1
|
Dong L, Shu T, Yang D, Chen M. Deoxygenation of allyl arylsulfones to allyl arylthioethers via a "cut-sew" strategy: phosphines as bifunctional reagents. Chem Commun (Camb) 2024; 60:11996-11999. [PMID: 39354804 DOI: 10.1039/d4cc04199b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Herein, we disclosed a protocol for the deoxygenation of allyl arylsulfones to access the corresponding thioethers under photoredox conditions by a "cut-sew" strategy. The key to the success of the deoxygenation process is using triarylphosphines not only as the terminal reductants, but also as the reaction initiators. Deeper understanding of this deoxygenation process enabled the intermolecular deoxygenative allylation.
Collapse
Affiliation(s)
- Liuxin Dong
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Tao Shu
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Di Yang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| | - Min Chen
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Yang Y, Zhu H, Gong B, Yang H, Fan Q, Le ZG, Xie Z. Neutral nickel-catalyzed dehydrosulfonylation of unactivated allylic alcohols under mild conditions. Chem Commun (Camb) 2024; 60:2516-2519. [PMID: 38324066 DOI: 10.1039/d3cc06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Allyl sulfones are important sulfur-containing compounds that have widespread applications in organic synthesis, medicinal chemistry and materials science. Herein, nickel-catalysed dehydrosulfonylation of unactivated allyl alcohols with aryl sulfonyl hydrazides without additional active agents under mild conditions was developed. A variety of functional allyl sulfones could be efficiently synthesized in the presence of air-stable Ni(acac)2 as the catalyst and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) as the ligand.
Collapse
Affiliation(s)
- Yahui Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Bozhen Gong
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Hong Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Qiangwen Fan
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Zhang-Gao Le
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
3
|
Affiliation(s)
- Weidong Shang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Department of Chemical Engineering, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
4
|
He BQ, Wu X. Deuterium- and Electron-Shuttling Catalysis for Deoxygenative Deuteration of Alcohols. Org Lett 2023; 25:6571-6576. [PMID: 37646435 DOI: 10.1021/acs.orglett.3c02432] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
A practical and precise method for visible-light-promoted deoxygenative deuteration of common aliphatic alcohols using D2O as the deuterium source is reported. Upon intermediacy of xanthate anions, a variety of primary, secondary, and tertiary alcohols can be facilely transformed into deuterioalkanes with excellent D-incorporation at predicted sites. The deoxygenation and deuteration sequence is catalyzed by in situ formed deuterated 2-mercaptopyridine, which plays dual roles as a deuterium atom transfer catalyst and an electron shuttle as well.
Collapse
Affiliation(s)
- Bin-Qing He
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Beng TK, Eichwald J, Fessenden J, Quigley K, Sharaf S, Jeon N, Do M. Regiodivergent synthesis of sulfone-tethered lactam-lactones bearing four contiguous stereocenters. RSC Adv 2023; 13:21250-21258. [PMID: 37456540 PMCID: PMC10340014 DOI: 10.1039/d3ra03800a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Sulfone-tethered lactones/amides/amines display a diverse spectrum of biological activities, including anti-psychotic and anti-hypertensive. Sulfones are also widely present in functional materials and fragrances. We therefore reasoned that a regiodivergent and stereocontrolled strategy that merges the sulfone, lactone, and lactam motifs would likely lead to the discovery of new pharmacophores and functional materials. Here, we report mild conditions for the sulfonyllactonization of γ-lactam-tethered 5-aryl-4(E)-pentenoic acids. The annulation is highly modular, chemoselective, and diastereoselective. With respect to regioselectivity, trisubstituted alkenoic acids display a preference for 5-exo-trig cyclization whereas disubstituted alkenoic acids undergo exclusive 6-endo-trig cyclization. The lactam-fused sulfonyllactones bear angular quaternary as well as four contiguous stereocenters. The products are post-modifiable, especially through a newly developed Co-catalyzed reductive cross-coupling protocol.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jolyn Fessenden
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Kaiden Quigley
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Sapna Sharaf
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Nanju Jeon
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
6
|
Zhang X, Xu S, Yang X, Pang W. KI-Catalyzed Allylic Sulfonation of α-Methylstyrene Derivatives with Sulfonylhydrazides via Electrochemistry. J Org Chem 2023. [PMID: 37167344 DOI: 10.1021/acs.joc.3c00147] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A direct allylic C-H bond activation of α-methylstyrene derivatives with sulfonylhydrazines for the synthesis of allylic sulfones has been developed under exogenous oxidant- and metal-catalyst-free electrochemical conditions. Using the transfer of electrons in the current instead of a stoichiometric chemical oxidant, a series of valuable allylic sulfones were accessed with a wide substrate scope and excellent regioselectivity via radical coupling.
