1
|
Zhu X, Zhang H, Huang Y, He E, Shen Y, Huang G, Yuan S, Dong X, Zhang Y, Chen R, Zhang X, Wang Y. Recent progress of flexible rechargeable batteries. Sci Bull (Beijing) 2024:S2095-9273(24)00683-2. [PMID: 39389866 DOI: 10.1016/j.scib.2024.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
The rapid popularization of wearable electronics, soft robots and implanted medical devices has stimulated extensive research in flexible batteries, which are bendable, foldable, knittable, wearable, and/or stretchable. Benefiting from these distinct characteristics, flexible batteries can be seamlessly integrated into various wearable/implantable devices, such as smart home systems, flexible displays, and implantable sensors. In contrast to conventional lithium-ion batteries necessitating the incorporation of stringent current collectors and packaging layers that are typically rigid, flexible batteries require the flexibility of each component to accommodate diverse shapes or sizes. Accordingly, significant advancements have been achieved in the development of flexible electrodes, current collectors, electrolytes, and flexible structures to uphold superior electrochemical performance and exceptional flexibility. In this review, typical structures of flexible batteries are firstly introduced and classified into mono-dimensional, two-dimensional, and three-dimensional structures according to their configurations. Subsequently, five distinct types of flexible batteries, including flexible lithium-ion batteries, flexible sodium-ion batteries, flexible zinc-ion batteries, flexible lithium/sodium-air batteries, and flexible zinc/magnesium-air batteries, are discussed in detail according to their configurations, respectively. Meanwhile, related comprehensive analysis is introduced to delve into the fundamental design principles pertaining to electrodes, electrolytes, current collectors, and integrated structures for various flexible batteries. Finally, the developments and challenges of flexible batteries are summarized, offering viable guidelines to promote the practical applications in the future.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China
| | - Haoran Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yongxin Huang
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Er He
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China
| | - Yun Shen
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Gang Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Shouyi Yuan
- National and Local Joint Engineering Laboratory for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China.
| | - Xiaoli Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry, Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering & Applied Science, Nanjing University, Nanjing 210023, China.
| | - Renjie Chen
- Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Xinbo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yonggang Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of Fiber Electronic Materials and Devices, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Ren L, Zheng M, Kong F, Yu Z, Sun N, Li M, Liu Q, Song Y, Dong J, Qiao J, Xu N, Wang J, Lou S, Jiang Z, Wang J. Light Enables the Cathodic Interface Reaction Reversibility in Solid-State Lithium-Oxygen Batteries. Angew Chem Int Ed Engl 2024; 63:e202319529. [PMID: 38443734 DOI: 10.1002/anie.202319529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Limited triple-phase boundaries arising from the accumulation of solid discharge product(s) in solid-state cathodes (SSCs) pose a challenge to high-property solid-state lithium-oxygen batteries (SSLOBs). Light-assisted SSLOBs have been gradually explored as an ingenious system; however, the fundamental mechanisms of the SSCs interface behavior remain unclear. Here, we discovered that light assistance can enhance the fast inner-sphere charge transfer in SSCs and regulate the discharge products with spherical particles generated via the surface growth model. Moreover, the high photoelectron excitation and transportation capabilities of SSCs can retard cathodic catalytic decay by avoiding structural degradation of the cathode with a reduced charge voltage. The light-induced SSLOBs exhibited excellent stability (170 cycles) with a low discharge-charge polarization overpotential (0.27 V). Furthermore, transparent SSLOBs with exceptional flexibility, mechanical stability, and multiform shapes were fabricated for theory-to-practical applications in sunlight-induced batteries. Our study opens new opportunities for the introduction of solar energy into energy storage systems.
