1
|
Feng Z, Wang B, Zhou J, Liu L, Xie Z, Ma Y. Perylene Bisimide-Functionalized Triphenylmethyl Radicals Showing High Stability and Reversible Electrochemical Redox Properties. Chemistry 2024; 30:e202403244. [PMID: 39352132 DOI: 10.1002/chem.202403244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Indexed: 11/08/2024]
Abstract
This study presents a series of triphenylmethyl monoradicals incorporating varying numbers of peripheral perylene bisimide (PBI) substituents (1PBI-TTM⋅, 2PBI-TTM⋅ and 3PBI-TTM⋅). The incorporation of electron-withdrawing PBI substituents significantly enhances the stability of these carbon radicals, enabling them to display exceptional electrochemical redox reversibility. Notably, the electronic interplay between the PBI substituents and the central triphenylmethyl core facilitates unique and reversible multi-step redox reactions. Among the reported radicals, the tris-PBI-functionalized radical (3PBI-TTM⋅) demonstrates the remarkable ability to accommodate up to seven electrons under negative potentials, forming high valence anions. This research promotes the development of highly stable carbon radicals with superior electrochemical oxidation-reduction processes, presenting promising avenues for the advancement of electric energy storage technologies.
Collapse
Affiliation(s)
- Zhibin Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bohan Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yuguang Ma
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Li QL, Gong ZT, Gao XG, Ma H, Yao LF, Li XR, Wen JJ, Liu JJ, Guo H, Xia SB. Electrochemical lithium storage of a biactive organic molecule containing cyano and imine groups. Dalton Trans 2024; 53:15608-15617. [PMID: 39233653 DOI: 10.1039/d4dt02148g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
With an electron-deficient rigid planar structure and excellent π-π stacking ability, hexaazatriphenylene (HAT) and its derivatives are widely used as basic building blocks for constructing covalent organic frameworks (COFs), components of organic light-emitting diodes and solar cells, and electrode materials for lithium-ion batteries (LIBs). Here, a HAT derivative, hexaazatriphenylenehexacarbonitrile, is explored as an anode material for LIBs. The HAT anode exhibited high initial reversible capacities of 672 mA h g-1 at 100 mA g-1 and 550 mA h g-1 at 400 mA g-1 and stable cycling with a capacity of 503 mA h g-1 after 1000 cycles at 400 mA g-1 corresponding to a capacity retention of 91.5%. Furthermore, the lithium storage mechanism and the cause of the first irreversible capacity loss of the HAT anode were investigated by X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations. We have carried out a series of analyses on the mechanism of initial capacity loss. This study provides new insight on initial capacity loss and provides valuable insights into the molecular design and the electrochemical properties of HAT-based anode materials.
Collapse
Affiliation(s)
- Qi-Ling Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Zhi-Ting Gong
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xi-Guang Gao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Hang Ma
- Yunnan Yuntianhua Co., Ltd, Kunming 650228, China
| | - Li-Feng Yao
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Xin-Ru Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jia-Jia Wen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Hong Guo
- International Joint Research Center for Advanced Energy Materials of Yunnan Province, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Shu-Biao Xia
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
3
|
He X, Chen L, Baumgartner T. Modified Viologen- and Carbonylpyridinium-Based Electrodes for Organic Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48689-48705. [PMID: 37584306 DOI: 10.1021/acsami.3c09856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Efficient electrochemical energy storage has been identified as one of the most pressing needs for a sustainable energy economy. Inorganic battery materials have traditionally been the center of attention, with the current state-of-the-art device being the lithium-ion battery. Recent pursuits have led to organic materials for their beneficial chemistry and properties, but suitable materials for organic batteries are still few and far between. This Spotlight on Applications highlights two intriguing pyridinium-based organic materials, modified viologens and carbonylpyridiniums, that have both been successfully employed in electrode materials for solid-state Li-ion-type organic batteries (LOBs). We first provide an overview of the inherent electronic properties of each building block and how they can effectively be modified while maintaining or enhancing their desirable electrochemical properties for practical applications. We then describe a range of different material designs for a battery context and their application in various organic device settings, with some examples showing competitive performance with traditional Li-ion batteries.
Collapse
Affiliation(s)
- Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Ling Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Thomas Baumgartner
- Department of Chemistry, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
4
|
Qin Y, She P, Wang Y, Wong WY. An All-In-One Integrating Strategy for Designing Platinum(II)-Based Supramolecular Polymers for Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400259. [PMID: 38624171 DOI: 10.1002/smll.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Indexed: 04/17/2024]
Abstract
Organic polymer photocatalysts have achieved significant progress in photocatalytic hydrogen evolution, while developing the integrated organic polymers possessing the functions of photosensitizer, electron transfer mediator, and catalyst simultaneously is urgently needed and presents a great challenge. Considering that chalcogenoviologens are able to act as photosensitizers and electron-transfer mediators, a series of chalcogenoviologen-containing platinum(II)-based supramolecular polymers is designed, which exhibited strong visible light-absorbing ability and suitable bandgap for highly efficient photocatalytic hydrogen evolution without the use of a cocatalyst. The hydrogen evolution rate (HER) increases steadily with the decrease in an optical gap of the polymer. Among these "all-in-one" polymers, Se-containing 2D porous polymer exhibited the best photocatalytic performance with a HER of 3.09 mmol g-1 h-1 under visible light (>420 nm) irradiation. Experimental and theoretical calculations reveal that the distinct intramolecular charge transfer characteristics and heteroatom N in terpyridine unit promote charge separation and transfer within the molecules. This work could provide new insights into the design of metallo-supramolecular polymers with finely tuned components for photocatalytic hydrogen evolution from water.
Collapse
Affiliation(s)
- Yanyan Qin
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Pengfei She
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Yidi Wang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Ling H, Zhang J, Wang Y, Zeng X. One-step achieving high performance all-solid-state and all-in-one flexible electrochromic supercapacitor by polymer dispersed electrochromic device strategy. J Colloid Interface Sci 2024; 665:969-976. [PMID: 38569313 DOI: 10.1016/j.jcis.2024.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Electrochromic devices (ECD) are widely used to regulate the transmittance of sunlight by applying a small voltage, but the drawbacks like complex layer-by-layer preparation procedures and inconvenient assembling process still exist. To address these problems, gel or solution-type all-in-one ECDs were recently developed for the simple structure, however, the leakage risk and absence of flexible large-area production have limited real applications. Herein, a novel all-solid-state and all-in-one flexible ECD was reported by originally developed polymer dispersed electrochromic device (PDECD) strategy. This all-solid-state flexible ECD could be efficiently prepared only by one step of phase separation without any extra treatment, and demonstrated outstanding stability (92.1 % of original ΔT remained after 10,000 cycles), high coloration efficiency (197 cm2/C), low power consumption (86.4 μW/cm2) and satisfied response time (≤12 s). Meanwhile, the stored power in ECD during coloring process could drive a LED with excellent cyclic stability (93 % of original capacity remained after 3000 cycles), implying that ECD could also serve as an idea electrochromic supercapacitor. What'more, a reported largest viologen-based all-solid-state flexible ECD (17.8 × 13.2 cm2) with robust bending resistance (up to 1000 bending cycles) was successfully fabricated with industrial roller coating technique, which indicated the huge potential in real world.