Collapse
Affiliation(s)
- Xinghua Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuang Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiang Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wan Pang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
7
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Swain M, Bunnell TB, Kim J, Kwon O. Dealkenylative Alkynylation Using Catalytic Fe II and Vitamin C. J Am Chem Soc 2022; 144:14828-14837. [PMID: 35929075 PMCID: PMC9731399 DOI: 10.1021/jacs.2c05980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper, we report the synthesis of alkyl-tethered alkynes through ozone-mediated and FeII-catalyzed dealkenylative alkynylation of unactivated alkenes in the presence of alkynyl sulfones. This one-pot reaction, which employs a combination of a catalytic FeII salt and l-ascorbic acid, proceeds under mild conditions with good efficiency, high stereoselectivity, and broad functional group compatibility. In contrast to our previous FeII-mediated reductive fragmentation of α-methoxyhydroperoxides, the FeII-catalyzed process was devised through a thorough kinetic analysis of the multiple competing radical (redox) pathways. We highlight the potential of this dealkenylative alkynylation through multiple post-synthetic transformations and late-stage diversifications of complex molecules, including natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Manisha Swain
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Thomas B Bunnell
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Jacob Kim
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California─Los Angeles, Los Angeles, California 90095-1569, United States
| |
Collapse
|
9
|
Abstract
Deuterated chemicals are becoming irreplaceable in pharmaceutical engineering, material science and synthetic chemistry. Many excellent reviews have discussed acid/base-dependent or metal-catalyzed deuteration reactions, but radical deuterations have been discussed less. With the development of radical chemistry, there has been a rapid growth in radical deuterium-labelling technology. Diverse mild, cheap and efficient strategies for deuterium atom installation have been reported, and this review summarizes the recent achievements of radical deuteration classified by the reaction types.
Collapse
Affiliation(s)
- Nian Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yantao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiaopeng Wu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Green Catalysis Center, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
10
|
Corpas J, Kim-Lee SH, Mauleón P, Arrayás RG, Carretero JC. Beyond classical sulfone chemistry: metal- and photocatalytic approaches for C-S bond functionalization of sulfones. Chem Soc Rev 2022; 51:6774-6823. [PMID: 35838659 DOI: 10.1039/d0cs00535e] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exceptional versatility of sulfones has been extensively exploited in organic synthesis across several decades. Since the first demonstration in 2005 that sulfones can participate in Pd-catalysed Suzuki-Miyaura type reactions, tremendous advances in catalytic desulfitative functionalizations have opened a new area of research with burgeoning activity in recent years. This emerging field is displaying sulfone derivatives as a new class of substrates enabling catalytic C-C and C-X bond construction. In this review, we will discuss new facets of sulfone reactivity toward further expanding the flexibility of C-S bonds, with an emphasis on key mechanistic features. The inherent challenges confronting the development of these strategies will be presented, along with the potential application of this chemistry for the synthesis of natural products. Taken together, this knowledge should stimulate impactful improvements on the use of sulfones in catalytic desulfitative C-C and C-X bond formation. A main goal of this article is to bring this technology to the mainstream catalysis practice and to serve as inspiration for new perspectives in catalytic transformations.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Shin-Ho Kim-Lee
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain.
