1
|
Köttner L, Dube H. Path-Independent All-Visible Orthogonal Photoswitching for Applications in Multi-Photochromic Polymers and Molecular Computing. Angew Chem Int Ed Engl 2024; 63:e202409214. [PMID: 38958439 DOI: 10.1002/anie.202409214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Synthetic molecular photoswitches have taken center stage as high-precision tools to introduce light-responsiveness at the smallest scales. Today they are found in all areas of applied chemistry, covering materials research, chemical biology, catalysis, or nanotechnology. For a next step of applicability truly orthogonal photoswitching is highly desirable but to date such independent addressability of different photoswitches remains highly challenging. Herein we present the first example of all-visible, all-light responsive, and path- independent orthogonal photoswitching. By combining two recently developed indigoid photoswitches - peri-anthracenethioindigo and a rhodanine-based chromophore - a four-state system is established and each state can be accessed in high yields completely independently and also with visible light irradiation only. The four states give rise to four different colors, which can be transferred to a solid polymer matrix to yield a versatile multi-state photochromic material. Further, combination with a fluorescent dye as a third component is possible, demonstrating the applicability of this orthogonal photoswitching system in all-photonic molecular logic behavior and information processing.
Collapse
Affiliation(s)
- Laura Köttner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Hobich J, Feist F, Werner P, Carroll JA, Fuhr O, Blasco E, Mutlu H, Barner-Kowollik C. Quantification of Synergistic Two-Color Covalent Bond Formation. Angew Chem Int Ed Engl 2024:e202413530. [PMID: 39352041 DOI: 10.1002/anie.202413530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Indexed: 11/08/2024]
Abstract
The emergence of highly wavelength resolved reactivity information for complex photochemical reaction processes allows the establishment of multi-color reaction modes. One particularly powerful mode is the synergistic two-color reaction, where two colors of light have to be present in the same volume element to either enable or enhance photochemical reactivity that leads to a specific photoproduct. Herein, we introduce a two-color synergistic photochemical reaction system based on a diaryl indenone epoxide (DIO) photoswitch and the cis-to-trans isomerization of a bridged ring-strained azobenzene (SA), which respond to ultraviolet (365 nm) and visible light (430 nm), respectively, with different rates, forming a well-defined heterocyclic photoadduct, DIOSA, that we structurally confirm via single crystal x-ray diffraction (SXRD). To quantitatively capture the effectiveness of the dual-color irradiation as a function of the reaction conditions such as light intensity and starting material ratio as a function of product yield, we introduce a parameter, the photochemical synergistic ratioφ s y n ${{\phi{} }_{syn}}$ . A reducedφ s y n ${{\phi{} }_{syn}}$ termedφ s y n 0 ${{\phi{} }_{syn}^{0}}$ -that extrapolates to conditions of infinitesimal conversions-allows to compare the efficiency of the synergistic photochemistry at varying reaction conditions.
Collapse
Affiliation(s)
- Jan Hobich
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Florian Feist
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Phillip Werner
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Joshua A Carroll
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Eva Blasco
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, Heidelberg, 69120, Germany
| | - Hatice Mutlu
- Institut de Science des Matériaux de Mulhouse (IS2M), UMR 7361 CNRS/Université de Haute Alsace (UHA), 15 rue Jean Starcky, Mulhouse Cedex, 68057, France
| | - Christopher Barner-Kowollik
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131, Karlsruhe, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Yang L, Lu H, Zhang X, Zhu L, Xiong X, Xiao T, Zhu L. One-step cascade amplification system based on entropy-driven catalysis and DNAzyme triggered DNA walker for label-free detection of acetamiprid. Food Chem 2024; 463:141497. [PMID: 39368201 DOI: 10.1016/j.foodchem.2024.141497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Herein, an electrochemical aptasensor for highly sensitive detection of acetamiprid (ACE) was constructed based on a one-step cascade amplification strategy. This innovative strategy integrated DNA walker containing DNAzyme sequence into entropy-driven catalysis (EDC) system. The trigger strand was released by aptamer-specific binding to ACE, initiating the EDC amplification circuit and delivering DNA walker strands. The dangling DNA walker continuously bound and cleaved hairpin substrate to form G-quadruplex fragments with the assistance of Mg2+. The G-quadruplex fragments folded and captured hemin to form multitudinous G-quadruplex/hemin complexes in the presence of K+, generating significantly enhanced current, enabling enzyme-free, label-free and highly sensitive detection of ACE, with a linear detection range of 100 fM to 50 nM and a detection limit of 68.36 fM (S/N = 3). The constructed aptasensor achieved the reliable detection of ACE in vegetable soil and cucumber samples, demonstrating its potential application prospects in environmental protection and food supervision.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Hao Lu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xuemei Zhang
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Li Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Xiaoli Xiong
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Ting Xiao
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China
| | - Liping Zhu
- Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| |
Collapse
|
5
|
Liu Q, Zhang Q, Zhang Y, Tian F, Long K, Yang Y, Wang W, Peng C, Wang H. A recognition-induced three-dimensional bipedal DNA walker for highly sensitive detection of APE1. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6220-6228. [PMID: 39193784 DOI: 10.1039/d4ay01353k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
In contrast to the unipedal DNA walker, a bipedal DNA walker features a broader walking area and exhibits faster walking kinetics, leading to enhanced amplification efficiency. In this study, we designed a stochastic three-dimensional (3D) bipedal DNA walker, capable of navigating AuNP-based 3D tracks, driven by exonuclease III (Exo III). This detection system enables the linear detection of the non-invasive biomarker apurinic/apyrimidinic endonuclease 1 (APE1) activity across a range of 0 to 120 U per mL, with a detection limit of 0.03 U per mL. The platform not only offers a novel DNA walker for sensitive APE1 detection in cell lysate but also facilitates the precise assessment of NCA's inhibitory effect on APE1. This research holds promise for future screening of other potential APE1 inhibitors.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Yuting Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Fanghong Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Kang Long
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, 410208, Changsha, China.
| |
Collapse
|
6
|
Anderson T, Wu W, Sirbu O, Tong K, Siti W, Rui Liu X, Kou B, Murayama K, Asanuma H, Wang Z. A Light-Powered Single-Stranded DNA Molecular Motor with Colour-Selective Single-Step Control. Angew Chem Int Ed Engl 2024; 63:e202405250. [PMID: 38782715 DOI: 10.1002/anie.202405250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/09/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Top-down control of small motion is possible through top-down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro- or nano-electromechanical systems) in the current precision technology. Improving top-down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single-stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track-walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano-optomechanical driving mechanism pushes the top-down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor-based precision technology and also motor synchronization for amplified effects.