Collapse
Affiliation(s)
- Huan Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China; Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China
| | - Junsen Zhang
- Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Xiping Zeng
- Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China.
| |
Collapse
|
6
|
Gu S, Chen J, Hussain I, Wang Z, Chen X, Ahmad M, Feng SP, Lu Z, Zhang K. Modulation of Radical Intermediates in Rechargeable Organic Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306491. [PMID: 37533193 DOI: 10.1002/adma.202306491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Organic materials have been considered as promising electrodes for next-generation rechargeable batteries in view of their sustainability, structural flexibility, and potential recyclability. The radical intermediates generated during the redox process of organic electrodes have profound effect on the reversible capacity, operation voltage, rate performance, and cycling stability. However, the radicals are highly reactive and have very short lifetime during the redox of organic materials. Great efforts have been devoted to capturing and investigating the radical intermediates in organic electrodes. Herein, this review summarizes the importance, history, structures, and working principles of organic radicals in rechargeable batteries. More importantly, challenges and strategies to track and regulate the radicals in organic batteries are highlighted. Finally, further perspectives of organic radicals are proposed for the development of next-generation high-performance rechargeable organic batteries.
Collapse
Affiliation(s)
- Shuai Gu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jingjing Chen
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhiqiang Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Shien-Ping Feng
- Department of Systems Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhouguang Lu
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
7
|
Bhosale M, Schmidt C, Penert P, Studer G, Esser B. Anion-Rocking Chair Batteries with Tuneable Voltage using Viologen- and Phenothiazine Polymer-based Electrodes. CHEMSUSCHEM 2024; 17:e202301143. [PMID: 37902416 DOI: 10.1002/cssc.202301143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023]
Abstract
Organic battery electrode materials offer the unique opportunity for full cells to operate in an anion-rocking chair mode. For this configuration a pair of p-type redox-active electrode materials is required with a substantial potential gap between their redox processes. We herein investigate viologen-functionalized polystyrenes as negative electrode paired with a phenothiazine polymer as positive electrode in all-organic full cells. The 10 % crosslinked viologen polymer X10 -PVBV gave better performance than the linear PVBV and was employed in a full cell as negative electrode with cross-linked poly(3-vinyl-N-methylphenothiazine) (X-PVMPT) as positive electrode. Three cell configurations regarding the voltage range were investigated, of which one with an operating potential of 0.9 V gave the highest performance. The full cell delivered a specific discharge capacity of 64 mA h g-1 (of X-PVMPT) in the first cycle and a capacity retention of 79 % after 100 cycles. This is one of only few reported anion rocking chair all-organic cells and the first employing a phenothiazine-based positive electrode material.
Collapse
Affiliation(s)
- Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Caroline Schmidt
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Philipp Penert
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gauthier Studer
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
8
|
Zhao H, Liu T, Zhang W, Wang J, Li K, Zhou Y, Liu L, Bai Y, Pan X. Organoboron flank-substituted donor-acceptor polymer anode with ultra-long cycling stability for lithium ion batteries. Phys Chem Chem Phys 2024; 26:5141-5146. [PMID: 38259223 DOI: 10.1039/d3cp05634a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The tunable structure and other properties of organic materials suggest that they can potentially solve the shortcomings of traditional anodes such as graphite. We successfully introduced an organoboron unit into the thiophene-based polymer PBT-2 to construct a donor-acceptor polymer anode. The charge delocalization and LUMO energy level resulting from the unique structure of this material enabled good redox activity and a very stable electrochemical performance in electrochemical tests, with a reversible capacity of 262 mA h g-1 at 0.5 A g-1 and >10 000 cycles at 1 A g-1 with a decay of 0.056‰ per cycle. Accordingly, targeted structural design to overcome the shortcomings of active units such as thiophene can effectively regulate their electrochemical performance, providing a solution for the development of high-performance anode materials for use in lithium ion batteries.
Collapse
Affiliation(s)
- Hao Zhao
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Ting Liu
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Wenjing Zhang
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Jiadong Wang
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Kexuan Li
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Yitong Zhou
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Luzun Liu
- School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China.
| | - Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| | - Xiaobo Pan
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810006, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China.
| |
Collapse
|
9
|
Wang Y, Yang G, Wang G, Min Y, Zhou L, Yang C, Huang J, Dai G. Superlithiation Performance of Pyridinium Polymerized Ionic Liquids with Fast Li + Diffusion Kinetics as Anode Materials for Lithium-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302811. [PMID: 37194977 DOI: 10.1002/smll.202302811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 05/18/2023]
Abstract
Polymerized ionic liquids (PILs) with super ion diffusion kinetics have aroused considerable attention in rechargeable batteries, which are very promising to solve the problem of the slow ion diffusion kinetics in organic electrode materials. Theoretically, PILs incorporated redox groups are very suitable as anode materials to realize "superlithiation" performance, achieving high lithium storage capacity. In this study, redox pyridinium-based PILs (PILs-Py-400) have been synthesized through trimerization reactions by pyridinium ionic liquids with cyano groups under an appropriate temperature (400 °C). The positively charged skeleton, extended conjugated system, abundant micropores, and amorphous structure for PILs-Py-400 can boost the utilization efficiency of redox sites. A high capacity of 1643 mAh g-1 at 0.1 A g-1 (96.7% of the theoretical capacity) has been obtained, indicating intriguing 13 Li+ redox reactions in per repeating unit of one pyridinium ring, one triazine ring, and one methylene. Moreover, PILs-Py-400 exhibit excellent cycling stability with a capacity of around 1100 mAh g-1 at 1.0 A g-1 after 500 cycles, and the capacity retention is 92.2%.
Collapse
Affiliation(s)
- Yeji Wang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Gege Yang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Gaolei Wang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Yuxin Min
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Le Zhou
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Chaofan Yang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Junjie Huang
- College of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, P. R. China
| | - Guoliang Dai
- School of Chemistry Biology and Material Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
10
|
Zhang Y, Jia X, Sun B, Huang R, Wang C, Chao D. A Piezoelectric-Driven Electrochromic/Electrofluorochromic Dual-Modal Display Device. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301886. [PMID: 37086144 DOI: 10.1002/smll.202301886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Electrochromic (EC) reflective displays offer great advantages in delivering information and providing visual data, but are limited in dark environments. Reflective/emissive dual-modal displays capable of electrochemically-induced color and fluorescence change simultaneously are highly desirable, especially possessing rapid response speed as well as long-term durability. Herein, an electroactive fluorescent ionic liquid based on triphenylamine and imidazole (EFIL-TPA) has been synthesized for reflective/emissive dual-modal display. The resultant device exhibits outstanding electrochromic/electrofluorochromic (EC/EFC) performance with low driving voltage (below 1.0 V), fast switching speed (0.57-1.8 s), and remarkable cycling durability (91% retention for 10 000 cycles). A piezoelectric nanogenerator (PENG) driven EC/EFC integrated system is fabricated to harvest energy from human motion and visually drive the color/fluorescence change for human motion indication in both bright and dark environments. This innovative EC/EFC dual-modal display device based on EFIL-TPA supports a huge space for the development of self-powered human motion visualized indication in all-light conditions.
Collapse
Affiliation(s)
- Yingchao Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Bolun Sun
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruonan Huang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ce Wang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
11
|
Nuroldayeva G, Balanay MP. Flexing the Spectrum: Advancements and Prospects of Flexible Electrochromic Materials. Polymers (Basel) 2023; 15:2924. [PMID: 37447568 DOI: 10.3390/polym15132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The application potential of flexible electrochromic materials for wearable devices, smart textiles, flexible displays, electronic paper, and implantable biomedical devices is enormous. These materials offer the advantages of conformability and mechanical robustness, making them highly desirable for these applications. In this review, we comprehensively examine the field of flexible electrochromic materials, covering topics such as synthesis methods, structure design, electrochromic mechanisms, and current applications. We also address the challenges associated with achieving flexibility in electrochromic materials and discuss strategies to overcome them. By shedding light on these challenges and proposing solutions, we aim to advance the development of flexible electrochromic materials. We also highlight recent advances in the field and present promising directions for future research. We intend to stimulate further innovation and development in this rapidly evolving field and encourage researchers to explore new opportunities and applications for flexible electrochromic materials. Through this review, readers can gain a comprehensive understanding of the synthesis, design, mechanisms, and applications of flexible electrochromic materials. It serves as a valuable resource for researchers and industry professionals looking to harness the potential of these materials for various technological applications.