| | - Pablo Mauleón
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Juan C Carretero
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco 28049 Madrid, Spain, and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
11
|
Lenci E, Trabocchi A. Diversity‐Oriented Synthesis and Chemoinformatics: A Fruitful Synergy towards Better Chemical Libraries. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elena Lenci
- Universita degli Studi di Firenze Department of Chemistry Via della Lastruccia 1350019Italia 50019 Sesto Fiorentino ITALY
| | - Andrea Trabocchi
- University of Florence: Universita degli Studi di Firenze Department of Chemistry "Ugo Schiff" ITALY
| |
Collapse
|
12
|
Zhang Q, Chiou MF, Ye C, Yuan X, Li Y, Bao H. Radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters enabled by a carbon shift from an all-carbon quaternary center. Chem Sci 2022; 13:6836-6841. [PMID: 35774175 PMCID: PMC9200052 DOI: 10.1039/d2sc00902a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/01/2022] [Indexed: 12/12/2022] Open
Abstract
Herein, we report an intermolecular, radical 1,2,3-tricarbofunctionalization of α-vinyl-β-ketoesters to achieve the goal of building molecular complexity via the one-pot multifunctionalization of alkenes. This reaction allows the expansion of the carbon ring by a carbon shift from an all-carbon quaternary center, and enables further C-C bond formation on the tertiary carbon intermediate with the aim of reconstructing a new all-carbon quaternary center. The good functional group compatibility ensures diverse synthetic transformations of this method. Experimental and theoretical studies reveal that the excellent diastereoselectivity should be attributed to the hydrogen bonding between the substrates and solvent.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Mong-Feng Chiou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Changqing Ye
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaobin Yuan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Lingling Road 345 Shanghai 200032 P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
13
|
Liu B, Wang G, Xu Z, Wang M, Nie Y, Luo Z. Ionic liquid/boronic acid system enabled deuteration with D2O. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhang C, Zuo H, Lee GY, Zou Y, Dang QD, Houk KN, Niu D. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat Chem 2022; 14:686-694. [DOI: 10.1038/s41557-022-00918-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
|
15
|
Frye NL, Daniliuc CG, Studer A. Radical 1-Fluorosulfonyl-2-alkynylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202115593. [PMID: 34958162 PMCID: PMC9305502 DOI: 10.1002/anie.202115593] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/12/2022]
Abstract
Sulfonyl fluorides have found widespread use in chemical biology and drug discovery. The development of synthetic methods for the introduction of the sulfonyl fluoride moiety is therefore of importance. Herein, a transition-metal-free radical 1,2-difunctionalization of unactivated alkenes via FSO2 -radical addition with subsequent vicinal alkynylation to access β-alkynyl-fluorosulfonylalkanes is presented. Alkynyl sulfonyl fluorides are introduced as highly valuable bifunctional radical trapping reagents that also serve as FSO2 -radical precursors. The β-alkynyl-fluorosulfonylalkanes obtained in these transformations can be readily diversified by using SuFEx click chemistry to obtain sulfonates and sulfonamides.
Collapse
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Constantin G. Daniliuc
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstraße 4048149MünsterGermany
| |
Collapse
|
16
|
Wang X, Tong WY, Huang B, Cao S, Li Y, Jiao J, Huang H, Yi Q, Qu S, Wang X. Convergent Synthesis of 1,4-Dicarbonyl Z-Alkenes through Three-Component Coupling of Alkynes, α-Diazo Sulfonium Triflate, and Water. J Am Chem Soc 2022; 144:4952-4965. [PMID: 35274949 DOI: 10.1021/jacs.1c12874] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report a general protocol for the convergent synthesis of 1,4-dicarbonyl Z-alkenes form alkynes using α-diazo sulfonium triflate and water. The C═O, C═C, and C-H bonds are formed under mild conditions with a wide range of functional groups tolerated. The reaction exhibits excellent Z-selectivity and complete regioselectivity. The resulting 1,4-dicarbonyl Z-alkenes can smoothly undergo follow-up conversion to a variety of heteroaromatic scaffolds. Moreover, the reaction also provides a facile access to the corresponding deuterated Z-alkenes and deuterated heteroarenes with a high level of deuterium incorporation (90-97% D-inc.) by directly using D2O, thus rendering the method highly valuable. The comprehensive mechanistic studies indicate that a free carbyne radical intermediate is formed via the photocatalytic single electron transfer process, and KH2PO4 plays a crucial role in significant improvements on yield and selectivity based on density-functional theory calculations, providing a new direction for radical coupling reactions of diazo compounds.
