could be tolerated, and a diverse range of primary, secondary, and tertiary alcohols possessing either alkyl or aryl substituents can be prepared by our protocol with broad functional group tolerance. A patented bioactive molecule could be prepared using our protocol as the key step with exclusive diastereoselectivity, highlighting its potential utility in organic synthesis. Key to the success of the transformation is the dearomative tautomerization to shift the reactive alkene to the exocyclic position enabled by the reversible deprotonation of the benzylic C-H bond, setting the stage for the subsequent [2,3]-sigmatropic rearrangement. Density functional theory (DFT) calculations reveal that protonation of the α-carbon of the sulfoxide is the stereocontrolling step, generating the intermediate that undergoes [2,3]-sigmatropic rearrangement. The full reaction profile is outlined, showing the reversible nature of each step, which causes the observed erosion of the enantiopurity.
Collapse
Affiliation(s)
- Xinping Zhang
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P.R. China
| | - Jiliang Li
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P.R. China
| | - Madeline E. Rotella
- Department
of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Runze Zhang
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P.R. China
| | - Marisa C. Kozlowski
- Department
of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Tiezheng Jia
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
3
|
Hirozumi R, Hakamada M, Minowa T, Cho Y, Kudo Y, Konoki K, Oshima Y, Nagasawa K, Yotsu‐Yamashita M. Synthesis of Saxitoxin Biosynthetic Intermediates: Reveal the Mechanism for Formation of its Tricyclic Skeleton in Biosynthesis. Chem Asian J 2024; 19:e202400834. [PMID: 39305001 PMCID: PMC11639635 DOI: 10.1002/asia.202400834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/15/2024] [Indexed: 11/02/2024]
Abstract
The synthesis and biosynthesis of the complex saxitoxin (STX) structure have garnered significant interest. Previously, we hypothesized that the tricyclic skeleton of STX originates from the monocyclic precursor 11-hydroxy-IntC'2 during biosynthesis, although direct evidence has been lacking. In this study, we identified conditions to synthesize a proposed tricyclic biosynthetic intermediate, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX), along with its 6-epimer (6-epi-dd-doSTX) and a bicyclic compound, in a single step from di-Boc protected 11-hydroxy-IntC'2. The reaction mechanism involves successive aza-Michael addition of a guanidino amine to the conjugated olefin. Notably, both dd-doSTX and 6-epi-dd-doSTX were detected in a toxin-producing cyanobacterium, suggesting that the biosynthetic enzymes may generate these compounds via similar mechanisms.
Collapse
Affiliation(s)
- Ryosuke Hirozumi
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Mayu Hakamada
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Takashi Minowa
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Yuko Cho
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Yuta Kudo
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
- The Frontier Research Institute for Interdisciplinary SciencesTohoku University6-3 Aramaki-Aza-Aoba, Aoba-kuSendai980-8578Japan
| | - Keiichi Konoki
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| | - Yasukatsu Oshima
- Graduate School of Life SciencesTohoku University (Prof. emeritous)2-1-1 Katahira, Aoba-kuSendai980-8577Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life ScienceTokyo University of Agriculture and Technology2-24-16, Naka-choKoganei, Tokyo184-8588Japan
| | - Mari Yotsu‐Yamashita
- Graduate School of Agricultural ScienceTohoku University468-1 Aramaki-Aza-Aoba, Aoba-kuSendai980-8572Japan
| |
Collapse
|
4
|
Chen Z, Zakrzewska S, Hajare HS, Du Bois J, Minor DL. Expression, purification, and characterization of anuran saxiphilins using thermofluor, fluorescence polarization, and isothermal titration calorimetry. STAR Protoc 2024; 5:102792. [PMID: 38133955 PMCID: PMC10776646 DOI: 10.1016/j.xpro.2023.102792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Anuran saxiphilins (Sxphs) are "toxin sponge" proteins thought to prevent the lethal effects of small-molecule neurotoxins through sequestration. Here, we present a protocol for the expression, purification, and characterization of Sxphs. We describe steps for using thermofluor, fluorescence polarization, and isothermal titration calorimetry assays that probe Sxph:saxitoxin interactions using a range of sample quantities. These assays are generalizable and can be used for other paralytic shellfish poisoning toxin-binding proteins. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.