Collapse
Affiliation(s)
- Tommy Anderson
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Wei Wu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Olga Sirbu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Keshao Tong
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Winna Siti
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Xiao Rui Liu
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
| | - Bo Kou
- Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, School of Materials Science and Engineering, Nanjing Institute of Technology, 211100, Nanjing, China
| | - Keiji Murayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, 464-8603, Nagoya, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, 464-8603, Nagoya, Japan
| | - Zhisong Wang
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore
- Integrated Science and Engineering Programme, NUS Graduate School, 119077, Singapore, Singapore
| |
Collapse
|
7
|
Jiang M, Zhou J, Chai Y, Yuan R. Ultrahigh-Speed 3D DNA Walker with Dual Self-Protected DNAzymes for Ultrasensitive Fluorescence Detection and Intracellular Imaging of microRNA. Anal Chem 2024; 96:9866-9875. [PMID: 38835317 DOI: 10.1021/acs.analchem.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Herein, a dual self-protected DNAzyme-based 3D DNA walker (dSPD walker), composed of activated dual self-protected walking particles (ac-dSPWPs) and track particles (TPs), was constructed for ultrasensitive and ultrahigh-speed fluorescence detection and imaging of microRNAs (miRNAs) in living cells. Impressively, compared with the defect that "one" target miRNA only initiates "one" walking arm of the conventional single self-protected DNAzyme walker, the dSPD walker benefits from the secondary amplification and spatial confinement effect and could guide "one" target miRNA to generate "n" secondary targets, thereby initiating "n" nearby walking strands immediately, realizing the initial rate over one-magnitude-order faster than that of the conventional one. Moreover, in the process of relative motion between ac-dSPWPs and TPs, the ac-dSPWPs could cleave multiple substrate strands simultaneously to speed up movement and reduce the derailment rate, as well as combine with successive TPs to facilitate a large amount of continuous signal accumulation, achieving an ultrafast detection of miRNA-221 within 10 min in vitro and high sensitivity with a low detection limit of 0.84 pM. In addition, the DNA nanospheres obtained by the rolling circle amplification reaction can capture the Cy5 fluorescence dispersed in liquids, which achieves the high-contrast imaging of miRNA-221, resulting in further ultrasensitive imaging of miRNA-221 in cancer cells. The proposed strategy has made a bold innovation in the rapid and sensitive detection as well as intracellular imaging of low-abundance biomarkers, offering promising application in early diagnosis and relevant research of cancer and tumors.
Collapse
Affiliation(s)
- Mengshi Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Jie Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
8
|
Ma C, Li S, Zeng Y, Lyu Y. DNA-Based Molecular Machines: Controlling Mechanisms and Biosensing Applications. BIOSENSORS 2024; 14:236. [PMID: 38785710 PMCID: PMC11117991 DOI: 10.3390/bios14050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The rise of DNA nanotechnology has driven the development of DNA-based molecular machines, which are capable of performing specific operations and tasks at the nanoscale. Benefitting from the programmability of DNA molecules and the predictability of DNA hybridization and strand displacement, DNA-based molecular machines can be designed with various structures and dynamic behaviors and have been implemented for wide applications in the field of biosensing due to their unique advantages. This review summarizes the reported controlling mechanisms of DNA-based molecular machines and introduces biosensing applications of DNA-based molecular machines in amplified detection, multiplex detection, real-time monitoring, spatial recognition detection, and single-molecule detection of biomarkers. The challenges and future directions of DNA-based molecular machines in biosensing are also discussed.
Collapse
Affiliation(s)
- Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
- Furong Laboratory, Changsha 410082, China
| |
Collapse
|
9
|
Bargstedt J, Reinschmidt M, Tydecks L, Kolmar T, Hendrich CM, Jäschke A. Photochromic Nucleosides and Oligonucleotides. Angew Chem Int Ed Engl 2024; 63:e202310797. [PMID: 37966433 DOI: 10.1002/anie.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Photochromism is a reversible phenomenon wherein a material undergoes a change in color upon exposure to light. In organic photochromes, this effect often results from light-induced isomerization reactions, leading to alterations in either the spatial orientation or electronic properties of the photochrome. The incorporation of photochromic moieties into biomolecules, such as proteins or nucleic acids, has become a prevalent approach to render these biomolecules responsive to light stimuli. Utilizing light as a trigger for the manipulation of biomolecular structure and function offers numerous advantages compared to other stimuli, such as chemical or electrical treatments, due to its non-invasive nature. Consequently, light proves particularly advantageous in cellular and tissue applications. In this review, we emphasize recent advancements in the field of photochromic nucleosides and oligonucleotides. We provide an overview of the design principles of different classes of photochromes, synthetic strategies, critical analytical challenges, as well as structure-property relationships. The applications of photochromic nucleic acid derivatives encompass diverse domains, ranging from the precise photoregulation of gene expression to the controlled modulation of the three-dimensional structures of oligonucleotides and the development of DNA-based fluorescence modulators. Moreover, we present a future perspective on potential modifications and applications.
Collapse
Affiliation(s)
- Jörn Bargstedt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Martin Reinschmidt
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Leon Tydecks
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Theresa Kolmar
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Christoph M Hendrich
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
10
|
Centola M, Poppleton E, Ray S, Centola M, Welty R, Valero J, Walter NG, Šulc P, Famulok M. A rhythmically pulsing leaf-spring DNA-origami nanoengine that drives a passive follower. NATURE NANOTECHNOLOGY 2024; 19:226-236. [PMID: 37857824 PMCID: PMC10873200 DOI: 10.1038/s41565-023-01516-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023]
Abstract
Molecular engineering seeks to create functional entities for modular use in the bottom-up design of nanoassemblies that can perform complex tasks. Such systems require fuel-consuming nanomotors that can actively drive downstream passive followers. Most artificial molecular motors are driven by Brownian motion, in which, with few exceptions, the generated forces are non-directed and insufficient for efficient transfer to passive second-level components. Consequently, efficient chemical-fuel-driven nanoscale driver-follower systems have not yet been realized. Here we present a DNA nanomachine (70 nm × 70 nm × 12 nm) driven by the chemical energy of DNA-templated RNA-transcription-consuming nucleoside triphosphates as fuel to generate a rhythmic pulsating motion of two rigid DNA-origami arms. Furthermore, we demonstrate actuation control and the simple coupling of the active nanomachine with a passive follower, to which it then transmits its motion, forming a true driver-follower pair.
Collapse
Affiliation(s)
- Mathias Centola
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
| | - Erik Poppleton
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Max-Planck-Institute for Medical Research, Heidelberg, Germany
| | - Sujay Ray
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | | | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA
| | - Julián Valero
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany
- Interdisciplinary Nanoscience Center - INANO-MBG, iNANO-huset, Århus, Denmark
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, Ann Arbor, MI, USA.
| | - Petr Šulc
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Michael Famulok
- LIMES Program Unit Chemical Biology & Medicinal Chemistry, c/o Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Bonn, Germany.
- Max-Planck Institute for Neurobiology of Behaviour, Bonn, Germany.
| |
Collapse
|
11
|
Kosara S, Singh R, Bhatia D. Structural DNA nanotechnology at the nexus of next-generation bio-applications: challenges and perspectives. NANOSCALE ADVANCES 2024; 6:386-401. [PMID: 38235105 PMCID: PMC10790967 DOI: 10.1039/d3na00692a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
DNA nanotechnology has significantly progressed in the last four decades, creating nucleic acid structures widely used in various biological applications. The structural flexibility, programmability, and multiform customization of DNA-based nanostructures make them ideal for creating structures of all sizes and shapes and multivalent drug delivery systems. Since then, DNA nanotechnology has advanced significantly, and numerous DNA nanostructures have been used in biology and other scientific disciplines. Despite the progress made in DNA nanotechnology, challenges still need to be addressed before DNA nanostructures can be widely used in biological interfaces. We can open the door for upcoming uses of DNA nanoparticles by tackling these issues and looking into new avenues. The historical development of various DNA nanomaterials has been thoroughly examined in this review, along with the underlying theoretical underpinnings, a summary of their applications in various fields, and an examination of the current roadblocks and potential future directions.