Collapse
Affiliation(s)
- Liping Ren
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Ming Zheng
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Fanpeng Kong
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Zhenjiang Yu
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Nan Sun
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Menglu Li
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Qingsong Liu
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
- Chongqing Research Institute of HIT, Chongqing, 401135, P. R. China
| | - Yajie Song
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
- Chongqing Research Institute of HIT, Chongqing, 401135, P. R. China
| | - Jidong Dong
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Nengneng Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Renmin North Road, Shanghai, 201620, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Shuaifeng Lou
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Zaixing Jiang
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
| | - Jiajun Wang
- State Key: Laboratory of Space Power-Sources, School of Chemistry and⋅Chemical Engineering, Harbin Institute of Technology, Harbin⋅, 150001, China
- Chongqing Research Institute of HIT, Chongqing, 401135, P. R. China
| |
Collapse
|
3
|
Meng S, Wang N, Cao X. Built-In Piezoelectric Nanogenerators Promote Sustainable and Flexible Supercapacitors: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6916. [PMID: 37959515 PMCID: PMC10647822 DOI: 10.3390/ma16216916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Energy storage devices such as supercapacitors (SCs), if equipped with built-in energy harvesters such as piezoelectric nanogenerators, will continuously power wearable electronics and become important enablers of the future Internet of Things. As wearable gadgets become flexible, energy items that can be fabricated with greater compliance will be crucial, and designing them with sustainable and flexible strategies for future use will be important. In this review, flexible supercapacitors designed with built-in nanogenerators, mainly piezoelectric nanogenerators, are discussed in terms of their operational principles, device configuration, and material selection, with a focus on their application in flexible wearable electronics. While the structural design and materials selection are highlighted, the current shortcomings and challenges in the emerging field of nanogenerators that can be integrated into flexible supercapacitors are also discussed to make wearable devices more comfortable and sustainable. We hope this work may provide references, future directions, and new perspectives for the development of electrochemical power sources that can charge themselves by harvesting mechanical energy from the ambient environment.
Collapse
Affiliation(s)
- Shuchang Meng
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xia Cao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
| |
Collapse
|
4
|
Bao W, Wang R, Liu H, Qian C, Liu H, Yu F, Guo C, Li J, Sun K. Photoelectrochemical Engineering for Light-Assisted Rechargeable Metal Batteries: Mechanism, Development, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303745. [PMID: 37616514 DOI: 10.1002/smll.202303745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Rechargeable battery devices with high energy density are highly demanded by our modern society. The use of metal anodes is extremely attractive for future rechargeable battery devices. However, the notorious metal dendritic and instability of solid electrolyte interface issues pose a series of challenges for metal anodes. Recently, considering the indigestible dynamical behavior of metal anodes, photoelectrochemical engineering of light-assisted metal anodes have been rapidly developed since they efficiently utilize the integration and synergy of oriented crystal engineering and photocatalysis engineering, which provided a potential way to unlock the interface electrochemical mechanism and deposition reaction kinetics of metal anodes. This review starts with the fundamentals of photoelectrochemical engineering and follows with the state-of-art advance of photoelectrochemical engineering for light-assisted rechargeable metal batteries where photoelectrode materials, working principles, types, and practical applications are explained. The last section summarizes the major challenges and some invigorating perspectives for future research on light-assisted rechargeable metal batteries.
Collapse
Affiliation(s)
- Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongmin Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
5
|
Liu X, Zhao F, Jiao L, Fang T, Zhao Z, Xiao X, Li D, Yi K, Wang R, Jia X. Atomically Dispersed Fe/N 4 and Ni/N 4 Sites on Separate-Sides of Porous Carbon Nanosheets with Janus Structure for Selective Oxygen Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300289. [PMID: 36929092 DOI: 10.1002/smll.202300289] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Dual single atoms catalysts have promising application in bifunctional electrocatalysis due to their synergistic effect. However, how to balance the competition between rate-limiting steps (RDSs) of reversible oxygen reduction and oxygen evolution reaction (OER) and fully expose the active centers by reasonable structure design remain enormous challenges. Herein, Fe/N4 and Ni/N4 sites separated on different sides of the carbon nanosheets with Janus structure (FeNijns /NC) is synthesized by layer-by-layer assembly method. Experiments and calculations reveal that the side of Fe/N4 is beneficial to oxygen reduction reaction (ORR) and the Ni/N4 side is preferred to OER. Such Janus structure can take full advantage of two separate-sides of carbon nanosheets and balance the competition of RDSs during ORR and OER. FeNijns /NC possesses superior ORR and OER activity with ORR half-wave potential of 0.92 V and OER overpotential of 440 mV at J = 10 mA cm-2 . Benefiting from the excellent bifunctional activities, FeNijns /NC assembled aqueous Zn-air battery (ZAB) demonstrates better maximum power density, and long-term stability (140 h) than Pt/C+RuO2 catalyst. It also reveals superior flexibility and stability in solid-state ZAB. This work brings a novel perspective for rational design and understanding of the catalytic mechanisms of dual single atom catalysts.