Collapse
Affiliation(s)
- Zhou Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-2330, USA
| | - Sandra Zakrzewska
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-2330, USA
| | - Holly S Hajare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158-2330, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158-2330, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, San Francisco, CA 94158-2330, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
5
|
Velado M, Martinović M, Alonso I, Tortosa M, Fernández de la Pradilla R, Viso A. Base-Induced Sulfoxide-Sulfenate Rearrangement of 2-Sulfinyl Dienes for the Regio- and Stereoselective Synthesis of Enantioenriched Dienyl Diols. J Org Chem 2023; 88:3697-3713. [PMID: 36868575 PMCID: PMC10028699 DOI: 10.1021/acs.joc.2c02931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 03/05/2023]
Abstract
The base-induced [2,3]-sigmatropic rearrangement of a series of enantiopure 2-sulfinyl dienes has been examined and optimized using a combination of NaH and iPrOH. The reaction takes place by allylic deprotonation of the 2-sulfinyl diene to give a bis-allylic sulfoxide anion intermediate that after protonation undergoes sulfoxide-sulfenate rearrangement. Different substitution at the starting 2-sulfinyl dienes has allowed us to study the rearrangement finding that a terminal allylic alcohol is determinant to achieve complete regioselectivity and high enantioselectivities (90:10-95:5) with the sulfoxide as the only element of stereocontrol. Density functional theory (DFT) calculations provide an interpretation of these results.
Collapse
Affiliation(s)
- Marina Velado
- Instituto
de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Manuel Martinović
- Instituto
de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Inés Alonso
- Organic
Chemistry Department and Center for Innovation in Advanced Chemistry
(ORFEO-CINQA) Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Mariola Tortosa
- Organic
Chemistry Department and Center for Innovation in Advanced Chemistry
(ORFEO-CINQA) Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | | | - Alma Viso
- Instituto
de Química Orgánica General (IQOG), CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
6
|
Zheng R, Yang Y, Zhang W, Hua Y. Contamination status of paralytic shellfish toxins in shellfish from Southeastern China in 2017-2021. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34728-34740. [PMID: 36520283 DOI: 10.1007/s11356-022-24732-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Harmful algal blooms is a widespread problem in aquatic ecosystems, in particular dinoflagellates that produce PSTs which are harmful to animal and human health. To explore the contamination status of PSTs in shellfish in the Southeastern China, a total of 2355 shellfish samples were analyzed by ultra high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to study the toxin profiles of the 10 PSTs collected from the southeast coast of China from 2017 to 2021. From 2355 shellfish samples, 257 were detected (10.91%), with the highest value in samples of Perna viridis. Among the six source areas in China, the samples from Fujian recorded the highest detected rate (15.28%). PSTs were found in Fuzhou, Ningde, Quanzhou, Putian, Zhangzhou, and Xiamen, with Quanzhou and Fuzhou having the highest and lowest detection rates of 15.28% and 4.23%, respectively. Saxitoxin (STX), neosaxitoxin (neoSTX), gonyautoxin (GTX1, GTX2, GTX3, GTX4), N-sulfocarbamoyl toxin (GTX5), and decarbamoyl toxin (dcSTX, dcGTX2, dcGTX3) were detected, and GTX5 and dcGTX2 were dominant. In addition, the samples containing PSTs were mostly concentrated in May to August. The study confirms the risks of PSTs to shellfish consumers in the region. It will offer a great foundation for future monitoring of marine toxins and protecting the health of seafood consumers in China. This is the first detailed evaluation of PSTs occurrences and their profiles in shellfish from the Southeastern China over a period of multiple years. HIGHLIGHTS: 2355 mussels from China were analyzed by UPLC-MS/MS for PSTs in 2017-2021. The predominant PSTs were GTX5, neoSTX and dcGTX2. Arca granosa and Crassostyea gigas exhibited higher levels than other shellfish. Shellfish containing PSTs were mostly concentrated in May to August. Maximum detected level in shellfish was 2137.10 ug STXeq/kg.