Collapse
Affiliation(s)
- Sanjay Kosara
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| | - Ramesh Singh
- Department of Mechanical Engineering, Colorado State University Fort Collins CO USA
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar Palaj Gujarat 382355 India
| |
Collapse
|
12
|
Liu XR, Loh IY, Siti W, Too HL, Anderson T, Wang Z. A light-operated integrated DNA walker-origami system beyond bridge burning. NANOSCALE HORIZONS 2023; 8:827-841. [PMID: 37038716 DOI: 10.1039/d2nh00565d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Integrating rationally designed DNA molecular walkers and DNA origami platforms is a promising route towards advanced nano-robotics of diverse functions. Unleashing the full potential in this direction requires DNA walker-origami systems beyond the present simplistic bridge-burning designs for automated repeatable operation and scalable nano-robotic functions. Here we report such a DNA walker-origami system integrating an advanced light-powered DNA bipedal walker and a ∼170 nm-long rod-like DNA origami platform. This light-powered walker is fully qualified as a genuine translational molecular motor, and relies entirely on pure mechanical effects that are complicated by the origami surface but must be preserved for the walker's proper operation. This is made possible by tailor-designing the origami for optimal match with the walker to best preserve its core mechanics. A new fluorescence method is combined with site-controlled motility experiments to yield distinct and reliable signals for the walker's self-directed and processive motion despite origami-complicated fluorophore emission. The resultant integrated DNA walker-origami system provides a 'seed' system for future development of advanced light-powered DNA nano-robots (e.g., for scalable walker-automated chemical synthesis), and also truly bio-mimicking nano-muscles powered by genuine artificial translational molecular motors.
Collapse
Affiliation(s)
- Xiao Rui Liu
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Iong Ying Loh
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Winna Siti
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Hon Lin Too
- Department of Physics, National University of Singapore, 117542, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 117542, Singapore
| | - Tommy Anderson
- Department of Physics, National University of Singapore, 117542, Singapore.
| | - Zhisong Wang
- Department of Physics, National University of Singapore, 117542, Singapore.
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, 117542, Singapore
| |
Collapse
|
13
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
14
|
Abstract
miRNAs in circulating blood have been regarded as promising biomarkers for the diagnosis of a series of diseases. Development of ultrasensitive, reliable, and convenient methods for miRNA assay is of great significance. Herein, we present a novel electrochemical sensing strategy. The assembly of DNA walker strands on membrane-coated nanomaterials, target-mediated recycling activation, and electrochemical signal enrichment are integrated. Multipedal DNA walking with magnetic cores and a catalytic hairpin assembly at the electrode lead to the increase of electrochemical response, which can be used to probe initial target miRNA. This DNA walking nanomachine shows enhanced signal amplification efficiency and facile magnetic separation steps. It enables rapid analysis of miRNA at the attomole level and performs satisfactorily in samples of human circulating blood. Given the powerful sensitivity, facile operation, and excellent specificity, this magnetic multipedal DNA walker provides a promising way to determine miRNA level for biomedical applications.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
15
|
Perrot A, Wang WZ, Buhler E, Moulin E, Giuseppone N. Bending Actuation of Hydrogels through Rotation of Light-Driven Molecular Motors. Angew Chem Int Ed Engl 2023; 62:e202300263. [PMID: 36715696 DOI: 10.1002/anie.202300263] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
The unidirectional rotation of chemically crosslinked light-driven molecular motors is shown to progressively shift the swelling equilibrium of hydrogels. The concentration of molecular motors and the initial strand density of the polymer network are key parameters to modulate the macroscopic contraction of the material, and both parameters can be tuned using polymer chains of different molecular weights. These findings led to the design of optimized hydrogels revealing a half-time contraction of approximately 5 min. Furthermore, under inhomogeneous stimulation, the local contraction event was exploited to design useful bending actuators with an energy output 400 times higher than for previously reported self-assembled systems involving rotary motors. In the present configuration, we measure that a single molecular motor can lift up loads of 200 times its own molecular weight.
Collapse
Affiliation(s)
- Alexis Perrot
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France.,School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Wen-Zhi Wang
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| | - Eric Buhler
- Matière et Systèmes Complexes (MSC), UMR CNRS 7057, Université Paris Cité, Bâtiment Condorcet, 75013, Paris, France
| | - Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000, Strasbourg, France
| |
Collapse
|
16
|
Li JH, Liu JL, Zhang XL, Zhu XC, Yuan R, Chai YQ. Ultrasensitive Electrochemiluminescence Biosensor Based on 2D Co 3O 4 Nanosheets as a Coreaction Accelerator and Highly Ordered Rolling DNA Nanomachine as a Signal Amplifier for the Detection of MicroRNA. Anal Chem 2023; 95:4131-4137. [PMID: 36799666 DOI: 10.1021/acs.analchem.2c05116] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A novel ultrasensitive electrochemiluminescence (ECL) biosensor was constructed using two-dimensional (2D) Co3O4 nanosheets as a novel coreaction accelerator of the luminol/H2O2 ECL system for the detection of microRNA-21 (miRNA-21). Impressively, coreaction accelerator 2D Co3O4 nanosheets with effective mutual conversion of the Co2+/Co3+ redox pair and abundant active sites could promote the decomposition of coreactant H2O2 to generate more superoxide anion radicals (O2•-), which reacted with luminol for significantly enhancing ECL signals. Furthermore, the trace target miRNA-21 was transformed into a large number of G-wires through the strand displacement amplification (SDA) process to self-assemble the highly ordered rolling DNA nanomachine (HORDNM), which could tremendously improve the detection sensitivity of biosensors. Hence, on the basis of the novel luminol/H2O2/2D Co3O4 nanosheet ternary ECL system, the biosensor implemented ultrasensitive detection of miRNA-21 with a detection limit as low as 4.1 aM, which provided a novel strategy to design an effective ECL emitter for ultrasensitive detection of biomarkers for early disease diagnosis.
Collapse
Affiliation(s)
- Jia-Hang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao-Long Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xiao-Chun Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
17
|
Xu Z, Wang J, Jia Z, Wu YX, Gan N, Yu S. A microfluidic chip-based multivalent DNA walker amplification biosensor for the simultaneous detection of multiple food-borne pathogens. Analyst 2023; 148:1093-1101. [PMID: 36722984 DOI: 10.1039/d2an01941h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The rapid, simultaneous, sensitive detection of the targets has important application prospects for disease diagnosis and biomedical studies. However, in practical applications, the content of the targets is usually very low, and signal amplification strategies are often needed to improve the detection sensitivity. DNAzyme-driven DNA walkers are an excellent signal amplification strategy due to their outstanding specificity and sensitivity. Food-borne pathogens have always been a foremost threat to human health, and it is an urgent demand to develop a simple, rapid, sensitive, and portable detection method for food-borne pathogens. In addition, there are various species of pathogens, and it is difficult to simultaneously detect multiple pathogens by a single DNA walker. For this reason, a substrate strand with three rA cleavage sites was cleverly designed, and a multivalent DNA walker sensor combined with the microfluidic chip technology was proposed for the simultaneous, rapid, sensitive analysis of Vibrio parahaemolyticus, Salmonella typhimurium, and Staphylococcus aureus. The developed sensor could be used to detect pathogens simultaneously and efficiently with low detection limits and wide detection ranges. Moreover, the combination of gold stirring rod enrichment and DNA walker achieved double amplification, which greatly improved the detection sensitivity. More importantly, by changing the design of the substrate chain, the sensor was expected to be used to detect other targets, thus broadening the scope of practical applications. Therefore, the sensor can build novel detection tool platforms in the field of biosensing.