Collapse
Affiliation(s)
- Xinghuan Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian, 271000, P. R. China
| | - Long Jiao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianwen Fang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Zeyu Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xiangfei Xiao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Danya Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Ke Yi
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Rongjie Wang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| | - Xin Jia
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, P. R. China
| |
Collapse
|
6
|
Wang XX, Guan DH, Miao CL, Kong DC, Zheng LJ, Xu JJ. Metal-Organic Framework-Based Mixed Conductors Achieve Highly Stable Photo-assisted Solid-State Lithium-Oxygen Batteries. J Am Chem Soc 2023; 145:5718-5729. [PMID: 36880105 DOI: 10.1021/jacs.2c11839] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The demand for high-energy sustainable rechargeable batteries has motivated the development of lithium-oxygen (Li-O2) batteries. However, the inherent safety issues of liquid electrolytes and the sluggish reaction kinetics of existing cathodes remain fundamental challenges. Herein, we demonstrate a promising photo-assisted solid-state Li-O2 battery based on metal-organic framework-derived mixed ionic/electronic conductors, which simultaneously serve as the solid-state electrolytes (SSEs) and the cathode. The mixed conductors could effectively harvest ultraviolet-visible light to generate numerous photoelectrons and holes, which is favorable to participate in the electrochemical reaction, contributing to greatly improved reaction kinetics. According to the study on conduction behavior, we discover that the mixed conductors as SSEs possess outstanding Li+ conductivity (1.52 × 10-4 S cm-1 at 25 °C) and superior chemical/electrochemical stability (especially toward H2O, O2-, etc.). Application of mixed ionic electronic conductors in photo-assisted solid-state Li-O2 batteries further reveals that a high energy efficiency (94.2%) and a long life (320 cycles) can be achieved with a simultaneous design of SSEs and cathodes. The achievements present the widespread universality in accelerating the development of safe and high-performance solid-state batteries.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Cheng-Lin Miao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| | - De-Chen Kong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Ding X, Shi Y, Xu S, Zhang Y, Du J, Qiu J. Triple Stimuli-Responsive Flexible Shape Memory Foams with Super-Amphiphilicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205797. [PMID: 36461700 DOI: 10.1002/smll.202205797] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Highly porous multi-responsive shape memory foams have unique advantages in designing 3D materials with lightweight for varied applications. Herein, a facile and efficient approach to fabricating a thermo-, electro-, and photo-responsive shape memory composite foam is demonstrated. A specific multi-step carbonization protocol is adopted for transforming commercial melamine sponge (MS) to highly porous carbon foam (CF) with robust elastic resilience, efficient electrothermal/photothermal conversions, and super-amphiphilicity. It is a novel proposal for CF to take the dual role of the elastic supporting framework and 3D energy conversion/transmission network without any functional fillers. The composite foam cPCL@CF incorporates the CF skeleton with in situ crosslinked polycaprolactone (PCL) layers, which exhibits high conductivity (≈140 S m-1 ) and excellent light absorption (≈97.7%) in the range of 250-2500 nm. By triggering the crystalline transition of PCL, the composite foam displays sensitive electro- and photo-induced shape memory effect (SME) with outstanding shape fixation ratio (Rf ) and recovery ratio (Rr ). Thanks to the super-amphiphilicity and high electrical conductivity, the cPCL@CF composite foam can give rapid and distinguishable electric signals upon tiny drips of salt solutions or lithium-ion battery (LIB) electrolytes, making it a new type of sensor for detecting electrolyte leakage.