Collapse
Affiliation(s)
- Renjin Zheng
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350011, Fujian, China
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yafang Yang
- School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Wenting Zhang
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350011, Fujian, China
| | - Yongyou Hua
- Physical and Chemical Analysis Department, Fujian Provincial Center for Disease Control and Prevention, Fujian Provincial Key Laboratory of Zoonosis Research, Fuzhou, 350011, Fujian, China.
| |
Collapse
|
7
|
Pajouhesh H, Delwig A, Beckley JT, Klas S, Monteleone D, Zhou X, Luu G, Du Bois J, Hunter JC, Mulcahy JV. Discovery of Selective Inhibitors of Na V1.7 Templated on Saxitoxin as Therapeutics for Pain. ACS Med Chem Lett 2022; 13:1763-1768. [PMID: 36385936 PMCID: PMC9661704 DOI: 10.1021/acsmedchemlett.2c00378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/05/2022] [Indexed: 11/28/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 has drawn widespread interest as a target for non-opioid, investigational new drugs to treat pain. Selectivity over homologous, off-target sodium channel isoforms, which are expressed in peripheral motor neurons, the central nervous system, skeletal muscle and the heart, poses a significant challenge to the development of small molecule inhibitors of NaV1.7. Most inhibitors of NaV1.7 disclosed to date belong to a class of aryl and acyl sulfonamides that preferentially bind to an inactivated conformation of the channel. By taking advantage of a sequence variation unique to primate NaV1.7 in the extracellular pore of the channel, a series of bis-guanidinium analogues of the natural product, saxitoxin, has been identified that are potent against the resting conformation of the channel. A compound of interest, 25, exhibits >600-fold selectivity over off-target sodium channel isoforms and is efficacious in a preclinical model of acute pain.
Collapse
Affiliation(s)
- Hassan Pajouhesh
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| | - Anton Delwig
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| | - Jacob T. Beckley
- SiteOne
Therapeutics, Inc., Bozeman, Montana 59715, United States
| | - Sheri Klas
- SiteOne
Therapeutics, Inc., Bozeman, Montana 59715, United States
| | - Dennis Monteleone
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| | - Xiang Zhou
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| | - George Luu
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| | - J. Du Bois
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John C. Hunter
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| | - John V. Mulcahy
- SiteOne
Therapeutics, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Abstract
This review deals with the synthesis of naturally occurring alkaloids containing partially or completely saturated pyrimidine nuclei. The interest in these compounds is associated with their structural diversity, high biological activity and toxicity. The review is divided into four parts, each of which describes a number of synthetic methodologies toward structurally different naturally occurring alkaloids containing saturated cyclic six-membered amidine, guanidine, aminal and urea (thiourea) moieties, respectively. The development of various synthetic strategies for the preparation of these compounds has remarkably increased during the past few decades. This is primarily due to the fact that some of these compounds are isolated only in limited quantities, which makes it practically impossible to study their full structural characteristics and biological activity.
Collapse
|
9
|
Tang DTY, Merit JE, Bedell TA, Du Bois J. Silylpyrrole Oxidation En Route to Saxitoxin Congeners Including 11-Saxitoxinethanoic Acid. J Org Chem 2021; 86:17790-17803. [PMID: 34874731 DOI: 10.1021/acs.joc.1c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saxitoxin (STX) is the archetype of a large family (>50) of architecturally distinct, bisguanidinium natural products. Among this collection of isolates, two members, 11-saxitoxinethanoic acid (11-SEA) and zetekitoxin AB (ZTX), are unique, bearing carbon substitution at C11. A desire to efficiently access these compounds has motivated the development of new tactical approaches to a late-stage C11-ketone intermediate 26, designed to enable C-C bond formation using any one of a number of possible reaction technologies. Highlights of the synthesis of 26 include a metal-free, silylpyrrole oxidative dearomatization reaction and a vinylsilane epoxidation-rearrangement cascade to generate the requisite ketone. Nucleophilic addition to 26 makes possible the preparation of unnatural C11-substituted STXs. Olefination of this ketone is also demonstrated and, when followed by a redox-neutral isomerization reaction, affords 11-SEA.