Collapse
Affiliation(s)
- Gulzat Nuroldayeva
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
- Institute of Batteries LLC, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| | - Mannix P Balanay
- Department of Chemistry, Nazarbayev University, 53 Kabanbay Batyr Ave., Astana 010000, Kazakhstan
| |
Collapse
|
12
|
Li Y, Li N, Li G, Qiao Y, Zhang M, Zhang L, Guo QH, He G. The Green Box: Selenoviologen-Based Tetracationic Cyclophane for Electrochromism, Host-Guest Interactions, and Visible-Light Photocatalysis. J Am Chem Soc 2023; 145:9118-9128. [PMID: 37015020 DOI: 10.1021/jacs.3c00800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The novel selenoviologen-based tetracationic cyclophanes (green boxes 3 and 5) with rigid electron-deficient cavities are synthesized via SN2 reactions in two steps. The green boxes exhibit good redox properties, narrow energy gaps, and strong absorption in the visible range (370-470 nm), especially for the green box 5 containing two selenoviologen (SeV2+) units. Meanwhile, the femtosecond transient absorption (fs-TA) reveals that the green boxes have a stabilized dicationic biradical, high efficiency of intramolecular charge transfer (ICT), and long-lived charge separation state due to the formation of cyclophane structure. Based on the excellent photophysical and redox properties, the green boxes are applied to electrochromic devices (ECDs) and visible-light-driven hydrogen production with a high H2 generation rate (34 μmol/h), turnover number (203), and apparent quantum yield (5.33 × 10-2). In addition, the host-guest recognitions are demonstrated between the green boxes and electron-rich guests (e.g., G1:1-naphthol and G2:platinum(II)-tethered naphthalene) in MeCN through C-H···π and π···π interactions. As a one-component system, the host-guest complexes of green box⊃G2 are successfully applied to visible-light photocatalytic hydrogen production due to the intramolecular electron transfer (IET) between platinum(II) of G2 and SeV2+ of the green box, which provides a simplified system for solar energy conversion.
Collapse
Affiliation(s)
- Yawen Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Naiyao Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Yi Qiao
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, P. R. China
| | - Qing-Hui Guo
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, P. R. China
| |
Collapse
|
13
|
Wang X, Chen L, He X. Bio-inspired non-conjugated poly(carbonylpyridinium) as anode material for high-performance alkali-ion (Li +, Na +, and K +) batteries. J Colloid Interface Sci 2023; 643:541-550. [PMID: 36966122 DOI: 10.1016/j.jcis.2023.03.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
The integration of multiple electron-accepting skeletons into polymeric structures is the forefront of materials research for high-energy sustainable energy storage. Herein, we report the synthesis of two novel non-conjugated polymers (NCP1 and NCP2) and a model small molecule (M1) incorporated with bio-derived 4-elecron-uptaking carbonylpyridinium redox-units for alkali-ion batteries. Compared to model small molecules, the polymers exhibited improved battery performance when applied as anode materials for Li-, Na-, and K-ion batteries (LIBs/SIBs/KIBs) owing to their high electrochemical activity and effective ability to suppress dissolution. By judicious selection of the benzothiadiazole redox-active linker, the performance of NCP2 was further enhanced, delivering the highest capacity and the best cycling stability; at mass loadings of up to 3.5 and 4.7 mg cm-2, the specific capacity remained at 215 and 150 mAh g-1 after 200 cycles, respectively. The Li+/Na+/K+ insertion/extraction mechanisms of NCP2 were elucidated based on experimental analyses. The insertion/extraction of Li+ was much faster than that of Na+ and K+. This study broadens the family of bio-derived carbonylpyridinium-based polymer materials for next-generation electrochemical energy storage applications.
Collapse
Affiliation(s)
- Xiujuan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Ling Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, PR China.
| |
Collapse
|
14
|
Pavlovskii AA, Pushnitsa K, Kosenko A, Novikov P, Popovich AA. Organic Anode Materials for Lithium-Ion Batteries: Recent Progress and Challenges. MATERIALS (BASEL, SWITZERLAND) 2022; 16:177. [PMID: 36614515 PMCID: PMC9822040 DOI: 10.3390/ma16010177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/08/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
In the search for novel anode materials for lithium-ion batteries (LIBs), organic electrode materials have recently attracted substantial attention and seem to be the next preferred candidates for use as high-performance anode materials in rechargeable LIBs due to their low cost, high theoretical capacity, structural diversity, environmental friendliness, and facile synthesis. Up to now, the electrochemical properties of numerous organic compounds with different functional groups (carbonyl, azo, sulfur, imine, etc.) have been thoroughly explored as anode materials for LIBs, dividing organic anode materials into four main classes: organic carbonyl compounds, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and organic compounds with nitrogen-containing groups. In this review, an overview of the recent progress in organic anodes is provided. The electrochemical performances of different organic anode materials are compared, revealing the advantages and disadvantages of each class of organic materials in both research and commercial applications. Afterward, the practical applications of some organic anode materials in full cells of LIBs are provided. Finally, some techniques to address significant issues, such as poor electronic conductivity, low discharge voltage, and undesired dissolution of active organic anode material into typical organic electrolytes, are discussed. This paper will guide the study of more efficient organic compounds that can be employed as high-performance anode materials in LIBs.
Collapse
Affiliation(s)
| | | | - Alexandra Kosenko
- Institute of Machinery, Materials and Transport, Peter the Great Saint Petersburg Polytechnic University, Politechnicheskaya ul. 29, 195251 Saint Petersburg, Russia
| | | | | |
Collapse
|
15
|
Pathak DK, Moon HC. Recent progress in electrochromic energy storage materials and devices: a minireview. MATERIALS HORIZONS 2022; 9:2949-2975. [PMID: 36239257 DOI: 10.1039/d2mh00845a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of several functionalities into one isolated electrochemical body is necessary to realize compact and tiny smart electronics. Recently, two different technologies, electrochromic (EC) materials and energy storage, were combined to create a single system that supports and drives both functions simultaneously. In EC energy storage devices, the characteristic feature of EC materials, their optical modulation depending on the applied voltage, is used to visually identify the stored energy level in real time. Moreover, combining energy-harvesting and EC storage systems by sharing one electrode facilitates the realization of further compact multifunction systems. In this minireview, we highlight recent groundbreaking achievements in EC multifunction systems where the stored energy levels can be visualized using the color of the device.