Collapse
Affiliation(s)
- Xinyun Ding
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yunan Shi
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Shijie Xu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yukun Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jiang Du
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jun Qiu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Key Laboratory of Advanced Civil Engineering Materials, Tongji University, Education of Ministry, Shanghai, 201804, China
| |
Collapse
|
8
|
Li J, Zhang K, Wang B, Peng H. Light-Assisted Metal-Air Batteries: Progress, Challenges, and Perspectives. Angew Chem Int Ed Engl 2022; 61:e202213026. [PMID: 36196996 DOI: 10.1002/anie.202213026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Indexed: 11/12/2022]
Abstract
Metal-air batteries are considered one of the most promising next-generation energy storage devices owing to their ultrahigh theoretical specific energy. However, sluggish cathode kinetics (O2 and CO2 reduction/evolution) result in large overpotentials and low round-trip efficiencies which seriously hinder their practical applications. Utilizing light to drive slow cathode processes has increasingly becoming a promising solution to this issue. Considering the rapid development and emerging issues of this field, this Review summarizes the current understanding of light-assisted metal-air batteries in terms of configurations and mechanisms, provides general design strategies and specific examples of photocathodes, systematically discusses the influence of light on batteries, and finally identifies existing gaps and future priorities for the development of practical light-assisted metal-air batteries.
Collapse
Affiliation(s)
- Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China.,Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
9
|
Fan R, Wu Y, Xie H, Gao Y, Wang L, Zhao B, Li D, Liu S, Zhang Y, Kong H, Li Y, Chen Q, Cao A, Zhou H. Organic-inorganic Hybrid Perovskite-Based Light-Assisted Li-oxygen Battery with Low Overpotential. CHEMSUSCHEM 2022; 15:e202201473. [PMID: 36102250 DOI: 10.1002/cssc.202201473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Organic-inorganic hybrid perovskites have emerged in the last decade as promising semiconductors due to the excellent optoelectronic properties. This kind of perovskites exhibited respectable photocatalytic activities toward potential application in battery; however, the instability issue still hindered their practical use. Herein, a hybrid perovskite material, 4,4'-ethylenedipyridinium lead bromide [(4,4'-EDP)Pb2 Br6 ], was assembled onto the carbon materials to function as photoelectrode of the Li-oxygen battery. The strong cation-π interactions between the A-site cations enabled this hybrid perovskite to endure the cycling process as well as the exposure to battery electrolyte and oxygen. Benefitting from the photo-generated carriers of the photoelectrode under illumination, the formation/decomposition of the discharge product was accelerated, thus leading to a reduced overpotential from 1.3 V to an optimized 0.5 V compared to the Li-oxygen battery without illumination. The overpotential could be maintained lower than 0.9 V after cycling for 170 h. Furthermore, when exposed to the sunlight, the charging voltage was reduced by over 0.2 V. The intrinsic stability and strong light absorption of perovskites together with the optimized perovskite/carbon cathode interfaces contributed to the improved performance under different light sources without complex material design, which shed light on the exploration of organic-inorganic hybrid perovskites in Li-oxygen battery applications.