Collapse
Affiliation(s)
- Xuyong Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Wen-Yan Tong
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Bing Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Si Cao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yunlong Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Jingchao Jiao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Hang Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Qiu Yi
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Shuanglin Qu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Xi Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
17
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
18
|
Frye NL, Daniliuc CG, Studer A. Radikalische 1‐Fluorsulfonyl‐2‐alkinylierung von nicht aktivierten Alkenen. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nils Lennart Frye
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstraße 40 48149 Münster Deutschland)
| |
Collapse
|
19
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
20
|
Tao X, Ni S, Kong L, Wang Y, Pan Y. Radical boron migration of allylboronic esters. Chem Sci 2022; 13:1946-1950. [PMID: 35308850 PMCID: PMC8848984 DOI: 10.1039/d1sc06760e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
A photocatalyzed 1,3-boron shift of allylboronic esters is reported. The atom-switch acrobatics proceeds via cascade 1,2-boron migrations and Smiles type rearrangement to furnish a variety of terminally functionalized alkyl boronates.
Collapse
Affiliation(s)
- Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lingyu Kong
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Liu L, Wang C. Allyl sulfones construction via copper catalysis from α-methylstyrene derivatives and sulfonyl chlorides. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
SOMOphilic Alkynylation of Unreactive Alkenes Enabled by Iron-Catalyzed Hydrogen Atom Transfer. Molecules 2021; 27:molecules27010033. [PMID: 35011265 PMCID: PMC8746543 DOI: 10.3390/molecules27010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
We report an efficient and practical iron-catalyzed hydrogen atom transfer protocol for assembling acetylenic motifs into functional alkenes. Diversities of internal alkynes could be obtained from readily available alkenes and acetylenic sulfones with excellent Markovnikov selectivity. An iron hydride hydrogen atom transfer catalytic cycle was described to clarify the mechanism of this reaction.
Collapse
|
23
|
Liang L, Guo G, Li C, Wang SL, Wang YH, Guo HM, Niu HY. Copper-Catalyzed Intermolecular Alkynylation and Allylation of Unactivated C(sp 3)-H Bonds via Hydrogen Atom Transfer. Org Lett 2021; 23:8575-8579. [PMID: 34669414 DOI: 10.1021/acs.orglett.1c03298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe Cu-catalyzed intermolecular alkynylation and allylation of unactivated C(sp3)-H bonds with singly occupied molecular orbital-philes (SOMO-philes) via hydrogen atom transfer (HAT). Employing N-fluoro-sulfonamide as a HAT reagent, a set of substituted alkene and alkyne compounds were synthesized in high yields with good regioselectivity and functional-group compatibility. Late-stage functionalization of natural products and drug molecules is also demonstrated.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Ge Guo
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Song-Lin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Yue-Hui Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hai-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan Province 453007, China
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
24
|
Chu XQ, Ge D, Cui YY, Shen ZL, Li CJ. Desulfonylation via Radical Process: Recent Developments in Organic Synthesis. Chem Rev 2021; 121:12548-12680. [PMID: 34387465 DOI: 10.1021/acs.chemrev.1c00084] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As the "chemical chameleon", sulfonyl-containing compounds and their variants have been merged with various types of reactions for the efficient construction of diverse molecular architectures by taking advantage of their incredible reactive flexibility. Currently, their involvement in radical transformations, in which the sulfonyl group typically acts as a leaving group via selective C-S, N-S, O-S, S-S, and Se-S bond cleavage/functionalization, has facilitated new bond formation strategies which are complementary to classical two-electron cross-couplings via organometallic or ionic intermediates. Considering the great influence and synthetic potential of these novel avenues, we summarize recent advances in this rapidly expanding area by discussing the reaction designs, substrate scopes, mechanistic studies, and their limitations, outlining the state-of-the-art processes involved in radical-mediated desulfonylation and related transformations. With a specific emphasis on their synthetic applications, we believe this review will be useful for medicinal and synthetic organic chemists who are interested in radical chemistry and radical-mediated desulfonylation in particular.