Collapse
Affiliation(s)
- Devesh K Pathak
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
16
|
Zhang X, Liu X, Zhang H, Wang Z, Zhang Y, Li G, Li MJ, He G. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48727-48733. [PMID: 36257057 DOI: 10.1021/acsami.2c14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of chalcogenophene viologens ([(NPr)2FV]Cl4, [(NPr)2TV]Cl4, and [(NPr)2SeV]Cl4) as anolytes for neutral aqueous organic redox flow batteries (AORFBs) via a combination of chalcogenophenes (furan, thiophene, and selenophene) and viologens are reported. The chalcogenophene viologens showed narrow HOMO-LUMO energy gap, high solubility, and stable electrochemical properties. Compared with the parent [(NPr)2V]Cl4, the introduction of π-conjugated chalcogenophene groups reduced the redox potential and enhanced the stability of their free radical state, which endowed the chalcogenophene viologens/FcNCl-based AORFBs with a higher theoretical battery voltage of 1.20 V and enhanced stability for one-electron storage. In particular, the [(NPr)2FV]Cl4/FcNCl-based AORFB exhibited excellent long-cycle stability for 3000 cycles with 0.0006% capacity decay per cycle for one-electron storage and 300 cycles with 0.06% capacity decay per cycle for two-electron storage at a charge voltage of 1.9 V (1.42 V theoretical battery voltage). This work provided a new strategy for regulating the voltage and improving the performance of neutral AORFBs.
Collapse
Affiliation(s)
- Xuri Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Heng Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Zengrong Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Yueyan Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| | - Ming-Jia Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, China
| |
Collapse
|
17
|
Chen Q, Zhao J, Zheng J, Xu C. Antifreezing and self-healing organohydrogels regulated by ethylene glycol towards customizable electrochromic displays. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AbstractOrganic electrode materials (OEMs) can deliver remarkable battery performance for metal-ion batteries (MIBs) due to their unique molecular versatility, high flexibility, versatile structures, sustainable organic resources, and low environmental costs. Therefore, OEMs are promising, green alternatives to the traditional inorganic electrode materials used in state-of-the-art lithium-ion batteries. Before OEMs can be widely applied, some inherent issues, such as their low intrinsic electronic conductivity, significant solubility in electrolytes, and large volume change, must be addressed. In this review, the potential roles, energy storage mechanisms, existing challenges, and possible solutions to address these challenges by using molecular and morphological engineering are thoroughly summarized and discussed. Molecular engineering, such as grafting electron-withdrawing or electron-donating functional groups, increasing various redox-active sites, extending conductive networks, and increasing the degree of polymerization, can enhance the electrochemical performance, including its specific capacity (such as the voltage output and the charge transfer number), rate capability, and cycling stability. Morphological engineering facilitates the preparation of different dimensional OEMs (including 0D, 1D, 2D, and 3D OEMs) via bottom-up and top-down methods to enhance their electron/ion diffusion kinetics and stabilize their electrode structure. In summary, molecular and morphological engineering can offer practical paths for developing advanced OEMs that can be applied in next-generation rechargeable MIBs.
Graphical abstract
Collapse
|
19
|
Liu Q, Yang L, Ling W, Guo B, Chen L, Wang J, Zhang J, Wang W, Mo F. Organic electrochromic energy storage materials and device design. Front Chem 2022; 10:1001425. [PMID: 36212068 PMCID: PMC9538391 DOI: 10.3389/fchem.2022.1001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
While not affecting electrochemical performance of energy storage devices, integrating multi-functional properties such as electrochromic functions into energy storage devices can effectively promote the development of multifunctional devices. Compared with inorganic electrochromic materials, organic materials possess the significant advantages of facile preparation, low cost, and large color contrast. Specifically, most polymer materials show excellent electrochemical properties, which can be widely used in the design and development of energy storage devices. In this article, we focus on the application of organic electrochromic materials in energy storage devices. The working mechanisms, electrochemical performance of different types of organics as well as the shortcomings of organic electrochromic materials in related devices are discussed in detail.
Collapse
Affiliation(s)
- Qingjiang Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Liangliang Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Wei Ling
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Binbin Guo
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Lina Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaqi Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaolong Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| | - Wenhui Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| |
Collapse
|
20
|
Ming S, Zhang Y, Lin K, Du Y, Zhao J, Zhang Y. Maroon-green-indigo color switching of thienoisoindigo-based electrochromic copolymers with high optical contrast. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
22
|
Zhu X, Miao H, Shan Y, Gao G, Gu Q, Xiao Q, He X. Two-Dimensional Janus Film with Au Nanoparticles Assembled on Trinuclear Gold(I) Pyrazolate Coordination Nanosheets for Photocatalytic H 2 Evolution. Inorg Chem 2022; 61:13591-13599. [PMID: 35976691 DOI: 10.1021/acs.inorgchem.2c02359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A two-dimensional (2D) Janus film with self-assembled gold nanoparticles (AuNPs) is a class of fascinating materials that may offer unprecedented opportunities to realize diverse applications due to their two distinct faces with anisotropic properties. In this work, we report a novel, straightforward strategy for the preparation of a bilayer coordination nanosheet (CONASH)/AuNP Janus film, where the CONASH features infinite trinuclear gold(I) pyrazolate cyclic complexes with electron-accepting viologen as bridges. The bilayer film has visible light absorption and redox properties and showcased promising photocatalytic H2 evolution activity by virtue of the formed unique heterojunction structure between AuNPs and CONASH. The current study opens a novel pathway for controlled fabrication of the 2D Janus film with assembled AuNPs for photocatalytic applications.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Hongya Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yong Shan
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Guangyuan Gao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Quan Gu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Qi Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoming He
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
23
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022; 61:e202209054. [DOI: 10.1002/anie.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Lingzhi Ma
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| | - Long Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Shi Yu
- School of Materials Science & Engineering Chang'an University Xi'an Shaanxi 710064 China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi 710049 China
| | - Lei Zhang
- School of Optoelectronic Engineering Xidian University Xi'an Shaanxi 710126 China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an Shaanxi 710054 China
| |
Collapse
|
24
|
Anthraquinone porous polymers with different linking patterns for high performance Zinc-Organic battery. J Colloid Interface Sci 2022; 629:434-444. [DOI: 10.1016/j.jcis.2022.08.166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/15/2023]
|
25
|
Tian W, Li J, Liang Z, Lin X, Zhou G, Hou Q, Luo S, Wang Y, Shi G, Zeng R. Isophthalic acid functionalized peryleneimide anode material for lithium ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Shi R, Jiao S, Yue Q, Gu G, Zhang K, Zhao Y. Challenges and advances of organic electrode materials for sustainable secondary batteries. EXPLORATION (BEIJING, CHINA) 2022; 2:20220066. [PMID: 37325604 PMCID: PMC10190941 DOI: 10.1002/exp.20220066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Organic electrode materials (OEMs) emerge as one of the most promising candidates for the next-generation rechargeable batteries, mainly owing to their advantages of bountiful resources, high theoretical capacity, structural designability, and sustainability. However, OEMs usually suffer from poor electronic conductivity and unsatisfied stability in common organic electrolytes, ultimately leading to their deteriorating output capacity and inferior rate capability. Making clear of the issues from microscale to macroscale level is of great importance for the exploration of novel OEMs. Herein, the challenges and advanced strategies to boost the electrochemical performance of redox-active OEMs for sustainable secondary batteries are systematically summarized. Particularly, the characterization technologies and computational methods to elucidate the complex redox reaction mechanisms and confirm the organic radical intermediates of OEMs have been introduced. Moreover, the structural design of OEMs-based full cells and the outlook for OEMs are further presented. This review will shed light on the in-depth understanding and development of OEMs for sustainable secondary batteries.