Collapse
Affiliation(s)
- Rundong Fan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing, 100871, P. R. China
| | - Yizeng Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haipeng Xie
- Institute of Super-Microstructure and Ultrafast Process in Advance Materials, School of Physic and Electronics, Central South University, Changsha, Hunan, 410012, P. R. China
| | - Yongli Gao
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, 14627, United States
| | - Lina Wang
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dong Li
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shaocheng Liu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yu Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing, 100871, P. R. China
| | - Hua Kong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yujing Li
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qi Chen
- Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Huanping Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing, 100871, P. R. China
| |
Collapse
|
10
|
Yue F, Tie Z, Zhang Y, Bi S, Wang Y, Niu Z. Proton Chemistry Induced Long‐Cycle Air Self‐Charging Aqueous Batteries. Angew Chem Int Ed Engl 2022; 61:e202208513. [DOI: 10.1002/anie.202208513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Fang Yue
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zhiwei Tie
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yan Zhang
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Songshan Bi
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yijing Wang
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry Ministry of Education) Renewable Energy Conversion and Storage Center Haihe Laboratory of Sustainable Chemical Transformations College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
11
|
Yu X, Liu G, Wang T, Gong H, Qu H, Meng X, He J, Ye J. Recent Advances in the Research of Photo‐Assisted Lithium‐Based Rechargeable Batteries. Chemistry 2022; 28:e202202104. [DOI: 10.1002/chem.202202104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xingyu Yu
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Guoping Liu
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 063210 P. R. China
| | - Tao Wang
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Hao Gong
- Department of Chemistry and Materials Science College of Science Nanjing Forestry University Nanjing Jiangsu 210037 P. R. China
| | - Hongjiao Qu
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Xianguang Meng
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials College of Materials Science and Engineering North China University of Science and Technology Tangshan Hebei 063210 P. R. China
| | - Jianping He
- Centre for Hydrogenergy College of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing Jiangsu 210016 P. R. China
| | - Jinhua Ye
- TJU-NIMS International Collaboration Laboratory School of Material Science and Engineering Tianjin University Tianjin 300072 P. R. China
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) Tsukuba Ibaraki 305-0044 Japan
| |
Collapse
|
12
|
Wu Z, Tian Y, Chen H, Wang L, Qian S, Wu T, Zhang S, Lu J. Evolving aprotic Li-air batteries. Chem Soc Rev 2022; 51:8045-8101. [PMID: 36047454 DOI: 10.1039/d2cs00003b] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium-air batteries (LABs) have attracted tremendous attention since the proposal of the LAB concept in 1996 because LABs have a super high theoretical/practical specific energy and an infinite supply of redox-active materials, and are environment-friendly. However, due to the lack of critical electrode materials and a thorough understanding of the chemistry of LABs, the development of LABs entered a germination period before 2010, when LABs research mainly focused on the development of air cathodes and carbonate-based electrolytes. In the growing period, i.e., from 2010 to the present, the investigation focused more on systematic electrode design, fabrication, and modification, as well as the comprehensive selection of electrolyte components. Nevertheless, over the past 25 years, the development of LABs has been full of retrospective steps and breakthroughs. In this review, the evolution of LABs is illustrated along with the constantly emerging design, fabrication, modification, and optimization strategies. At the end, perspectives and strategies are put forward for the development of future LABs and even other metal-air batteries.
Collapse
Affiliation(s)
- Zhenzhen Wu
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Yuhui Tian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Hao Chen
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. .,Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Shangshu Qian
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Tianpin Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Shanqing Zhang
- Center for Catalysis and Clean Energy, School of Environment and Science, Griffith University, Queensland 4222, Australia.