Collapse
Affiliation(s)
- Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Ying Cui
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
25
|
Amos SGE, Cavalli D, Le Vaillant F, Waser J. Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stephanie G. E. Amos
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Diana Cavalli
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| | - Franck Le Vaillant
- Max-Planck-Institut für Kohlenforschung Mülheim an der Ruhr 45470 Germany
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) Catalysis Institut des Sciences et Ingénierie Chimique Ecole Polytechnique Fédérale de Lausanne CH-1015 Lausanne Switzerland
| |
Collapse
|
26
|
Amos SGE, Cavalli D, Le Vaillant F, Waser J. Direct Photoexcitation of Ethynylbenziodoxolones: An Alternative to Photocatalysis for Alkynylation Reactions*. Angew Chem Int Ed Engl 2021; 60:23827-23834. [PMID: 34403571 PMCID: PMC8596672 DOI: 10.1002/anie.202110257] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 11/23/2022]
Abstract
Ethynylbenziodoxolones (EBXs) are commonly used as radical traps in photocatalytic alkynylations. Herein, we report that aryl-substituted EBX reagents can be directly activated by visible light irradiation. They act as both oxidants and radical traps, alleviating the need for a photocatalyst in several reported EBX-mediated processes, including decarboxylative and deboronative alkynylations, the oxyalkynylation of enamides and the C-H alkynylation of THF. Furthermore, the method could be applied to the synthesis of alkynylated quaternary centers from tertiary alcohols via stable oxalate salts and from tertiary amines via aryl imines. A photocatalytic process using 4CzIPN as an organic dye was also developed for the deoxyalkynylation of oxalates.
Collapse
Affiliation(s)
- Stephanie G. E. Amos
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | - Diana Cavalli
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| | | | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and National Centre of Competence in Research (NCCR) CatalysisInstitut des Sciences et Ingénierie ChimiqueEcole Polytechnique Fédérale de LausanneCH-1015LausanneSwitzerland
| |
Collapse
|
27
|
Mulina OM, Doronin MM, O. Terent'ev A. Mn(OAc)
3
‐Mediated Sulfonylation of Vinyl Azides Resulting in
N
‐Unsubstituted Enaminosulfones. ChemistrySelect 2021. [DOI: 10.1002/slct.202102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Olga M. Mulina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Mikhail M. Doronin
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander O. Terent'ev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
28
|
Wang HN, Dong JY, Shi J, Zhang CP. Trifluoromethylselenolation reactions using the versatile [Me4N][SeCF3] reagent. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132476] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Ghiazza C, Billard T. Synthesis, Reactivity and Activation Modes of Fluoroalkyl Thiosulfonates and Selenosulfonates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Clément Ghiazza
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon Université Lyon 1, CNRS, CPE-Lyon, INSA 43 Bd du 11 Novembre 1918 69622 Villeurbanne France
- CERMEP – in vivo imaging Groupement Hospitalier Est 59 Bd Pinel 69003 Lyon France
| |
Collapse
|
30
|
Dong X, Jiang W, Hua D, Wang X, Xu L, Wu X. Radical-mediated vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes. Chem Sci 2021; 12:11762-11768. [PMID: 34659713 PMCID: PMC8442677 DOI: 10.1039/d1sc03315h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
The addition of sulfonyl radicals to alkenes and alkynes is a valuable method for constructing useful highly functionalized sulfonyl compounds. The underexplored alkoxy- and fluorosulfonyl radicals are easily accessed by CF3 radical addition to readily available allylsulfonic acid derivatives and then β-fragmentation. These substituted sulfonyl radicals add to aryl alkyl alkynes to give vinyl radicals that are trapped by trifluoromethyl transfer to provide tetra-substituted alkenes bearing the privileged alkoxy- or fluorosulfonyl group on one carbon and a trifluoromethyl group on the other. This process exhibits broad functional group compatibility and allows for the late-stage functionalization of drug molecules, demonstrating its potential in drug discovery and chemical biology. An unprecedented method for vicinal addition of alkoxysulfonyl/fluorosulfonyl and trifluoromethyl groups to aryl alkyl alkynes has been developed to afford useful alkenylsulfonate esters and alkenylsulfonyl fluorides.![]()
Collapse
Affiliation(s)
- Xinrui Dong
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Wenhua Jiang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Xiaohui Wang