Collapse
Affiliation(s)
- Zhenli Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| | - Jiaqi Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| | - Zhijian Jia
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, Zhejiang province, 315211, China
| | - Yong-Xiang Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| | - Ning Gan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| | - Shaoning Yu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang province, 315211, China.
| |
Collapse
|
18
|
Wang Y, Ji H, Ma J, Luo H, He Y, Tang X, Wu L. Reversible On-Off Photoswitching of DNA Replication Using a Dumbbell Oligodeoxynucleotide. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248992. [PMID: 36558127 PMCID: PMC9785685 DOI: 10.3390/molecules27248992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
In most organisms, DNA extension is highly regulated; however, most studies have focused on controlling the initiation of replication, and few have been done to control the regulation of DNA extension. In this study, we adopted a new strategy for azODNs to regulate DNA extension, which is based on azobenzene oligonucleotide chimeras regulated by substrate binding affinity, and the conformation of the chimera can be regulated by a light source with a light wavelength of 365 nm. The results showed that the primer was extended with Taq DNA polymerase after visible light treatment, and DNA extension could be effectively hindered with UV light treatment. We also verify the reversibility of the photoregulation of primer extension through photoswitching of dumbbell asODNs by alternate irradiation with UV and visible light. Our method has the advantages of fast and simple, green response and reversible operations, providing a new strategy for regulating gene replication.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heming Ji
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Institute of Mechanical and Electrical Technician, Yiwu 322000, China
| | - Jian Ma
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Luo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Correspondence: (X.T.); (L.W.)
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Institute of Mechanical and Electrical Technician, Yiwu 322000, China
- Correspondence: (X.T.); (L.W.)
| |
Collapse
|
19
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
20
|
Zhou XM, Zhuo Y, Tu TT, Yuan R, Chai YQ. Construction of Fast-Walking Tetrahedral DNA Walker with Four Arms for Sensitive Detection and Intracellular Imaging of Apurinic/Apyrimidinic Endonuclease 1. Anal Chem 2022; 94:8732-8739. [PMID: 35678832 DOI: 10.1021/acs.analchem.2c01171] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, a novel tetrahedral DNA walker with four arms was engineered to travel efficiently on the 3D-tracks via catalyzed hairpin assembly autonomously, realizing the sensitive detection and activity assessment as well as intracellular imaging of apurinic/apyrimidinic endonuclease 1 (APE1). In contrast to traditional DNA walkers, the tetrahedral DNA walker with the rigid 3D framework structure and nonplanar multi-sites walking arms endowed with high collision efficiency, showing a fast walking rate and high nuclease resistance. Impressively, the initial rate of the tetrahedral DNA walker with four arms was 4.54 times faster than that of the free bipedal DNA walker and produced a significant fluorescence recovery in about 40 min, achieving a sensitive detection of APE1 with a low detection limit of 5.54× 10-6 U/μL as well as ultrasensitive intracellular APE1 fluorescence activation imaging. This strategy provides a novel DNA walker for accurate identification of low-abundance cancer biomarker and potential medical diagnosis.
Collapse
Affiliation(s)
- Xue-Mei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ting-Ting Tu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
21
|
Gao C, Vargas Jentzsch A, Moulin E, Giuseppone N. Light-Driven Molecular Whirligig. J Am Chem Soc 2022; 144:9845-9852. [PMID: 35605252 DOI: 10.1021/jacs.2c02547] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A unidirectional light-driven rotary motor was looped in a figure-of-eight molecule by linking two polymer chains between its stator and rotor parts. By properly tuning the size of these linkers, clockwise rotation of the motor under UV light was shown to create conformationally strained twists between the polymer chains, and in this tensed conformation, the energy stored in the molecular object was sufficient to trigger the reverse rotation of the motor back to its fully relaxed state. The functioning principle of this motorized molecular device appears very similar to that of macroscopic whirligig crafts used by children for fun. In addition, we found that in its out-of-equilibrium tensed state, the fluorescence emission of the molecular motor increased by 500% due to the mechanical constraints imposed by the polymer chains on its conjugated core. Finally, by calculating the apparent thermal energies of activation for the backward rotations at different levels of twisting, we quantitatively determined a lower estimate of the work generated by this rotary motor, from which a torque and a force were extracted, thus answering a long-term open question in this field of research.
Collapse
Affiliation(s)
- Chuan Gao
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| | - Andreas Vargas Jentzsch
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| | - Emilie Moulin
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| | - Nicolas Giuseppone
- SAMS Research Group, Université de Strasbourg, CNRS, Institut Charles Sadron UPR 22, 67000 Strasbourg, France
| |
Collapse
|
22
|
An electrochemical DNA sensor based on an integrated and automated DNA Walker. Bioelectrochemistry 2022; 147:108198. [DOI: 10.1016/j.bioelechem.2022.108198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 11/22/2022]
|
23
|
Song L, Zhuge Y, Zuo X, Li M, Wang F. DNA Walkers for Biosensing Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200327. [PMID: 35460209 PMCID: PMC9366574 DOI: 10.1002/advs.202200327] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Indexed: 05/07/2023]
Abstract
The ability to design nanostructures with arbitrary shapes and controllable motions has made DNA nanomaterials used widely to construct diverse nanomachines with various structures and functions. The DNA nanostructures exhibit excellent properties, including programmability, stability, biocompatibility, and can be modified with different functional groups. Among these nanoscale architectures, DNA walker is one of the most popular nanodevices with ingenious design and flexible function. In the past several years, DNA walkers have made amazing progress ranging from structural design to biological applications including constructing biosensors for the detection of cancer-associated biomarkers. In this review, the key driving forces of DNA walkers are first summarized. Then, the DNA walkers with different numbers of legs are introduced. Furthermore, the biosensing applications of DNA walkers including the detection- of nucleic acids, proteins, ions, and bacteria are summarized. Finally, the new frontiers and opportunities for developing DNA walker-based biosensors are discussed.
Collapse
Affiliation(s)
- Lu Song
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Zhuge
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| | - Xiaolei Zuo
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Min Li
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Fang Wang
- Department of CardiologyShanghai General HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200800China
| |
Collapse
|
24
|
Chen Y, Meng X, Lu H, Dong H. Engineering DNA walkers for bioanalysis: A review. Anal Chim Acta 2022; 1209:339339. [PMID: 35569865 DOI: 10.1016/j.aca.2021.339339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/19/2022]
Abstract
Considerable advances have been made in the design, modularization, functionalization, and regulation of DNA nanostructures over the past 40 years. These advances have accelerated the development of DNA nanomachines such as DNA walkers, dynamic nanomachines with walking feet, tracks, and driven forces, which have highly sensitive detection and signal amplification abilities that can be applied to various bioanalytical contexts and therapeutic strategies. Here, we describe a rational design of the nano-bio interface, the kinetics of DNA walkers and the strategies for improving their efficiency and sensitivity. We also outline the various bioanalytic and imaging applications to which DNA walkers have been applied, such as electrochemical and optical measurements, when integrated with other simulation and activation tools. Finally, we compare the performances of novel DNA walker-based strategies for bioanalysis and propose a method to improve DNA walker design.