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
13
|
Yue F, Tie Z, Zhang Y, Bi S, Wang Y, Niu Z. Proton Chemistry Induced Long‐Cycle Air Self‐Charging Aqueous Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Fang Yue
- Nankai University College of Chemistry CHINA
| | - Zhiwei Tie
- Nankai University College of Chemistry CHINA
| | - Yan Zhang
- Nankai University College of Chemistry CHINA
| | - Songshan Bi
- Nankai University College of Chemistry CHINA
| | - Yijing Wang
- Nankai University College of Chemistry CHINA
| | - Zhiqiang Niu
- Nankai University No.94, Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
14
|
Jiao H, Sun G, Wang Y, Zhang Z, Wang Z, Wang H, Li H, Feng M. Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Zhang K, Li J, Zhai W, Li C, Zhu Z, Kang X, Liao M, Ye L, Kong T, Wang C, Zhao Y, Chen P, Gao Y, Wang B, Peng H. Boosting Cycling Stability and Rate Capability of Li-CO 2 Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angew Chem Int Ed Engl 2022; 61:e202201718. [PMID: 35192236 DOI: 10.1002/anie.202201718] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 02/03/2023]
Abstract
Sluggish CO2 reduction/evolution kinetics at cathodes seriously impede the realistic applications of Li-CO2 batteries. Herein, synergistic photoelectric effect and plasmonic interaction are introduced to accelerate CO2 reduction/evolution reactions by designing a silver nanoparticle-decorated titanium dioxide nanotube array cathode. The incident light excites energetic photoelectrons/holes in titanium dioxide to overcome reaction barriers, and induces the intensified electric field around silver nanoparticles to enable effective separation/transfer of photogenerated carriers and a thermodynamically favorable reaction pathway. The resulting Li-CO2 battery demonstrates ultra-low charge voltage of 2.86 V at 0.10 mA cm-2 , good cycling stability with 86.9 % round-trip efficiency after 100 cycles, and high rate capability at 2.0 mA cm-2 . This work offers guidance on rational cathode design for advanced Li-CO2 batteries and beyond.
Collapse
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China.,Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476, Potsdam, Germany
| | - Weijie Zhai
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chuanfa Li
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Zhengfeng Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Xinyue Kang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Taoyi Kong
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yang Zhao
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, and Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
16
|
Zhu Z, Lv Q, Ni Y, Gao S, Geng J, Liang J, Li F. Internal Electric Field and Interfacial Bonding Engineered Step-Scheme Junction for a Visible-Light-Involved Lithium-Oxygen Battery. Angew Chem Int Ed Engl 2022; 61:e202116699. [PMID: 35018699 DOI: 10.1002/anie.202116699] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 12/18/2022]
Abstract
Li-O2 batteries have aroused considerable interest in recent years, however they are hindered by high kinetic barriers and large overvoltages at cathodes. Herein, a step-scheme (S-scheme) junction with hematite on carbon nitride (Fe2 O3 /C3 N4 ) is designed as a bifunctional catalyst to facilitate oxygen redox for a visible-light-involved Li-O2 battery. The internal electric field and interfacial Fe-N bonding in the heterojunction boost the separation and directional migration of photo-carriers to establish spatially isolated redox centers, at which the photoelectrons on C3 N4 and holes on Fe2 O3 remarkably accelerate the discharge and charge kinetics. These enable the Li-O2 battery with Fe2 O3 /C3 N4 to present an elevated discharge voltage of 3.13 V under illumination, higher than the equilibrium potential 2.96 V in the dark, and a charge voltage of 3.19 V, as well as superior rate capability and cycling stability. This work will shed light on rational cathode design for metal-O2 batteries.