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University Shihezi 832003 China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University Nanjing 211198 China
| |
Collapse
|
31
|
Wang L, Xia Y, Derdau V, Studer A. Remote Site-Selective Radical C(sp 3 )-H Monodeuteration of Amides using D 2 O. Angew Chem Int Ed Engl 2021; 60:18645-18650. [PMID: 34114304 PMCID: PMC8456965 DOI: 10.1002/anie.202104254] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Indexed: 12/18/2022]
Abstract
Site-selective incorporation of deuterium into biologically active compounds is of high interest in pharmaceutical industry. We present a mild and environmentally benign metal-free method for the remote selective radical C-H monodeuteration of aliphatic C-H bonds in various amides with inexpensive heavy water (D2 O) as the deuterium source. The method uses the easily installed N-allylsulfonyl moiety as an N-radical precursor that generates the remote C-radical via site-selective 1,5- or 1,6-hydrogen atom transfer (HAT). Methyl thioglycolate, that readily exchanges its proton with D2 O, serves as the radical deuteration reagent and as a chain-carrier. The highly site-selective monodeuteration has been applied to different types of unactivated sp3 -C-H bonds and also to the deuteration of C-H bonds next to heteroatoms. The potential utility of this method is further demonstrated by the site-selective incorporation of deuterium into natural product derivatives and drugs.
Collapse
Affiliation(s)
- Lin Wang
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Yong Xia
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| | - Volker Derdau
- Sanofi (Germany)Integrated Drug Discovery, Isotope ChemistryIndustriepark Höchst, G87665926FrankfurtGermany
| | - Armido Studer
- Organisch-Chemisches InstitutWestfälische Wilhelms-UniversitätCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
32
|
Wan LQ, Zhang X, Zou Y, Shi R, Cao JG, Xu SY, Deng LF, Zhou L, Gong Y, Shu X, Lee GY, Ren H, Dai L, Qi S, Houk KN, Niu D. Nonenzymatic Stereoselective S-Glycosylation of Polypeptides and Proteins. J Am Chem Soc 2021; 143:11919-11926. [PMID: 34323481 DOI: 10.1021/jacs.1c05156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here we report a nonenzymatic glycosylation reaction that builds axial S-glycosidic bonds under biorelevant conditions. This strategy is enabled by the design and use of allyl glycosyl sulfones as precursors to glycosyl radicals and exploits the exceptional functional group tolerance of radical processes. Our method introduces a variety of unprotected glycosyl units to the cysteine residues of peptides in a highly selective fashion. Through developing the second-generation protocol, we applied our method in the direct glycosylation of complex polypeptides and proteins. Computational studies were performed to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Li-Qiang Wan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Xia Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Rong Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Jin-Ge Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Shi-Yang Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Li-Fan Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoling Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ga Young Lee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Haiyan Ren
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Dawen Niu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,Department of Chemical Engineering, Sichuan University, Chengdu 610024, China
| |
Collapse
|
33
|
Wang L, Xia Y, Derdau V, Studer A. Remote Site‐Selective Radical C(sp
3
)−H Monodeuteration of Amides using D
2
O. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lin Wang
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Yong Xia
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Volker Derdau
- Sanofi (Germany) Integrated Drug Discovery, Isotope Chemistry Industriepark Höchst, G876 65926 Frankfurt Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
34
|
Kern C, Selau J, Streuff J. A Titanium-Catalyzed Reductive α-Desulfonylation. Chemistry 2021; 27:6178-6182. [PMID: 33539578 PMCID: PMC8048938 DOI: 10.1002/chem.202005400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/09/2021] [Indexed: 12/14/2022]
Abstract
A titanium(III)-catalyzed desulfonylation gives access to functionalized alkyl nitrile building blocks from α-sulfonyl nitriles, circumventing traditional base-mediated α-alkylation conditions and strong single electron donors. The reaction tolerates numerous functional groups including free alcohols, esters, amides, and it can be applied also to the α-desulfonylation of ketones. In addition, a one-pot desulfonylative alkylation is demonstrated. Preliminary mechanistic studies indicate a catalyst-dependent mechanism involving a homolytic C-S cleavage.