Collapse
Affiliation(s)
- Doris T Y Tang
- Department of Chemistry, Stanford University, 333 Campus Dr., Stanford, California 94305, United States
| | - Jeffrey E Merit
- Department of Chemistry, Stanford University, 333 Campus Dr., Stanford, California 94305, United States
| | - T Aaron Bedell
- Department of Chemistry, Stanford University, 333 Campus Dr., Stanford, California 94305, United States
| | - J Du Bois
- Department of Chemistry, Stanford University, 333 Campus Dr., Stanford, California 94305, United States
| |
Collapse
|
10
|
Bui QTN, Kim H, Park H, Ki JS. Salinity Affects Saxitoxins (STXs) Toxicity in the Dinoflagellate Alexandrium pacificum, with Low Transcription of SXT-Biosynthesis Genes sxtA4 and sxtG. Toxins (Basel) 2021; 13:toxins13100733. [PMID: 34679026 PMCID: PMC8539879 DOI: 10.3390/toxins13100733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Salinity is an important factor for regulating metabolic processes in aquatic organisms; however, its effects on toxicity and STX biosynthesis gene responses in dinoflagellates require further elucidation. Herein, we evaluated the physiological responses, toxin production, and expression levels of two STX synthesis core genes, sxtA4 and sxtG, in the dinoflagellate Alexandrium pacificum Alex05 under different salinities (20, 25, 30, 35, and 40 psu). Optimal growth was observed at 30 psu (0.12 cell division/d), but cell growth significantly decreased at 20 psu and was irregular at 25 and 40 psu. The cell size increased at lower salinities, with the highest size of 31.5 µm at 20 psu. STXs eq was highest (35.8 fmol/cell) in the exponential phase at 30 psu. GTX4 and C2 were predominant at that time but were replaced by GTX1 and NeoSTX in the stationary phase. However, sxtA4 and sxtG mRNAs were induced, and their patterns were similar in all tested conditions. PCA showed that gene transcriptional levels were not correlated with toxin contents and salinity. These results suggest that A. pacificum may produce the highest amount of toxins at optimal salinity, but sxtA4 and sxtG may be only minimally affected by salinity, even under high salinity stress.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| |
Collapse
|
11
|
Nagasawa K. Total Synthesis of Saxitoxins. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
12
|
Velado M, Fernández de la Pradilla R, Viso A. Diastereodivergent Synthesis of 2-Ene-1,4-hydroxy Sulfides from 2-Sulfinyl Dienes via Tandem Sulfa-Michael/Sulfoxide-Sulfenate Rearrangement. Org Lett 2021; 23:202-206. [PMID: 33300806 DOI: 10.1021/acs.orglett.0c03929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The highly diastereoselective sulfa-Michael addition of thiolates to enantiopure 2-sulfinyl dienes leads to anti or syn 2-ene-1,4-hydroxy sulfides in good yields and selectivities dependent on the reaction conditions in a diastereodivergent process. Synthetic applications of these enantiopure hydroxy sulfides by subsequent sigmatropic rearrangements have been outlined.
Collapse
Affiliation(s)
- Marina Velado
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
13
|
Okuyama Y, Okamoto R, Mukai S, Kinoshita K, Sato T, Chida N. Synthesis of Saxitoxin and Its Derivatives. Org Lett 2020; 22:8697-8701. [PMID: 33104353 DOI: 10.1021/acs.orglett.0c03281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chiral synthesis of (+)-saxitoxin and its derivatives is described. Two consecutive carbon-nitrogen bonds at C-5 and C-6 in saxitoxin were effectively installed by the sequential Overman rearrangement of an allylic vicinal diol derived from d-malic acid. The bicyclic guanidine unit was constructed by the intramolecular aminal formation of an acyclic bis-guanidine derivative possessing a ketone carbonyl at C-4. From the bicyclic aminal intermediate, (+)-saxitoxin, (+)-decarbamoyl-β-saxitoxinol [(+)-dc-β-saxitoxinol], and the unnatural skeletal isomer, (-)-iso-dc-saxitoxinol, were synthesized.
Collapse
Affiliation(s)
- Yuya Okuyama
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ryosuke Okamoto
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shori Mukai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kyoko Kinoshita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
14
|
Abstract
Organosulfates and sulfamates are important classes of bioactive molecules but due to their polar nature, they are both difficult to prepare and purify. We report an operationally simple, double ion-exchange method to access organosulfates and sulfamates. Inspired by the novel sulfating reagent, TriButylSulfoAmmonium Betaine (TBSAB), we developed a 3-step procedure using tributylamine as the novel solubilising partner coupled to commercially available sulfating agents. Hence, in response to an increasing demand for complementary methods to synthesise organosulfates, we developed an alternative sulfation route based on an inexpensive, molecularly efficient and solubilising cation exchanging method using off-the-shelf reagents. The disclosed method is amenable to a range of differentially substituted benzyl alcohols, benzylamines and aniline and can also be performed at low temperature for sensitive substrates in good to excellent isolated yield.