Collapse
Affiliation(s)
- Yuchao Chen
- Research Center for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiangdan Meng
- Research Center for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
25
|
Wang M, Li X, He F, Li J, Wang HH, Nie Z. The Advances in Designer DNA Nanorobots Enabling Programmable Functions. Chembiochem 2022; 23:e202200119. [DOI: 10.1002/cbic.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/27/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Fang He
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Juan Li
- Hunan University College of Biology CHINA
| | - Hong-Hui Wang
- Hunan University College of Biology 410082 Changsha CHINA
| | - Zhou Nie
- Hunan University College of Chemistry and Chemical Engineering Yuelushan, Changsha, Hunan, 410082, P.R.China 410082 Changsha CHINA
| |
Collapse
|
26
|
Zhao LD, Yang X, Zhong X, zhuo Y. Advances in Electrochemiluminescence Biosensors Based on DNA Walkers. Chempluschem 2022; 87:e202200070. [DOI: 10.1002/cplu.202200070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Li-Dan Zhao
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Xia Yang
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - Xia Zhong
- Southwest University College of Chemistry and Chemical Engineering CHINA
| | - ying zhuo
- Southwest University College of Chemistry and Chemical Engineering No.2 Tiansheng RoadBeiBei District 400715 Chongqing CHINA
| |
Collapse
|
27
|
Liu XR, Hu X, Loh IY, Wang Z. A high-fidelity light-powered nanomotor from a chemically fueled counterpart via site-specific optomechanical fuel control. NANOSCALE 2022; 14:5899-5914. [PMID: 35373800 DOI: 10.1039/d1nr07964f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optically powered nanomotors are advantageous for clean nanotechnology over chemically fuelled nanomotors. The two motor types are further bounded by different physical principles. Despite the gap, we show here that an optically powered DNA bipedal nanomotor is readily created from a high-performing chemically fuelled counterpart by subjecting its fuel to cyclic site-specific optomechanical control - as if the fuel is optically recharged. Optimizing azobenzene-based control of the original nucleotide fuel selects a light-responsive fuel analog that replicates the different binding affinity of the fuel and reaction products. The resultant motor largely retains high-performing features of the original chemical motor, and achieves the highest directional fidelity among reported light-driven DNA nanomotors. This study thus demonstrates a novel strategy for transforming chemical nanomotors to optical ones for clean nanotechnology. The strategy is potentially applicable to many chemical nanomotors with oligomeric fuels like nucleotides, peptides and synthetic polymers, leading to a new class of light-powered nanomotors that are akin to chemical nanomotors and benefit from their generally high efficiency mechanistically. The motor from this study also provides a rare model system for studying the subtle boundary between chemical and optical nanomotors - a topic pertinent to chemomechanical and optomechanical energy conversion at the single-molecule level.
Collapse
Affiliation(s)
- Xiao Rui Liu
- Department of Physics, National University of Singapore, Singapore 117542
| | - Xinpeng Hu
- Department of Physics, National University of Singapore, Singapore 117542
| | - Iong Ying Loh
- Department of Physics, National University of Singapore, Singapore 117542
| | - Zhisong Wang
- Department of Physics, National University of Singapore, Singapore 117542
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117542.
| |
Collapse
|
28
|
Wang C, O'Hagan MP, Li Z, Zhang J, Ma X, Tian H, Willner I. Photoresponsive DNA materials and their applications. Chem Soc Rev 2022; 51:720-760. [PMID: 34985085 DOI: 10.1039/d1cs00688f] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoresponsive nucleic acids attract growing interest as functional constituents in materials science. Integration of photoisomerizable units into DNA strands provides an ideal handle for the reversible reconfiguration of nucleic acid architectures by light irradiation, triggering changes in the chemical and structural properties of the nanostructures that can be exploited in the development of photoresponsive functional devices such as machines, origami structures and ion channels, as well as environmentally adaptable 'smart' materials including nanoparticle aggregates and hydrogels. Moreover, photoresponsive DNA components allow control over the composition of dynamic supramolecular ensembles that mimic native networks. Beyond this, the modification of nucleic acids with photosensitizer functionality enables these biopolymers to act as scaffolds for spatial organization of electron transfer reactions mimicking natural photosynthesis. This review provides a comprehensive overview of these exciting developments in the design of photoresponsive DNA materials, and showcases a range of applications in catalysis, sensing and drug delivery/release. The key challenges facing the development of the field in the coming years are addressed, and exciting emergent research directions are identified.
Collapse
Affiliation(s)
- Chen Wang
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Michael P O'Hagan
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ziyuan Li
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Junji Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
29
|
Chen Y, Shi S. Advances and prospects of dynamic DNA nanostructures in biomedical applications. RSC Adv 2022; 12:30310-30320. [PMID: 36337940 PMCID: PMC9590593 DOI: 10.1039/d2ra05006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has broken many limitations of static DNA nanostructures, making precise, remote, and reversible control possible. DDNs are intelligent nanostructures with certain dynamic behaviors that are capable of responding to specific stimuli. The responsible stimuli of DDNs include exogenous metal ions, light, pH, etc., as well as endogenous small molecules such as GSH, ATP, etc. Due to the excellent stimulus responsiveness and other superior physiological characteristics of DDNs, they are now widely used in biomedical fields. For example, they can be applied in the fields of biosensing and bioimaging, which are able to detect biomarkers with greater spatial and temporal precision to help disease diagnosis and live cell physiological function studies. Moreover, they are excellent intelligent carriers for drug delivery in treating cancer and other diseases, achieving controlled release of drugs. And they can promote tissue regeneration and regulate cellular behaviors. Although some challenges need further study, such as the practical value in clinical applications, DDNs have shown great potential applications in the biomedical field. With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has great potential applications in the biomedical field.![]()
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| |
Collapse
|
30
|
Chang Z, Mao S, Zheng YY, Sheng J. Synthesis and Functionality Study of Photoswitchable Hydrazone Oligodeoxynucleotides. Curr Protoc 2021; 1:e295. [PMID: 34792862 DOI: 10.1002/cpz1.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This article provides a detailed procedure for the chemical synthesis and characterization of photoswitchable hydrazone phosphoramidite and its incorporation into oligodeoxynucleotides. The synthesis starts with commercially available deoxyuridine, followed by conversion of the 4-oxo into a 4-chloro moiety via Appel reaction to install the key hydrazone group in the absence of base. The hydrazone phosphoramidite building block is compatible with the conventional amidite chemistry protocols for solid-phase synthesis of oligodeoxynucleotides. Our method expands the current nucleotide pool by adding a novel, functional DNA building block that is suitable for a broad spectrum of applications, including the regulation of DNA-enzyme interactions and DNA synthesis by irradiation with cell-friendly blue light. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of photoswitchable hydrazone phosphoramidite Basic Protocol 2: Synthesis and purification of oligodeoxynucleotides containing the hydrazone photoswitch Basic Protocol 3: Primer extension assay for functionality studies of hydrazone cytidine.