Collapse
Affiliation(s)
- Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qingliang Lv
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Youxuan Ni
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Suning Gao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jiarun Geng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jing Liang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations
| |
Collapse
|
17
|
Zhang K, Li J, Zhai W, Li C, Zhu Z, Kang X, Liao M, Ye L, Kong T, Wang C, Zhao Y, Chen P, Gao Y, Wang B, Peng H. Boosting Cycling Stability and Rate Capability of Li–CO
2
Batteries via Synergistic Photoelectric Effect and Plasmonic Interaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kun Zhang
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
- Department of Colloid Chemistry Max Planck Institute of Colloids and Interfaces 14476 Potsdam Germany
| | - Weijie Zhai
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Chuanfa Li
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Zhengfeng Zhu
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Xinyue Kang
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Meng Liao
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Lei Ye
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Taoyi Kong
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Chuang Wang
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Yang Zhao
- Frontiers Science Center for Flexible Electronics Institute of Flexible Electronics Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Peining Chen
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Yue Gao
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Bingjie Wang
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Laboratory of Advanced Materials and Department of Macromolecular Science Fudan University Shanghai 200438 P. R. China
| |
Collapse
|
18
|
Du D, Zhu Z, Chan KY, Li F, Chen J. Photoelectrochemistry of oxygen in rechargeable Li-O 2 batteries. Chem Soc Rev 2022; 51:1846-1860. [PMID: 35195634 DOI: 10.1039/d1cs00877c] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rechargeable lithium-oxygen (Li-O2) batteries are promising energy storage devices due to their high theoretical energy density. However, the sluggish kinetics of the oxygen reduction and evolution reactions (ORR/OER) at the cathodes results in large polarization and low energy efficiency. Although advances have been achieved in electrode material designs and battery configurations, large discharge/charge voltage gaps remain. The introduction of light into Li-O2 batteries has been demonstrated to boost the reaction kinetics of the ORR/OER, leading to enhanced electrochemical performances, but the understanding of the photoelectrochemical process at oxygen cathodes is limited. This tutorial review focuses on the recent findings regarding photoinvolved oxygen cathodes, battery configurations, and the stability of Li-O2 batteries, aiming to provide a fundamental understanding of photoinvolved Li-O2 batteries. The challenges and perspectives are discussed in light of the interdisciplinary nature of photochemistry, materials chemistry, electrochemistry, computation, spectroscopy, and surface science.
Collapse
Affiliation(s)
- Dongfeng Du
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Kwong-Yu Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China. .,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
19
|
Zhu Z, Lv Q, Ni Y, Gao S, Geng J, Liang J, Li F. Internal Electric Field and Interfacial Bonding Engineered Step‐Scheme Junction for Visible Light‐Involved Lithium‐Oxygen Battery. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhuo Zhu
- Nankai University Chemistry Weijin Road 300071 Tianjin CHINA
| | | | - Youxuan Ni
- Nankai University Department of Chemistry CHINA
| | - Suning Gao
- Nankai University Department of Chemistry CHINA
| | - Jiarun Geng
- Nankai University Department of Chemistry CHINA
| | - Jing Liang
- Nankai University Department of Chemistry CHINA
| | - Fujun Li
- Nankai University Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) 94 Weijin Road 300071 Tianjin CHINA
| |
Collapse
|
20
|
Wang H, Qi Y, Wu D, Wei Q. A photoelectrochemical self-powered sensor for the detection of sarcosine based on NiO NSs/PbS/Au NPs as photocathodic material. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126201. [PMID: 34492964 DOI: 10.1016/j.jhazmat.2021.126201] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
In this study, lead(II) sulfide (PbS) nanocrystals were modified on nickel(II)oxide nanosheets (NiO NSs) via the chemical bath method. Afterwards, Au nanoparticles (NPs) were also modified successfully. A photoelectrochemical (PEC) self-powered platform for detecting sarcosine with high PEC activity was constructed. The capacity of NiO NSs to be loaded with other sensitizing materials was mainly attributed to its porous structure and large specific surface area. Under optimum conditions, the constructed PEC self-powered cathodic sensor for detecting sarcosine exhibited a linear range in 5.0 × 10-8-5.0 × 10-2 mol/L with a detection limit (LOD) of 1.7 × 10-8 mol/L. The biosensor demonstrated good reproducibility, acceptable stability and high specificity, thus confirming its potential application in the detection of other similar substances.