Collapse
|
15
|
Berlinck RGS, Bernardi DI, Fill T, Fernandes AAG, Jurberg ID. The chemistry and biology of guanidine secondary metabolites. Nat Prod Rep 2020; 38:586-667. [PMID: 33021301 DOI: 10.1039/d0np00051e] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Pajouhesh H, Beckley JT, Delwig A, Hajare HS, Luu G, Monteleone D, Zhou X, Ligutti J, Amagasu S, Moyer BD, Yeomans DC, Du Bois J, Mulcahy JV. Discovery of a selective, state-independent inhibitor of Na V1.7 by modification of guanidinium toxins. Sci Rep 2020; 10:14791. [PMID: 32908170 PMCID: PMC7481244 DOI: 10.1038/s41598-020-71135-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022] Open
Abstract
The voltage-gated sodium channel isoform NaV1.7 is highly expressed in dorsal root ganglion neurons and is obligatory for nociceptive signal transmission. Genetic gain-of-function and loss-of-function NaV1.7 mutations have been identified in select individuals, and are associated with episodic extreme pain disorders and insensitivity to pain, respectively. These findings implicate NaV1.7 as a key pharmacotherapeutic target for the treatment of pain. While several small molecules targeting NaV1.7 have been advanced to clinical development, no NaV1.7-selective compound has shown convincing efficacy in clinical pain applications. Here we describe the discovery and characterization of ST-2262, a NaV1.7 inhibitor that blocks the extracellular vestibule of the channel with an IC50 of 72 nM and greater than 200-fold selectivity over off-target sodium channel isoforms, NaV1.1-1.6 and NaV1.8. In contrast to other NaV1.7 inhibitors that preferentially inhibit the inactivated state of the channel, ST-2262 is equipotent in a protocol that favors the resting state of the channel, a protocol that favors the inactivated state, and a high frequency protocol. In a non-human primate study, animals treated with ST-2262 exhibited reduced sensitivity to noxious heat. These findings establish the extracellular vestibule of the sodium channel as a viable receptor site for the design of selective ligands targeting NaV1.7.
Collapse
Affiliation(s)
- H Pajouhesh
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J T Beckley
- SiteOne Therapeutics, Bozeman, MT, 59715, USA
| | - A Delwig
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - H S Hajare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - G Luu
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - D Monteleone
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - X Zhou
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA
| | - J Ligutti
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - S Amagasu
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - B D Moyer
- Neuroscience Department, Amgen Research, Thousand Oaks, CA, 91320, USA
| | - D C Yeomans
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - J V Mulcahy
- SiteOne Therapeutics, South San Francisco, CA, 94080, USA.
| |
Collapse
|
17
|
Colomer I, Ureña M, Viso A, Fernández de la Pradilla R. Sulfinyl-Mediated Stereoselective Functionalization of Acyclic Conjugated Dienes. Chemistry 2020; 26:4620-4632. [PMID: 31994765 DOI: 10.1002/chem.201905742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 01/16/2023]
Abstract
The chemo- and stereocontrolled functionalization of conjugated sulfinyl dienes in a cascade process that involves a conjugate addition, diastereoselective protonation and a [2,3]-sigmatropic rearrangement is reported. Enantioenriched 1,4-diol and 1,4-aminoalcohol derivatives are obtained in a very straightforward manner. Further functionalization of these structures, including highly stereoselective epoxidation, dihydroxylation and the stereodivergent synthesis of several polyols in a controlled fashion is described.