Collapse
Affiliation(s)
- Zhihua Chang
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Song Mao
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Ya Ying Zheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| | - Jia Sheng
- Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
| |
Collapse
|
31
|
Wang Q, Liu Y, Yan J, Liu Y, Gao C, Ge S, Yu J. 3D DNA Walker-Assisted CRISPR/Cas12a Trans-Cleavage for Ultrasensitive Electrochemiluminescence Detection of miRNA-141. Anal Chem 2021; 93:13373-13381. [PMID: 34553925 DOI: 10.1021/acs.analchem.1c03183] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study, a CRISPR/Cas12a (LbCpf1)-mediated electrochemiluminescence (ECL) paper-based platform on the basis of a three-dimensional (3D) DNA walker was proposed for the ultrasensitive detection of miRNA-141. Initially, 3D-rGO with a tremendous loading space was modified on the paper working electrode (PWE) to construct an excellent conductive substrate and facilitate the growth of AuPd nanoparticles (NPs). Afterward, the AuPd NPs were introduced as the coreaction emitter medium of the 3D-rGO/PWE to provide convenience for the transformation between S2O82- and SO42-, amplifying the ECL emission of g-C3N4 nanosheets (NSs). Meanwhile, with the help of Nt.BsmAI nicking endonuclease, a 3D DNA walker signal amplifier was designed to convert and magnify the target miRNA-141 into a particular trigger sequence, which could act as activator DNA to motivate the trans-acting deoxyribonuclease activity of CRISPR/Cas12a to further achieve efficient annihilation of the ECL signal. Furthermore, the proposed multimechanism-driven biosensor exhibited excellent sensitivity and specificity, with a relatively low detection limit at 0.331 fM (S/N = 3) in the concentration range between 1 fM and 10 nM. Consequently, the designed strategy not only extended the application scope of CRISPR/Cas12a but also devoted a new approach for the clinical diagnosis of modern medicine.
Collapse
Affiliation(s)
- Qian Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Yaqi Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jixian Yan
- Shandong Provincial Center for Prevention and Control of Solid Waste and Hazardous Chemical Pollution, Jinan 250000, P.R. China
| | - Yunqing Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
32
|
|
33
|
Ning Y, Wang X, Hu J, Li L, Xiao R, Lu F. Graphene-based fluorometric determination of agrD gene transcription in methicillin-resistant Staphylococcus aureus using exonuclease III-aided target recycling and DNA walker cascade amplification. Mikrochim Acta 2021; 188:269. [PMID: 34297210 DOI: 10.1007/s00604-021-04933-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022]
Abstract
A graphene-based bioassay is described for the fluorometric determination of agrD gene transcription (mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). This method includes exonuclease III (Exo III)-assisted target recycling and DNA walker cascade amplification. Hairpin1 (HP1) consists of a capture probe (CP) and DNA walker sequence. In the absence of the target, 5'-amino modified hairpin2 (HP2) labeled with carboxyfluorescein (FAM) at its 3' terminus is covalently linked to graphene via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) catalysis, resulting in the quenching of the FAM signal. The stem-loop structure of HP1 opens when the target is added to form partially complementary DNA/RNA hybrids. Exo III then initiates the target recycling process by cleaving the CP and DNA walker cascade reaction by automatic walking. This iterative reaction causes the FAM to dissociate from the graphene, and the fluorescence can be measured at excitation/emission wavelengths of 480/514 nm. Therefore, the target can be assayed by fluorescence. This method has a linear relationship with the concentration of target within the range 1 fM to 100 pM with a detection limit of 1 fM. The developed bioassay was used to monitor biofilm formation and investigate the mechanism of drug action with satisfactory results. Schematic representation of the graphene-based fluorescent bioassay for agrD gene transcription in methicillin-resistant Staphylococcus aureus by using exonuclease III-aided target recycling and DNA walker cascade amplification.
Collapse
Affiliation(s)
- Yi Ning
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Xiaoqi Wang
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jue Hu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Ling Li
- Experimental Center of molecular biology, The Chinese Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Rong Xiao
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Fangguo Lu
- Department of Microbiology, The Medicine School of Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.
| |
Collapse
|
34
|
Simeth NA, Kobayashi S, Kobauri P, Crespi S, Szymanski W, Nakatani K, Dohno C, Feringa BL. Rational design of a photoswitchable DNA glue enabling high regulatory function and supramolecular chirality transfer. Chem Sci 2021; 12:9207-9220. [PMID: 34276952 PMCID: PMC8261765 DOI: 10.1039/d1sc02194j] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Short, complementary DNA single strands with mismatched base pairs cannot undergo spontaneous formation of duplex DNA (dsDNA). Mismatch binding ligands (MBLs) can compensate this effect, inducing the formation of the double helix and thereby acting as a molecular glue. Here, we present the rational design of photoswitchable MBLs that allow for reversible dsDNA assembly by light. Careful choice of the azobenzene core structure results in excellent band separation of the E and Z isomers of the involved chromophores. This effect allows for efficient use of light as an external control element for duplex DNA formation and for an in-depth study of the DNA-ligand interaction by UV-Vis, SPR, and CD spectroscopy, revealing a tight mutual interaction and complementarity between the photoswitchable ligand and the mismatched DNA. We also show that the configuration of the switch reversibly dictates the conformation of the DNA strands, while the dsDNA serves as a chiral clamp and translates its chiral information onto the ligand inducing a preference in helical chirality of the Z isomer of the MBLs.
Collapse
Affiliation(s)
- Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Shotaro Kobayashi
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Piermichele Kobauri
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Stefano Crespi
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen Hanzeplein 1 9713 GZ Groningen The Netherlands
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka Ibaraki 567-0047 Japan
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
35
|
Cheng HB, Zhang S, Qi J, Liang XJ, Yoon J. Advances in Application of Azobenzene as a Trigger in Biomedicine: Molecular Design and Spontaneous Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007290. [PMID: 34028901 DOI: 10.1002/adma.202007290] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Azobenzene is a well-known derivative of stimulus-responsive molecular switches and has shown superior performance as a functional material in biomedical applications. The results of multiple studies have led to the development of light/hypoxia-responsive azobenzene for biomedical use. In recent years, long-wavelength-responsive azobenzene has been developed. Matching the longer wavelength absorption and hypoxia-response characteristics of the azobenzene switch unit to the bio-optical window results in a large and effective stimulus response. In addition, azobenzene has been used as a hypoxia-sensitive connector via biological cleavage under appropriate stimulus conditions. This has resulted in on/off state switching of properties such as pharmacology and fluorescence activity. Herein, recent advances in the design and fabrication of azobenzene as a trigger in biomedicine are summarized.