Collapse
Affiliation(s)
- Ruijuan Shi
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Shilong Jiao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Qianqian Yue
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Guangqin Gu
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| | - Kai Zhang
- Frontiers Science Center for New Organic MatterRenewable Energy Conversion and Storage Center (RECAST)Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjinChina
- Haihe Laboratory of Sustainable Chemical TransformationsTianjinChina
| | - Yong Zhao
- School of Materials, Key Lab for Special Functional Materials of Ministry of EducationHenan UniversityKaifengChina
| |
Collapse
|
27
|
Zhang S, Ma L, Ma W, Chen L, Gao K, Yu S, Zhang M, Zhang L, He G. Selenoviologen‐Appendant Metallacycles with Highly Stable Radical Cations and Long‐Lived Charge Separation States for Electrochromism and Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sikun Zhang
- Xi'an Jiaotong University Frontier Institute of Science and Technology Xi'an CHINA
| | - Lingzhi Ma
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Wenqiang Ma
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Long Chen
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Kai Gao
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Shi Yu
- Chang'an University School of Materials Science & Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong University School of Materials Science and Engineering CHINA
| | - Lei Zhang
- Xidian University School of Optoelectronic Engineering CHINA
| | - Gang He
- Xi'an Jiaotong University Frontier Institute of Science and Technology No 99, Yanxiang Road 710054 Xi'an CHINA
| |
Collapse
|
28
|
Wang Z, Gou X, Wang G, Chang X, Liu K, Liu T, He G, Fang Y. A persistent radical anion derived from a propeller-shaped perylene bisimide-carbazole pentad. Chem Commun (Camb) 2022; 58:7082-7085. [PMID: 35665788 DOI: 10.1039/d2cc02042d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stabilizing reactive radical ions promises outstanding performances in photocatalysis, organic optoelectronics and photothermal therapies, but it remains a challenge. In this contribution, we firstly report a persistent radical anion (PBI˙--4Cz) derived from a propeller-shaped electron-deficient perylene bisimide-based pentad (PBI-4Cz). Detailed investigations confirm that PBI˙--4Cz could intactly exist under inert conditions, and its lifetime is sufficiently prolonged up to more than one week under ambient atmosphere. Such exceptional stability is ascribed to the synergistic effect of the high electron-affinity and structural shielding originating from the compact spatial arrangement of PBI-4Cz. This work contributes to rational design and appropriate chemical construction of stable open-shell species.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xinyu Gou
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Xingmao Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
29
|
Wang T, Zhang L, Liu J, Li XX, Yuan L, Li SL, Lan YQ. A viologen-functionalized metal-organic framework for efficient CO 2 photoreduction reaction. Chem Commun (Camb) 2022; 58:7507-7510. [PMID: 35699400 DOI: 10.1039/d2cc02650c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a viologen-functionalized metal-organic framework (MOF), MIL-125-RV2+, was obtained by modification of MIL-125-NH2 with viologen molecules. MIL-125-RV2+, the first viologen-based MOF for photocatalytic CO2RR, exhibited excellent photocatalytic activity and high selectivity for HCOO-. The strategy of using photo-responsive color-changing organics to functionalize the MOF is significant for achieving efficient CO2RR.
Collapse
Affiliation(s)
- Tong Wang
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lei Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Xiao-Xin Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lin Yuan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Shun-Li Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
30
|
Hein R, Docker A, Davis JJ, Beer PD. Redox-Switchable Chalcogen Bonding for Anion Recognition and Sensing. J Am Chem Soc 2022; 144:8827-8836. [PMID: 35522996 PMCID: PMC9121379 DOI: 10.1021/jacs.2c02924] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inspired by the success of its related sigma-hole congener halogen bonding (XB), chalcogen bonding (ChB) is emerging as a powerful noncovalent interaction with a plethora of applications in supramolecular chemistry and beyond. Despite its increasing importance, the judicious modulation of ChB donor strength remains a formidable challenge. Herein, we present, for the first time, the reversible and large-scale modulation of ChB potency by electrochemical redox control. This is exemplified by both the switching-ON of anion recognition via ChB oxidative activation of a novel bis(ferrocenyltellurotriazole) anion host and switching-OFF reductive ChB deactivation of anion binding potency with a telluroviologen receptor. The direct linking of the redox-active center and ChB receptor donor sites enables strong coupling, which is reflected by up to a remarkable 3 orders of magnitude modulation of anion binding strength. This is demonstrated through large voltammetric perturbations of the respective receptor ferrocene and viologen redox couples, enabling, for the first time, ChB-mediated electrochemical anion sensing. The sensors not only display significant anion-binding-induced electrochemical responses in competitive aqueous-organic solvent systems but can compete with, or even outperform similar, highly potent XB and HB sensors. These observations serve to highlight a unique (redox) tunability of ChB and pave the way for further exploration of the reversible (redox) modulation of ChB in a wide range of applications, including anion sensors as well as molecular switches and machines.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Andrew Docker
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason J Davis
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
31
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He YL, He G. Bacteria-Triggered Solar Hydrogen Production via Platinum(II)-Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022; 61:e202115298. [PMID: 34982500 DOI: 10.1002/anie.202115298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 12/19/2022]
Abstract
Multifunctional solar energy conversion offers a feasible strategy to solve energy, environmental and water crises. Herein, a series of platinum(II)-tethered chalcogenoviologens (PtL+ -EV2+ , E=S, Se, Te) is reported, which integrate the functions of photosensitizer, electron mediator and catalyst. PtL+ -EV2+ (particularly for PtL+ -SeV2+ )-based one-component solar H2 production could be triggered not only by EDTA, but also by facultative anaerobic and aerobic bacteria relying on a simplified mechanism, along with efficient antibacterial activities. In addition, by using real pool water, PtL+ -SeV2+ achieved multiple functions, including H2 production, antibacterial action and acid removal, which supplied a new strategy to solve various problems in real life via a single system.
Collapse
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Kun Zhou
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Qi Sun
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xu Liu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Xuri Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering, Xidian University, China
| | - Bin Rao
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Ya-Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, China.,Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| |
Collapse
|
32
|
He B, Zhang S, Zhang Y, Li G, Zhang B, Ma W, Rao B, Song R, Zhang L, Zhang Y, He G. ortho-Terphenylene Viologens with Through-Space Conjugation for Enhanced Photocatalytic Oxidative Coupling and Hydrogen Evolution. J Am Chem Soc 2022; 144:4422-4430. [PMID: 35143191 DOI: 10.1021/jacs.1c11577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A series of novel ortho-terphenylene viologen derivatives (o-TPV2+) with through-space conjugation (TSC) via the combination of ortho-terphenylene skeletons with viologen structure is reported. Their optoelectronic properties can be adjusted by N-arylation or N-alkylation reactions. Compared with other viologen derivatives, o-TPV2+ not only exhibits strong photoluminescence but also retards the charge recombination process and stabilizes the diradical state without forming a quinoid structure due to the special TSC effect. Based on their special redox characteristics, o-TPV2+ was applied to the photocatalytic oxidative coupling of benzylamine with 96% yield. In addition, pTA-o-TPV2+ (tethered with p-toluic acid)-modified g-C3N4 was used for visible-light-driven hydrogen production for the first time, exceeding 15 times the rate over unmodified g-C3N4.