Collapse
Affiliation(s)
- Ignacio Colomer
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Mercedes Ureña
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alma Viso
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | | |
Collapse
|
18
|
D'Agostino PM, Al-Sinawi B, Mazmouz R, Muenchhoff J, Neilan BA, Moffitt MC. Identification of promoter elements in the Dolichospermum circinale AWQC131C saxitoxin gene cluster and the experimental analysis of their use for heterologous expression. BMC Microbiol 2020; 20:35. [PMID: 32070286 PMCID: PMC7027233 DOI: 10.1186/s12866-020-1720-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background Dolichospermum circinale is a filamentous bloom-forming cyanobacterium responsible for biosynthesis of the paralytic shellfish toxins (PST), including saxitoxin. PSTs are neurotoxins and in their purified form are important analytical standards for monitoring the quality of water and seafood and biomedical research tools for studying neuronal sodium channels. More recently, PSTs have been recognised for their utility as local anaesthetics. Characterisation of the transcriptional elements within the saxitoxin (sxt) biosynthetic gene cluster (BGC) is a first step towards accessing these molecules for biotechnology. Results In D. circinale AWQC131C the sxt BGC is transcribed from two bidirectional promoter regions encoding five individual promoters. These promoters were identified experimentally using 5′ RACE and their activity assessed via coupling to a lux reporter system in E. coli and Synechocystis sp. PCC 6803. Transcription of the predicted drug/metabolite transporter (DMT) encoded by sxtPER was found to initiate from two promoters, PsxtPER1 and PsxtPER2. In E. coli, strong expression of lux from PsxtP, PsxtD and PsxtPER1 was observed while expression from Porf24 and PsxtPER2 was remarkably weaker. In contrast, heterologous expression in Synechocystis sp. PCC 6803 showed that expression of lux from PsxtP, PsxtPER1, and Porf24 promoters was statistically higher compared to the non-promoter control, while PsxtD showed poor activity under the described conditions. Conclusions Both of the heterologous hosts investigated in this study exhibited high expression levels from three of the five sxt promoters. These results indicate that the majority of the native sxt promoters appear active in different heterologous hosts, simplifying initial cloning efforts. Therefore, heterologous expression of the sxt BGC in either E. coli or Synechocystis could be a viable first option for producing PSTs for industrial or biomedical purposes.
Collapse
Affiliation(s)
- Paul M D'Agostino
- School of Science, Western Sydney University, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Biosystems Chemistry, Department of Chemistry, Technische Universität München, Garching, Germany.,Technical Biochemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Bakir Al-Sinawi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Rabia Mazmouz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Julia Muenchhoff
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia. .,School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia.
| | | |
Collapse
|
19
|
Akbar MA, Mohd Yusof NY, Tahir NI, Ahmad A, Usup G, Sahrani FK, Bunawan H. Biosynthesis of Saxitoxin in Marine Dinoflagellates: An Omics Perspective. Mar Drugs 2020; 18:md18020103. [PMID: 32033403 PMCID: PMC7073992 DOI: 10.3390/md18020103] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene–environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.Y.M.Y.); (F.K.S.)
| | - Noor Idayu Tahir
- Malaysian Palm Oil Board, No 6, Persiaran Institusi, Bandar Baru Bangi, Kajang 43000, Selangor, Malaysia;
| | - Asmat Ahmad
- University College Sabah Foundation, Jalan Sanzac, Kota Kinabalu 88100, Sabah, Malaysia; (A.A.); (G.U.)
| | - Gires Usup
- University College Sabah Foundation, Jalan Sanzac, Kota Kinabalu 88100, Sabah, Malaysia; (A.A.); (G.U.)
| | - Fathul Karim Sahrani
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (N.Y.M.Y.); (F.K.S.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Correspondence: ; Tel.: +60-389-214-546
| |
Collapse
|
20
|
Synthetic Approaches to Zetekitoxin AB, a Potent Voltage-Gated Sodium Channel Inhibitor. Mar Drugs 2019; 18:md18010024. [PMID: 31888062 PMCID: PMC7024329 DOI: 10.3390/md18010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are membrane proteins that are involved in the generation and propagation of action potentials in neurons. Recently, the structure of a complex made of a tetrodotoxin-sensitive (TTX-s) NaV subtype with saxitoxin (STX), a shellfish toxin, was determined. STX potently inhibits TTX-s NaV, and is used as a biological tool to investigate the function of NaVs. More than 50 analogs of STX have been isolated from nature. Among them, zetekitoxin AB (ZTX) has a distinctive chemical structure, and is the most potent inhibitor of NaVs, including tetrodotoxin-resistant (TTX-r) NaV. Despite intensive synthetic studies, total synthesis of ZTX has not yet been achieved. Here, we review recent efforts directed toward the total synthesis of ZTX, including syntheses of 11-saxitoxinethanoic acid (SEA), which is considered a useful synthetic model for ZTX, since it contains a key carbon-carbon bond at the C11 position.