Collapse
Affiliation(s)
- Hong-Bo Cheng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Shuchun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Ji Qi
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing, 100029, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
36
|
Liu YH, Gao JL, Liu JX, Liu D, Fang WK, Zheng B, Tang HW, Li CY. Photo-gated and self-powered three-dimensional DNA motors with boosted biostability for exceptionally precise and efficient tracing of intracellular survivin mRNA. Biosens Bioelectron 2021; 190:113445. [PMID: 34153827 DOI: 10.1016/j.bios.2021.113445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Benefiting from the outstanding signal amplification effect and the admirable construction flexibility, the currently proposed DNA motors (particularly DNA walkers) based biosensing concepts have provided a forceful fluorescence imaging tool for intracellular detection. Even so, this promising sensing means is not only subject to poor controllability and prone to produce false signals but also requires exogenous powering forces owing to the common employment of DNAzyme. In response to these challenges, we are herein motivated to present some meaningful solving strategies. For one thing, the surfaces of gold nanoparticles are conducted with a photo-gated walking behavior by introducing a photocleave mode, under which the light-switchable DNA walkers are capable of being selectively activated via an external ultraviolet source to faultlessly prevent the sensing frame from being pre-initiated during cellular uptake and intracellular delivery. For another, the intracellular biothiols are consumed by MnO2 nanosheets to effectively avoid the competitions to Au-S bonds to eliminate potential false outputs and also self-supply sufficient cofactors (Mn2+) to actualize a self-powered operation pattern as well as facilitate the endocytosis process. Following these breakthroughs, a favorable analysis performance towards a model tumor biomarker (survivin mRNA) is endowed with the newly raised biosensor, whose sensitivity is low to pM level with a sound specificity for identifying single base mismatching. Moreover, the significantly improved autonomous three-dimensional DNA walkers can be used to determine and dynamically trace the targets in live cancer cells with an exceptional precise and efficient manner, commendably impelling the sensing ability of DNA motors in biological specimens.
Collapse
Affiliation(s)
- Yu-Heng Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Jun-Xian Liu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Bei Zheng
- Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.
| |
Collapse
|
37
|
Wang L, Zeng H, Yang X, Chen C, Ou S. Integrated nicking enzyme-powered numerous-legged DNA walker prepared by rolling circle amplification for fluorescence detection of microRNA. Mikrochim Acta 2021; 188:214. [PMID: 34052953 DOI: 10.1007/s00604-021-04875-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/20/2021] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) have been accepted as promising non-invasive biomarkers for cancer early diagnosis. Developing amplified sensing strategies for detecting ultralow concentration of miRNAs in clinical samples still requires much effort. Herein, an integrated fluorescence biosensor using nicking enzyme-powered numerous-feet DNA walking machine was developed for ultrasensitive detection of miRNA. A long numerous-feet walker produced by target-triggered rolling circle amplification autonomously moves along the defined DNA tracks on gold nanorods (AuNRs) with the help of nicking enzyme, leading to the recovery of fluorescence. This results in an amplified fluorescence signal, typically measured at 518 nm emission wavelength. Benefiting from the long walker that dramatically improves movement range, the homogenous and one-step strategy realizes ultrahigh sensitivity with a limit of detection of 0.8 fM. Furthermore, this walking machine has been successfully used to quantification of miRNA in clinical serum samples. The consistency of the gained results between of the developed strategy and reverse transcription quantitative polymerase chain reaction (RT-qPCR) shows that the sensing method has great promise for tumor diagnostics based on nucleic acid. Schematic representation of the fluorescent biosensing strategy, numerous-legged DNA walker prepared by rolling circle amplification on gold nanorods (AuNRs) for microRNA analysis, which can be applied in real samples with good results.
Collapse
Affiliation(s)
- Lihua Wang
- Health Management Medical Examination Center, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 404600, China
| | - Hanqing Zeng
- Department of Hematology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 404600, China
| | - Xiaolan Yang
- Department of Neurology, the Fengjie People's Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Fengjie County, Chongqing, 404600, China
| | - Chaoming Chen
- Department of Neurology, the Fengjie People's Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Fengjie County, Chongqing, 404600, China
| | - Shu Ou
- Department of Neurology, the Fengjie People's Hospital, Fengjie Branch of the Second Affiliated Hospital of Chongqing Medical University, Fengjie County, Chongqing, 404600, China.
| |
Collapse
|
38
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
39
|
Xu M, Tang D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal Chim Acta 2021; 1171:338523. [PMID: 34112433 DOI: 10.1016/j.aca.2021.338523] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
DNA walkers, a type of dynamic nanomachines, have become the subject of burgeoning research in the field of biology. These walkers are powered by driving forces based on strand displacement reactions, protein enzyme/DNAzyme reactions and conformational transitions. With the unique properties of high directionality, flexibility and efficiency, DNA walkers move progressively and autonomously along multiple dimensional tracks, offering abundant and promising applications in biosensing, material assembly and synthesis, and early cancer diagnosis. Notably, DNA walkers identified as signal amplifiers can be combined with various amplification approaches to enhance signal transduction and amplify biosensor sensing signals. Herein, we systematically and comprehensively review the walking principles of various DNA walkers and the recent progress on multiple dimensional tracks by presenting representative examples and an insightful discussion. We also summarized and categorized the diverse signal amplification strategies with which DNA walkers have coupled. Finally, we outline the challenges and future trends of DNA walker machines in emerging analytical fields.
Collapse
Affiliation(s)
- Mingdi Xu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, People's Republic of China; Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
40
|
Yamano Y, Murayama K, Asanuma H. Dual Crosslinking Photo‐Switches for Orthogonal Photo‐Control of Hybridization Between Serinol Nucleic Acid and RNA. Chemistry 2020; 27:4599-4604. [DOI: 10.1002/chem.202003528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Yuuhei Yamano
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| | - Keiji Murayama
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| |
Collapse
|
41
|
Abstract
DNA walkers are molecular machines that can move with high precision onthe nanoscale due to their structural and functional programmability. Despite recent advances in the field that allow exploring different energy sources, stimuli, and mechanisms of action for these nanomachines, the continuous operation and reusability of DNA walkers remains challenging because in most cases the steps, once taken by the walker, cannot be taken again. Herein we report the path regeneration of a burnt-bridges DNA catenane walker using RNase A. This walker uses a T7RNA polymerase that produces long RNA transcripts to hybridize to the path and move forward while the RNA remains hybridized to the path and blocks it for an additional walking cycle. We show that RNA degradation triggered by RNase A restores the path and returns the walker to the initial position. RNase inhibition restarts the function of the walker.
Collapse
Affiliation(s)
- Julián Valero
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
- Center of Advanced European Studies and ResearchLudwig-Erhard-Allee 253175BonnGermany
- Present address: Interdisciplinary Nanoscience Center—INANO-MBG, iNANO-husetGustav Wieds Vej 14, building 1592, 3288000Aarhus CDenmark
| | - Michael Famulok
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
- Center of Advanced European Studies and ResearchLudwig-Erhard-Allee 253175BonnGermany
| |
Collapse
|
42
|
Valero J, Škugor M. Mechanisms, Methods of Tracking and Applications of DNA Walkers: A Review. Chemphyschem 2020; 21:1971-1988. [DOI: 10.1002/cphc.202000235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/04/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Julián Valero
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Marko Škugor
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| |
Collapse
|
43
|
Ma Y, Centola M, Keppner D, Famulok M. Interlocked DNA Nanojoints for Reversible Thermal Sensing. Angew Chem Int Ed Engl 2020; 59:12455-12459. [PMID: 32567796 PMCID: PMC7384075 DOI: 10.1002/anie.202003991] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/12/2020] [Indexed: 01/12/2023]
Abstract
The ability to precisely measure and monitor temperature at high resolution at the nanoscale is an important task for better understanding the thermodynamic properties of functional entities at the nanoscale in complex systems, or at the level of a single cell. However, the development of high-resolution and robust thermal nanosensors is challenging. The design, assembly, and characterization of a group of thermal-responsive deoxyribonucleic acid (DNA) joints, consisting of two interlocked double-stranded DNA (dsDNA) rings, is described. The DNA nanojoints reversibly switch between the static and mobile state at different temperatures without a special annealing process. The temperature response range of the DNA nanojoint can be easily tuned by changing the length or the sequence of the hybridized region in its structure, and because of its interlocked structure the temperature response range of the DNA nanojoint is largely unaffected by its own concentration; this contrasts with systems that consist of separated components.