Collapse
Affiliation(s)
- Christoph Kern
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| | - Jan Selau
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| | - Jan Streuff
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104Freiburg im BreisgauGermany
| |
Collapse
|
35
|
Wang Y, Ye Z, Zhang H, Yuan Z. Recent Advances in the Development of Direct Trifluoromethylselenolation Reagents and Methods. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001508] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Zhegao Ye
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Han Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences Zhejiang Normal University 688 Yingbin Road Jinhua 321004 People's Republic of China
| |
Collapse
|
36
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
37
|
Nambo M, Tahara Y, Yim JCH, Yokogawa D, Crudden CM. Synthesis of quaternary centres by single electron reduction and alkylation of alkylsulfones. Chem Sci 2021; 12:4866-4871. [PMID: 34168761 PMCID: PMC8179647 DOI: 10.1039/d1sc00133g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A new method for the generation of tertiary radicals through single electron reduction of alkylsulfones promoted by Zn and 1,10-phenanthroline has been developed. These radicals could be employed in the Giese reaction, affording structurally diverse quaternary products in good yields. With the high modularity and functional group compatibility of sulfones, the utility of this method was demonstrated by intramolecular and iterative reactions to give complex structures. The radical generation process was investigated by control experiments and theoretical calculations. A new method for the generation of tertiary radicals through single electron reduction of alkylsulfones promoted by Zn and 1,10-phenanthroline has been developed.![]()
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Yasuyo Tahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Jacky C-H Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Science, The University of Tokyo Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan .,Department of Chemistry, Queen's University Chernoff Hall Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
38
|
Louvel D, Ghiazza C, Debrauwer V, Khrouz L, Monnereau C, Tlili A. Forging C-SeCF 3 Bonds with Trifluoromethyl Tolueneselenosulfonate under Visible-Light. CHEM REC 2021; 21:417-426. [PMID: 33502093 DOI: 10.1002/tcr.202000184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022]
Abstract
This account highlights some of our recent work on photoinduced trifluoromethylselenolation reactions. This research program relies primarily on the design of a new key shelf-stable selenating reagent that can be involved in various radical processes In particular, we demonstrated that trifluoromethylselenolation of arenes, alkenes, alkynes as well as aliphatic organic building blocks can be readily achieved under visible-light irradiation. Mechanistic investigations based on 19 F NMR studies, EPR spectroscopy, cyclic voltammetry and luminescence studies allowed us to shed the light on the different proposed mechanisms in the designed methodologies. The applicative potential of these strategies was further demonstrated through the synthesis of bioactive analogue containing SeCF3 motif.
Collapse
Affiliation(s)
- Dan Louvel
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Clément Ghiazza
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Vincent Debrauwer
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| | - Lhoussain Khrouz
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Cyrille Monnereau
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Anis Tlili
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE-Lyon, INSA, 43 Bd du 11 Novembre 1918, 69622, Villeurbanne, France
| |
Collapse
|
39
|
Zheng M, Gao K, Zhang Y, Lu H. Visible-light photoredox-catalyzed aryl radical in situ SO 2-capture reactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00099c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An aryl radical in situ SO2-capture reaction is developed for the synthesis of various β-keto, allyl and alkynyl arylsulfone derivatives.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Ke Gao
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Yanhu Zhang
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Hongjian Lu
- Institute of Chemistry and BioMedical Sciences
- Jiangsu Key Laboratory of Advanced Organic Materials
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
40
|
Ge D, Wang X, Chu XQ. SOMOphilic alkynylation using acetylenic sulfones as functional reagents. Org Chem Front 2021. [DOI: 10.1039/d1qo00798j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advancements in SOMOphilic alkynylation reactions by using acetylenic sulfones as functional reagents are summarized.