Collapse
|
21
|
Sabbasani VR, Wang K, Streeter MD, Spiegel DA. One‐Step Synthesis of 2,5‐Diaminoimidazoles and Total Synthesis of Methylglyoxal‐Derived Imidazolium Crosslink (MODIC). Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Venkata R. Sabbasani
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Kung‐Pern Wang
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - Matthew D. Streeter
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| | - David A. Spiegel
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06511 USA
| |
Collapse
|
22
|
Sabbasani VR, Wang K, Streeter MD, Spiegel DA. One-Step Synthesis of 2,5-Diaminoimidazoles and Total Synthesis of Methylglyoxal-Derived Imidazolium Crosslink (MODIC). Angew Chem Int Ed Engl 2019; 58:18913-18917. [PMID: 31713976 PMCID: PMC6973230 DOI: 10.1002/anie.201911156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/28/2023]
Abstract
Here we describe a general method for the synthesis of 2,5-diaminoimidazoles, which involves a thermal reaction between α-aminoketones and substituted guanylhydrazines without the need for additives. As one of the few known ways to access the 2,5-diaminoimidazole motif, our method greatly expands the number of reported diaminoimidazoles and further supports our previous observations that these compounds spontaneously adopt the non-aromatic 4(H) tautomer. The reaction works successfully on both cyclic and acyclic amino ketone starting materials, as well as a range of substituted guanylhydrazines. Following optimization, the method was applied to the efficient synthesis of the advanced glycation end product (AGE) methylglyoxal-derived imidazolium crosslink (MODIC). We expect that this method will enable rapid access to a variety of biologically important 2,5-diaminoimidazole-containing products.
Collapse
Affiliation(s)
| | - Kung‐Pern Wang
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| | - Matthew D. Streeter
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| | - David A. Spiegel
- Department of ChemistryYale University225 Prospect StreetNew HavenCT06511USA
| |
Collapse
|
23
|
Paladugu SR, James CK, Looper RE. A Direct C11 Alkylation Strategy on the Saxitoxin Core: A Synthesis of (+)-11-Saxitoxinethanoic Acid. Org Lett 2019; 21:7999-8002. [DOI: 10.1021/acs.orglett.9b02986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Srinivas R. Paladugu
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Chintelle K. James
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
24
|
Yen TJ, Lolicato M, Thomas-Tran R, Du Bois J, Minor DL. Structure of the saxiphilin:saxitoxin (STX) complex reveals a convergent molecular recognition strategy for paralytic toxins. SCIENCE ADVANCES 2019; 5:eaax2650. [PMID: 31223657 PMCID: PMC6584486 DOI: 10.1126/sciadv.aax2650] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 05/13/2023]
Abstract
Dinoflagelates and cyanobacteria produce saxitoxin (STX), a lethal bis-guanidinium neurotoxin causing paralytic shellfish poisoning. A number of metazoans have soluble STX-binding proteins that may prevent STX intoxication. However, their STX molecular recognition mechanisms remain unknown. Here, we present structures of saxiphilin (Sxph), a bullfrog high-affinity STX-binding protein, alone and bound to STX. The structures reveal a novel high-affinity STX-binding site built from a "proto-pocket" on a transferrin scaffold that also bears thyroglobulin domain protease inhibitor repeats. Comparison of Sxph and voltage-gated sodium channel STX-binding sites reveals a convergent toxin recognition strategy comprising a largely rigid binding site where acidic side chains and a cation-π interaction engage STX. These studies reveal molecular rules for STX recognition, outline how a toxin-binding site can be built on a naïve scaffold, and open a path to developing protein sensors for environmental STX monitoring and new biologics for STX intoxication mitigation.
Collapse
Affiliation(s)
- Tien-Jui Yen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - J. Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel L. Minor
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- California Institute for Quantitative Biomedical Research, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
25
|
Lukowski AL, Narayan ARH. Natural Voltage-Gated Sodium Channel Ligands: Biosynthesis and Biology. Chembiochem 2019; 20:1231-1241. [PMID: 30605564 PMCID: PMC6579537 DOI: 10.1002/cbic.201800754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.
Collapse
Affiliation(s)
- April L Lukowski
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|