Collapse
Affiliation(s)
- Ben He
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China
| | - Sikun Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Yueyan Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Bingjie Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Wenqiang Ma
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Bin Rao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China
| | - Ruitong Song
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| | - Lei Zhang
- School of Optoelectronic Engineering, Xidian University, Xi'an, Shaanxi Province 710126, People's Republic of China
| | - Yanfeng Zhang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China
| | - Gang He
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, People's Republic of China.,Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710054, People's Republic of China
| |
Collapse
|
33
|
Wang X, Kuang J, Wu P, Zong Z, Li Z, Wang H, Li J, Dai P, Zhang KY, Liu S, Huang W, Zhao Q. Manipulating Electroluminochromism Behavior of Viologen-Substituted Iridium(III) Complexes through Ligand Engineering for Information Display and Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107013. [PMID: 34741357 DOI: 10.1002/adma.202107013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Electrically controlling photoluminescence has attracted great research interest and offers many opportunities for technological developments. Electroluminochromic materials undergo redox reactions under low-voltage stimuli to achieve reversible luminescence switching. Till now, photoluminescence switching of a single molecule caused by electrical stimuli is restricted to intensity response because the redox-active moieties are good electron donors or acceptors and electrical stimuli can regulate the photoinduced electron-transfer and affect the luminescence intensity. In this work, the manipulation of the electroluminochromism behavior of a series of viologen-substituted iridium(III) complexes through the regulation of ligand orbital energy levels and electronic communication between the viologen pendants and the iridium(III) complex core is reported. Electrochemical redox reactions reversibly modulate either the luminescence quenching effect or the push-pull electronic effect of the viologen substituents, achieving multicolor "on-off" luminescence response toward electrical stimuli and luminescence manipulation between two emissive states with different wavelengths and lifetimes. To illustrate the promising applications of these electroluminochromic materials, recording and displaying luminescence information under electrical stimuli are demonstrated. Information encryption is realized by letting the electroluminochromism occur in the near-infrared region or in the time domain. Near-infrared camera or time-resolved luminescence analysis can be used to help read the invisible information.
Collapse
Affiliation(s)
- Xuecheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jianru Kuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Pengcheng Wu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zheng Zong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zixian Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Hao Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Jinlu Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Kenneth Yin Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| |
Collapse
|
34
|
Li G, Zhou K, Sun Q, Ma W, Liu X, Zhang X, Zhang L, Rao B, He Y, He G. Bacteria‐Triggered Solar Hydrogen Production via Platinum(II)‐Tethered Chalcogenoviologens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoping Li
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Kun Zhou
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Qi Sun
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Wenqiang Ma
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xu Liu
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Xuri Zhang
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Lei Zhang
- School of Physics and Optoelectronic Engineering Xidian University China
| | - Bin Rao
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| | - Ya‐Ling He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
| | - Gang He
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education School of Energy and Power Engineering China
- Frontier Institute of Science and Technology State Key Laboratory for Strength and Vibration of Mechanical Structures Xi'an Jiaotong University Xi'an Shaanxi Province 710054 China
| |
Collapse
|
35
|
Zhao Z, Che Q, Wang K, El-Khouly ME, Liu J, Fu Y, Zhang B, Chen Y. Donor-acceptor-type poly[chalcogenoviologen- alt-triphenylamine] for synaptic biomimicking and neuromorphic computing. iScience 2022; 25:103640. [PMID: 35024581 PMCID: PMC8733261 DOI: 10.1016/j.isci.2021.103640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022] Open
Abstract
Polymer memristors are preeminent candidates for low-power edge computing paradigms. Poly[chalcogenoviologen-alt-triphenylamine] (PCVTPA) has been synthesized by direct coupling of chalcogeno-viologen as electron acceptor and 4-(bromomethyl)-N-(4-(bromo-methyl)phenyl)-N-phenylaniline as electron donor. The introduction of chalcogen atoms (S, Se, Te) into viologen scaffolds can greatly improve electrical conductive, electrochemical, and electrochromic properties of the materials when compared with the conventional viologens. Taking PTeVTPA as an example, the as-fabricated electronic device with a configuration of Al/PTeVTPA/ITO exhibits excellent multilevel storage and history-dependent memristive switching performance. Associated with the unique memristive behavior, the PTeVTPA-based device can not only be used to emulate the synaptic potentiation/depression, the human's learning and memorizing functions, and the transition from short-term synaptic plasticity to long-term plasticity but also carry out decimal arithmetic operations as well. This work will be expected to offer a train of new thought for constructing high-performance synaptic biomimicking and neuromorphic computing system in the near future.
Collapse
Affiliation(s)
- Zhizheng Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kexin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Jiaxuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
36
|
Wang Z, Fan Q, Guo W, Yang C, Fu Y. Biredox-Ionic Anthraquinone-Coupled Ethylviologen Composite Enables Reversible Multielectron Redox Chemistry for Li-Organic Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103632. [PMID: 34716685 PMCID: PMC8728824 DOI: 10.1002/advs.202103632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Organic compounds bearing redox-active ionic pairs as electrode materials for high-performance rechargeable batteries have gained growing attention owing to the properties of synthetic tunability, high theoretical capacity, and low solubility. Herein, an innovative biredox-ionic composite, i.e., ethylviologen dianthraquinone-2-sulfonate (EV-AQ2 ), affording multiple and reversible active sites as a cathode material in lithium-organic batteries is reported. EV-AQ2 exhibits a high initial capacity of 199.2 mAh g-1 at 0.1 C rate, which corresponds to the transfer of two electrons from one redox couple EV2+ /EV0 and four electrons from two redox-active AQ- anions. It is notable that EV-AQ2 shows remarkably improved cyclability compared to the precursors. The capacity retention is 89% and the Coulombic efficiency approaches 100% over 120 cycles at 0.5 C rate. The results offer evidence that AQ- into the EV2+ scaffold with multiple redox sites are promising in developing high-energy-density organic rechargeable batteries.
Collapse
Affiliation(s)
- Zhongju Wang
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Qianqian Fan
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Wei Guo
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Changchun Yang
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| | - Yongzhu Fu
- College of ChemistryZhengzhou UniversityZhengzhou450001P. R. China
| |
Collapse
|
37
|
Wang C, Muni M, Strauss V, Borenstein A, Chang X, Huang A, Qu S, Sung K, Gilham T, Kaner RB. Graphene's Role in Emerging Trends of Capacitive Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006875. [PMID: 34048633 DOI: 10.1002/smll.202006875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Technological breakthroughs in energy storage are being driven by the development of next-generation supercapacitors with favorable features besides high-power density and cycling stability. In this innovation, graphene and its derived materials play an active role. Here, the research status of graphene supercapacitors is analyzed. Recent progress is outlined in graphene assembly, exfoliation, and processing techniques. In addition, electrochemical and electrical attributes that are increasingly valued in next-generation supercapacitors are highlighted along with a summary of the latest research addressing chemical modification of graphene and its derivatives for future supercapacitors. The challenges and solutions discussed in the review hopefully will shed light on the commercialization of graphene and a broader genre of 2D materials in energy storage applications.
Collapse
Affiliation(s)
- Chenxiang Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Mit Muni
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Volker Strauss
- Department of Colloid Chemistry, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Arie Borenstein
- Department of Chemistry, Ariel University, Ariel, 40700, Israel
| | - Xueying Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Ailun Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Sheng Qu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Kimberly Sung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Tera Gilham
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
38
|
Electrochromism of Viologen/Polymer Composite: From Gel to Insulating Bulk for High-Voltage Applications. MATERIALS 2021; 14:ma14195901. [PMID: 34640298 PMCID: PMC8510250 DOI: 10.3390/ma14195901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022]
Abstract
Power equipment operates under high voltages, inducing space charge accumulation on the surface of key insulating structures, which increases the risk of discharge/breakdown and the possibility of maintenance workers experiencing electric shock accidents. Hence, a visualized non-equipment space charge detection method is of great demand in the power industry. Typical electrochromic phenomenon is based on redox of the material, triggered by a voltage smaller than 5 V with a continuous current in μA~mA level, which is not applicable to high electric fields above 106 V/m with pA~nA operation current in power equipment. Until now, no naked-eye observation technique has been realized for space charge detection to ensure the operation of power systems as well as the safety of maintenance workers. In this work, a viologen/poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF–HFP)) composite is investigated from gel to insulating bulk configurations to achieve high-voltage electrical-insulating electrochromism. The results show that viologen/P(VDF–HFP) composite bulk can withstand high electric fields at the 107 V/m level, and its electrochromism is triggered by space charges. This electrochromism phenomenon can be visually extended by increasing viologen content towards 5 wt.% and shows a positive response to voltage amplitude and application duration. As viologen/P(VDF–HFP) composite bulk exhibits a typical electrical insulating performance, it could be attached to the surface of insulating structures or clamped between metal and insulating materials as a space charge accumulation indicator in high-voltage power equipment.