Collapse
Affiliation(s)
- Yinzhou Ma
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Mathias Centola
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
- Center of Advanced European Studies and ResearchLudwig-Erhard-Allee 253175BonnGermany
| | - Daniel Keppner
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
| | - Michael Famulok
- LIMES Chemical Biology UnitUniversität BonnGerhard-Domagk-Straße 153121BonnGermany
- Center of Advanced European Studies and ResearchLudwig-Erhard-Allee 253175BonnGermany
| |
Collapse
|
44
|
Valero J, Famulok M. Regeneration of Burnt Bridges on a DNA Catenane Walker. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Julián Valero
- LIMES Chemical Biology UnitUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
- Present address: Interdisciplinary Nanoscience Center—INANO-MBG, iNANO-huset Gustav Wieds Vej 14, building 1592, 328 8000 Aarhus C Denmark
| | - Michael Famulok
- LIMES Chemical Biology UnitUniversität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
| |
Collapse
|
45
|
Hu Y, Wang Y, Yan J, Wen N, Xiong H, Cai S, He Q, Peng D, Liu Z, Liu Y. Dynamic DNA Assemblies in Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000557. [PMID: 32714763 PMCID: PMC7375253 DOI: 10.1002/advs.202000557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/07/2020] [Indexed: 05/13/2023]
Abstract
Deoxyribonucleic acid (DNA) has been widely used to construct homogeneous structures with increasing complexity for biological and biomedical applications due to their powerful functionalities. Especially, dynamic DNA assemblies (DDAs) have demonstrated the ability to simulate molecular motions and fluctuations in bionic systems. DDAs, including DNA robots, DNA probes, DNA nanochannels, DNA templates, etc., can perform structural transformations or predictable behaviors in response to corresponding stimuli and show potential in the fields of single molecule sensing, drug delivery, molecular assembly, etc. A wave of exploration of the principles in designing and usage of DDAs has occurred, however, knowledge on these concepts is still limited. Although some previous reviews have been reported, systematic and detailed reviews are rare. To achieve a better understanding of the mechanisms in DDAs, herein, the recent progress on the fundamental principles regarding DDAs and their applications are summarized. The relative assembly principles and computer-aided software for their designing are introduced. The advantages and disadvantages of each software are discussed. The motional mechanisms of the DDAs are classified into exogenous and endogenous stimuli-triggered responses. The special dynamic behaviors of DDAs in biomedical applications are also summarized. Moreover, the current challenges and future directions of DDAs are proposed.
Collapse
Affiliation(s)
- Yaqin Hu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Ying Wang
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Jianhua Yan
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Nachuan Wen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| | - Hongjie Xiong
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Shundong Cai
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Qunye He
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
| | - Dongming Peng
- Department of Medicinal ChemistrySchool of PharmacyHunan University of Chinese MedicineChangshaHunan410013P. R. China
| | - Zhenbao Liu
- Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan410013P. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan410013P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan410083P. R. China
| |
Collapse
|
46
|
Ma Y, Centola M, Keppner D, Famulok M. Interlocked DNA Nanojoints for Reversible Thermal Sensing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yinzhou Ma
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Mathias Centola
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
| | - Daniel Keppner
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
| | - Michael Famulok
- LIMES Chemical Biology Unit Universität Bonn Gerhard-Domagk-Straße 1 53121 Bonn Germany
- Center of Advanced European Studies and Research Ludwig-Erhard-Allee 2 53175 Bonn Germany
| |
Collapse
|
47
|
Xu J, Miyamoto S, Tojo S, Kawai K. Sulfonated Pyrene as a Photoregulator for Single‐Stranded DNA Looping. Chemistry 2020; 26:5075-5084. [DOI: 10.1002/chem.202000184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jie Xu
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Shunichi Miyamoto
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Sachiko Tojo
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| | - Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN)Osaka University Mihogaoka 8-1 Ibaraki, Osaka 567-0047 Japan
| |
Collapse
|
48
|
Ye T, Zhang Z, Yuan M, Cao H, Yin F, Wu X, Xu F. An All-in-One Aptasensor Integrating Enzyme Powered Three-Dimensional DNA Machine for Antibiotic Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2826-2831. [PMID: 32045247 DOI: 10.1021/acs.jafc.9b08143] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we have developed an all-in-one aptasensor based on an enzyme-driven three-dimensional DNA walker for antibiotic detection. To overcome the drawback of time-consuming methods, high-density substrate strands were anchored on the walking interface that accelerated the signal amplification efficiency. Such an all-in-one design integrated the functionality of target recognition, signal amplification, as well as signal output into a single probe. Upon addition of kanamycin, the activated walking strand moved along the track by the stepwise cleavage of a nicking enzyme, which resulted in the enhancement of the fluorescence intensity of the solution. Under the optimized conditions, the detection process was accomplished in 40 min with a low detection limit of 1.23 pM. This aptasensor was also applied in spiked milk samples with satisfactory recoveries of 97.76% to 105.33%, demonstrating an excellent stability and accuracy. Therefore, this all-in-one aptasensor shows great potential for applications in food safety.
Collapse
Affiliation(s)
- Tai Ye
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiwei Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Min Yuan
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Cao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fengqin Yin
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiuxiu Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Fei Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
49
|
Li J, Cai S, Zhou B, Meng X, Guo Q, Yang X, Huang J, Wang K. Photocaged FRET nanoflares for intracellular microRNA imaging. Chem Commun (Camb) 2020; 56:6126-6129. [DOI: 10.1039/d0cc02395g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we developed photocaged FRET nanoflares for spatiotemporal microRNA imaging in living cells. In other words, the probes will not work until they are exposed to UV light.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Shijun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Bing Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Xiangxian Meng
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| |
Collapse
|
50
|
Kanayama N, Kishi S, Takarada T, Maeda M. Photo-switching of blunt-end stacking between DNA strands immobilized on gold nanoparticles. Chem Commun (Camb) 2020; 56:14589-14592. [DOI: 10.1039/d0cc05085g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
End-to-end stacking of DNAs on gold nanoparticles was switched by terminal base pairing/unpairing triggered by the photo-isomerization of an azobenzene moiety nearby the DNA terminal.
Collapse
Affiliation(s)
- Naoki Kanayama
- Bioengineering Laboratory
- RIKEN Cluster for Pioneering Research
- Wako
- Japan
- Graduate School of Medicine
| | - Satomi Kishi
- Bioengineering Laboratory
- RIKEN Cluster for Pioneering Research
- Wako
- Japan
| | - Tohru Takarada
- Bioengineering Laboratory
- RIKEN Cluster for Pioneering Research
- Wako
- Japan
| | - Mizuo Maeda
- Bioengineering Laboratory
- RIKEN Cluster for Pioneering Research
- Wako
- Japan
- Graduate School of Medicine
| |
Collapse
|