Collapse
Affiliation(s)
- Danhua Ge
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xin Wang
- Hubei Province Geological Experimental Testing Center, Wuhan Hubei 430034, China
| | - Xue-Qiang Chu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
41
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915837] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
42
|
Liu J, Wu S, Yu J, Lu C, Wu Z, Wu X, Xue X, Zhu C. Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angew Chem Int Ed Engl 2020; 59:8195-8202. [DOI: 10.1002/anie.201915837] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Jige Liu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Shuo Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Jiajia Yu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Chenxi Lu
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| | - Xiao‐Song Xue
- State Key Laboratory of Elemento-organic ChemistryCollege of ChemistryNankai University Tianjin 300071 China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu ProvinceCollege of ChemistryChemical Engineering and Materials ScienceSoochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 China
| |
Collapse
|
43
|
Song Z, Zeng J, Li T, Zhao X, Fang J, Meng L, Wan Q. Water Compatible Hypophosphites- d2 Reagents: Deuteration Reaction via Deutero-deiodination in Aqueous Solution. Org Lett 2020; 22:1736-1741. [PMID: 32083886 DOI: 10.1021/acs.orglett.0c00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Contrary to conventional deuteration approaches which typically entail deuterated solvents and/or moisture exclusion, an unprecedented deutero-deiodination reaction attainable in aqueous (H2O) solution is presented herein. By utilizing the stability of inorganic deuterated calcium/sodium hypophosphites against wayward H/D isotopic exchange within pH 2.5-11.7, these shelf-stable, nontoxic, cost-effective, and environmentally benign deuteration reagents mediate deuteration of a broad range alkyl and aryl iodides with ample isotopic incorporation in aqueous (H2O) solution.
Collapse
Affiliation(s)
- Zejin Song
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Ting Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Jing Fang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
| |
Collapse
|
44
|
Jana K, Bhunia A, Studer A. Radical 1,3-Difunctionalization of Allylboronic Esters with Concomitant 1,2-Boron Shift. Chem 2020. [DOI: 10.1016/j.chempr.2019.12.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Fan J, Zhao Y, Zhang J, Xie M, Zhang Y. Acid-Controlled Access to β-Sulfenyl Ketones and α,β-Disulfonyl Ketones by Pummerer Reaction of β-Keto Sulfones and Sulfoxides. J Org Chem 2020; 85:691-701. [PMID: 31790239 DOI: 10.1021/acs.joc.9b02766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A convenient acid-mediated reaction of β-keto sulfones with sulfoxides under metal-free conditions has been developed, thereby delivering the acid-controlled synthesis of β-sulfenyl ketones and α,β-disulfonyl ketones in good to excellent yields. The mechanism of the transformations has been studied carefully, which suggested the involvement of a radical process in the formation of α,β-disulfonyl ketones.
Collapse
Affiliation(s)
- Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Yuzhong Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| |
Collapse
|
46
|
Le Vaillant F, Waser J. Alkynylation of radicals: spotlight on the "Third Way" to transfer triple bonds. Chem Sci 2019; 10:8909-8923. [PMID: 31762975 PMCID: PMC6855197 DOI: 10.1039/c9sc03033f] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
The alkynylation of radical intermediates has been known since a long time, but had not been broadly applied in synthetic chemistry, in contrast to the alkynylation of either electrophiles or nucleophiles. In the last decade however, it has been intensively investigated leading to new disconnections to introduce versatile triple bonds into organic compounds. Nowadays, such processes are important alternatives to classical nucleophilic and electrophilic alkynylations. Efficient alkyne transfer reagents, in particular arylsulfones and hypervalent iodine reagents were introduced. Direct alkynylation, as well as cascade reactions, were subsequently developed. If relatively harsh conditions were required in the past, a new era began with progress in photoredox and transition metal catalysis. Starting from various radical precursors, alkynylations under very mild reaction conditions were rapidly discovered. This review covers the evolution of radical alkynylation, from its emergence to its current intensive stage of development. It will focus in particular on improvements for the generation of radicals and on the extension of the scope of radical precursors and alkyne sources.
Collapse
Affiliation(s)
- Franck Le Vaillant
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSO , BCH 4306 , 1015 Lausanne , Switzerland .
| |
Collapse
|