Collapse
|
39
|
Affiliation(s)
- Wu Zhang
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Haizeng Li
- Institute of Frontier & Interdisciplinary Science Shandong University Qingdao 266237 China
| | - William W. Yu
- Institute of Frontier & Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
40
|
Zhuang Y, Wang Y, Deng Y, Li F, Chen X, Liu S, Tong Y, Zhao Q. Memristors Based on an Iridium(III) Complex Containing Viologen for Advanced Synaptic Bionics. Inorg Chem 2021; 60:13021-13028. [PMID: 34376047 DOI: 10.1021/acs.inorgchem.1c01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Memristors with nonvolatile memory properties are expected to open the era of neuromorphic computing. However, it remains a huge challenge to develop memristors with high uniformity, high stability, and low power consumption for advanced synaptic bionics. Herein, an electroactive iridium(III) complex Ir-vio was designed and synthesized by incorporating a viologen moiety into its N∧N ligand. Complex Ir-vio showed multiple redox states and high sensitivity to an electrical stimulus. Importantly, two-terminal memristors with Ag/Ir-vio/W structure were successfully fabricated by the solution-processable method, which exhibited multilevel storage characteristics with a low switching threshold voltage of 0.5 V and high ON1/ON2/ON3/OFF current ratio of 105/103/102/1 at a low reading bias of 0.05 V. Moreover, the memristors can mimic synaptic plasticity, indicating that they can act as artificial synapses to construct brain-inspired neural networks. The memristive mechanisms can be ascribed to the interconversion among different charge-transfer and redox states under various electrical stimulus. To the best of our knowledge, this work is the first experimental demonstration of memristors based on iridium(III) complexes, opening a new era for the development of synaptic bionic devices based on organometallic compounds.
Collapse
Affiliation(s)
- Yanling Zhuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yu Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Feiyang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Xintong Chen
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yi Tong
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China.,College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
41
|
Mi Z, Zhou T, Weng W, Unruangsri J, Hu K, Yang W, Wang C, Zhang KAI, Guo J. Covalent Organic Frameworks Enabling Site Isolation of Viologen‐Derived Electron‐Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Zhen Mi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Weijun Weng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junjuda Unruangsri
- Department of Chemistry Chulalongkorn University Phayathai Road Bangkok 10330 Thailand
| | - Ke Hu
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Kai A. I. Zhang
- Department of Materials Science Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
42
|
Mi Z, Zhou T, Weng W, Unruangsri J, Hu K, Yang W, Wang C, Zhang KAI, Guo J. Covalent Organic Frameworks Enabling Site Isolation of Viologen-Derived Electron-Transfer Mediators for Stable Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2021; 60:9642-9649. [PMID: 33484039 DOI: 10.1002/anie.202016618] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 01/04/2023]
Abstract
Electron transfer is the rate-limiting step in photocatalytic water splitting. Viologen and its derivatives are able to act as electron-transfer mediators (ETMs) to facilitate the rapid electron transfer from photosensitizers to active sites. Nevertheless, the electron-transfer ability often suffers from the formation of a stable dipole structure through the coupling between cationic-radical-containing viologen-derived ETMs, by which the electron-transfer process becomes restricted. Herein, cyclic diquats, a kind of viologen-derived ETM, are integrated into a 2,2'-bipyridine-based covalent organic framework (COF) through a post-quaternization reaction. The content and distribution of embedded diquat-ETMs are elaborately controlled, leading to the favorable site-isolated arrangement. The resulting materials integrate the photosensitizing units and ETMs into one system, exhibiting the enhanced hydrogen evolution rate (34600 μmol h-1 g-1 ) and sustained performances when compared to a single-module COF and a COF/ETM mixture. The integration strategy applied in a 2D COF platform promotes the consecutive electron transfer in photochemical processes through the multi-component cooperation.
Collapse
Affiliation(s)
- Zhen Mi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Weijun Weng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Junjuda Unruangsri
- Department of Chemistry, Chulalongkorn University, Phayathai Road, Bangkok, 10330, Thailand
| | - Ke Hu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
43
|
Zhang Q, Yuan L, Guan F, Li X, Wang R, Xu J, Qin Y, Chen G. Substituent-Adjusted Electrochromic Behavior of Symmetric Viologens. MATERIALS 2021; 14:ma14071702. [PMID: 33808365 PMCID: PMC8036286 DOI: 10.3390/ma14071702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/21/2022]
Abstract
As a promising electrochromic material, viologens have attracted increasing attention due to their high redox activity and adjustable electrochromic capability. In order to investigate the effect of alkyl substituents on electrochromic behavior, four alkyl-substituted viologens and a benzyl-substituted viologen were synthesized, namely 1,1′-dioctyl-4,4′-bipyridinium dibromide (OV), 1,1′-didekyl-4,4′-bipyridinium dibromide (DeV), 1,1′-didodecyl-4,4′-bipyridinium dibromide (DoV), 1,1′-dihexadecyl-4,4′-bipyridinium dibromide (HV), and 1,1′-dibenzyl-4,4′-bipyridinium dibromide (BV). The different photophysical and electrochemical properties of these viologens were attributed to their deviation in spatial structure caused by different substituents. Compared with benzyl-substituted BV, a slight blueshift occurred for the absorption peaks of alkyl-substituted viologens from 262 to 257 nm with the increase in alkyl chain length. Moreover, the first redox couple increased positively, and the dimerization of the compound decreased gradually, accompanied by the decrease in optical contrast and distinct chromatic difference. A comparison of chromatic and optical contrasts indicated that OV had the longest coloring response time (RTc), while it was shortest for HV. The bleaching response time (RTb) of viologen films gradually decreased with the alkyl chain length, and the OV film had the shortest RTb. Furthermore, when increasing the length of the alkyl chain, the cycling stabilities of alkyl viologens increased gradually. In addition, the OV film exhibited the best contrast after 200 continuous cycles.
Collapse
Affiliation(s)
- Qun Zhang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; (Q.Z.); (L.Y.); (F.G.); (R.W.)
| | - Li Yuan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; (Q.Z.); (L.Y.); (F.G.); (R.W.)
| | - Fanglan Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; (Q.Z.); (L.Y.); (F.G.); (R.W.)
| | - Xin Li
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; (Q.Z.); (L.Y.); (F.G.); (R.W.)
- Correspondence: (X.L.); (G.C.)
| | - Rui Wang
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, School of Materials design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China; (Q.Z.); (L.Y.); (F.G.); (R.W.)
| | - Jian Xu
- College of Chemical and Environmental Engineering, Low-dimensional Materials Genome Initiative, Shenzhen University, Shenzhen 518055, China;
| | - Yanyan Qin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China;
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China;
- Correspondence: (X.L.); (G.C.)
| |
Collapse
|
44
|
Wang S, Yan C, Zhao W, Liu X, Yuan CS, Zhang HL, Shao X. A tellura-Baeyer-Villiger oxidation: one-step transformation of tellurophene into chiral tellurinate lactone. Chem Sci 2021; 12:5811-5817. [PMID: 34168805 PMCID: PMC8179672 DOI: 10.1039/d1sc00397f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023] Open
Abstract
Baeyer-Villiger (BV) oxidation is a fundamental organic reaction, whereas the hetero-BV oxidation is uncharted. Herein, a tellura-BV oxidation is discovered. By oxidizing a tellurophene-embedded and electron-rich polycycle (1) with mCPBA or Oxone, an oxygen atom is inserted into the Te-C bond of the tellurophene to form tellurinate lactone mono-2. This reaction proceeds as follows: (i) 1 is oxidized to the tellurophene Te-oxide form (IM-1); (ii) IM-1 undergoes tellura-BV oxidation to give mono-2. Moreover, the hybrid trichalcogenasumanenes 7 and 8 are, respectively, converted to tellurinate lactones mono-9 and mono-10 under the same conditions, indicating that tellura-BV oxidation shows high chemoselectivity. Due to the strong secondary bonding interactions between the Te[double bond, length as m-dash]O groups on tellurinate lactones, mono-2, mono-9, and mono-10 are dimerized to form U-shaped polycycles 2, 9, and 10, respectively. Notably, mono-2, mono-9, mono-10, and their dimers show chirality. This work enables one-step transformation of tellurophene into tellurinate lactone and construction of intricate polycycles.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Wenlong Zhao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Xiaolan Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Cheng-Shan Yuan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University Tianshui Southern Road 222 Lanzhou 730000 China
| |
Collapse
|
45
|
Automatic light-adjusting electrochromic device powered by perovskite solar cell. Nat Commun 2021; 12:1010. [PMID: 33579925 PMCID: PMC7881180 DOI: 10.1038/s41467-021-21086-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Electrochromic devices can modulate their light absorption under a small driving voltage, but the requirement for external electrical supplies causes response-lag. To address this problem, self-powered electrochromic devices have been studied recently. However, insensitivity to the surrounding light and unsatisfactory stability of electrochromic devices have hindered their critical applications. Herein, novel perovskite solar cell-powered all-in-one gel electrochromic devices have been assembled and studied in order to achieve automatic light adjustment. Two alkynyl-containing viologen derivatives are synthesized as electrochromic materials, the devices with very high stability (up to 70000 cycles) serves as the energy storage and smart window, while the perovskite solar cell with power-conversion-efficiency up to 18.3% serves as the light detector and power harvester. The combined devices can automatically switch between bleached and colored state to adjust light absorption with variable surrounding light intensity in real-time swiftly, which establish significant potentials for applications as modern all-day intelligent windows.
Collapse
|
46
|
Xu D, Liang M, Qi S, Sun W, Lv LP, Du FH, Wang B, Chen S, Wang Y, Yu Y. The Progress and Prospect of Tunable Organic Molecules for Organic Lithium-Ion Batteries. ACS NANO 2021; 15:47-80. [PMID: 33382596 DOI: 10.1021/acsnano.0c05896] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Compared to inorganic electrodes, organic materials are regarded as promising electrodes for lithium-ion batteries (LIBs) due to the attractive advantages of light elements, molecular-level structural design, fast electron/ion transferring, favorable environmental impacts, and flexible feature, etc. Not only specific capacities but also working potentials of organic electrodes are reasonably tuned by polymerization, electron-donating/withdrawing groups, and multifunctional groups as well as conductive additives, which have attracted intensive attention. However, organic LIBs (OLIBs) are also facing challenges on capacity loss, side reactions, electrode dissolution, low electronic conductivity, and short cycle life, etc. Many strategies have been applied to tackle those challenges, and many inspiring results have been achieved in the last few decades. In this review, we have introduced the basic concepts of LIBs and OLIBs, followed by the typical cathode and anode materials with various physicochemical properties, redox reaction mechanisms, and evolutions of functional groups. Typical charge-discharge behaviors and molecular structures of organic electrodes are displayed. Moreover, effective strategies on addressing problems of organic electrodes are summarized to give some guidance on the synthesis of optimized organic electrodes for practical applications of OLIBs.
Collapse
Affiliation(s)
- Danying Xu
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Minxia Liang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Shuo Qi
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Weiwei Sun
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Li-Ping Lv
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Fei-Hu Du
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Baofeng Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
| | - Shuangqiang Chen
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Yong Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shangda Road 99, Shanghai, 200444, China
| | - Yan Yu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Zhang W, Sun M, Yin J, Abou‐Hamad E, Schwingenschlögl U, Costa PMFJ, Alshareef HN. A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenli Zhang
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Minglei Sun
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jian Yin
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Edy Abou‐Hamad
- Core labs King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Udo Schwingenschlögl
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pedro M. F. J. Costa
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Husam N. Alshareef
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
48
|
Ma W, Xu L, Zhang S, Li G, Ma T, Rao B, Zhang M, He G. Phosphorescent Bismoviologens for Electrophosphorochromism and Visible Light-Induced Cross-Dehydrogenative Coupling. J Am Chem Soc 2021; 143:1590-1597. [DOI: 10.1021/jacs.0c12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wenqiang Ma
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Letian Xu
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Sikun Zhang
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Guoping Li
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| | - Tianyu Ma
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Bin Rao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Mingming Zhang
- School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, State Key Laboratory for Strength and Vibration of Mechanical Structures, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi 710054, P. R. China
| |
Collapse
|
49
|
Zhang W, Sun M, Yin J, Abou‐Hamad E, Schwingenschlögl U, Costa PMFJ, Alshareef HN. A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angew Chem Int Ed Engl 2020; 60:1355-1363. [DOI: 10.1002/anie.202011484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Wenli Zhang
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Minglei Sun
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Jian Yin
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Edy Abou‐Hamad
- Core labs King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Udo Schwingenschlögl
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Pedro M. F. J. Costa
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Husam N. Alshareef
- Materials Science and Engineering Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
50
|
Bridges CR, Borys AM, Béland VA, Gaffen JR, Baumgartner T. Phosphoryl- and phosphonium-bridged viologens as stable two- and three-electron acceptors for organic electrodes. Chem Sci 2020; 11:10483-10487. [PMID: 34094306 PMCID: PMC8162449 DOI: 10.1039/d0sc04183a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Low molecular weight organic molecules that can accept multiple electrons at high reduction potentials are sought after as electrode materials for high-energy sustainable batteries. To date their synthesis has been difficult, and organic scaffolds for electron donors significantly outnumber electron acceptors. Herein, we report the synthesis and electronic properties of two highly electron-deficient phosphaviologen derivatives from a phosphorus-bridged 4,4'-bipyridine and characterize their electrochemical properties. Phosphaviologen sulfide (PVS) and P-methyl phosphaviologen (PVM) accept two and three electrons at high reduction potentials, respectively. PVM can reversibly accept three electrons between 3–3.6 V vs. Li/Li+ with an equivalent molecular weight of 102 g (mol−1 e−) (262 mA h g−1), making it a promising scaffold for sustainable organic electrode materials having high specific energy densities. Two strongly electron-accepting viologens, including an intriguing tricationic species, are reported. The utility of the tricationic viologen for energy storage has been showcased via use as electrode in a proof-of-concept battery.![]()
Collapse
Affiliation(s)
- Colin R Bridges
- Department of Chemistry, York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| | - Andryj M Borys
- Department of Chemistry, York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| | - Vanessa A Béland
- Department of Chemistry, York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| | - Joshua R Gaffen
- Department of Chemistry, York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| | - Thomas Baumgartner
- Department of Chemistry, York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| |
Collapse
|