Collapse
Affiliation(s)
- Hanyu Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yanting Qi
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
21
|
Wang XX, Guan DH, Li F, Li ML, Zheng LJ, Xu JJ. A Renewable Light-Promoted Flexible Li-CO 2 Battery with Ultrahigh Energy Efficiency of 97.9. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100642. [PMID: 34081392 DOI: 10.1002/smll.202100642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Directly converting and storing abundant solar energy in next-generation energy storage devices is of central importance to build a sustainable society. Herein, a new prototype of a light-promoted rechargeable and flexible Li-CO2 battery with a TiO2 /carbon cloth (CC) cathode is reported for the direct utilization of solar energy to promote the kinetics of the carbon dioxide reduction reaction and carbon dioxide evolution reaction (CO2 ER). Under illumination, photoelectrons are generated in the conduction band of TiO2 /CC, followed by the enhancing diffusion of electrons and lithium ions during the discharge process. The photoelectrons on the cathode surface can regulate the morphology of the discharge product Li2 CO3 , contributing to boosting the kinetics of the subsequent CO2 ER process. In the reverse charge process, photogenerated holes can favor the decomposition of Li2 CO3 , leading to a negative charge potential of 2.88 V without increased polarization over ≈60 h of cycling. Owing to an ultralow overpotential of 0.06 V between the discharge and charge process, an ultrahigh energy efficiency of 97.9% is attained under illumination. The introduction of a light-promoted flexible Li-CO2 battery can pave the way toward developing the use of solar energy to address the charging overpotential of conventional Li-CO2 batteries.
Collapse
Affiliation(s)
- Xiao-Xue Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - De-Hui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Fei Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Ma-Lin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Li-Jun Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Zhao J, Xu Z, Zhou Z, Xi S, Xia Y, Zhang Q, Huang L, Mei L, Jiang Y, Gao J, Zeng Z, Tan C. A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO 2-x Nanosheet-Based Zinc-Ion Batteries with Perovskite Solar Cells. ACS NANO 2021; 15:10597-10608. [PMID: 34037383 DOI: 10.1021/acsnano.1c03341] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The booming market of portable and wearable electronics has aroused the requests for advanced flexible self-powered energy systems featuring both excellent performance and high safety. Herein, we report a safe, flexible, self-powered wristband system by integrating high-performance zinc-ion batteries (ZIBs) with perovskite solar cells (PSCs). ZIBs were first fabricated on the basis of a defective MnO2-x nanosheet-grown carbon cloth (MnO2-x@CC), which was obtained via the simple lithium treatment of the MnO2 nanosheets to slightly expand the interlayer spacing and generate rich oxygen vacancies. When used as a ZIB cathode, the MnO2-x@CC with a ultrahigh mass loading (up to 25.5 mg cm-2) exhibits a much enhanced specific capacity (3.63 mAh cm-2 at current density of 3.93 mA cm-2), rate performance, and long cycle stability (no obvious degradation after 5000 cycles) than those of the MnO2@CC. Importantly, the MnO2-x@CC-based quasi-solid-state ZIB not only achieves excellent flexibility and an ultrahigh energy density of 5.11 mWh cm-2 (59.42 mWh cm-3) but also presents a high safety under a wide temperature range and various severe conditions. More importantly, the flexible ZIBs can be integrated with flexible PSCs to construct a safe, self-powered wristband, which is able to harvest light energy and power a commercial smart bracelet. This work sheds light on the development of high-performance ZIB cathodes and thus offers a good strategy to construct wearable self-powered energy systems for wearable electronics.
Collapse
Affiliation(s)
- Jiangqi Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhengjie Xu
- Institute for Advanced Materials, Academy of Advanced Optoelectronics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island 627833, Singapore
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Qingyong Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Lanqin Huang
- Institute for Advanced Materials, Academy of Advanced Optoelectronics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
| | - Liang Mei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yue Jiang
- Institute for Advanced Materials, Academy of Advanced Optoelectronics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
| | - Jinwei Gao
- Institute for Advanced Materials, Academy of Advanced Optoelectronics, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
23
|
Jia C, Zhang F, She L, Li Q, He X, Sun J, Lei Z, Liu ZH. Ultra-Large Sized Siloxene Nanosheets as Bifunctional Photocatalyst for a Li-O 2 Battery with Superior Round-Trip Efficiency and Extra-Long Durability. Angew Chem Int Ed Engl 2021; 60:11257-11261. [PMID: 33655589 DOI: 10.1002/anie.202101991] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 11/07/2022]
Abstract
Developing new optimized bifunctional photocatalyst is of great significant for achieving the high-performance photo-assisted Li-O2 batteries. Herein, a novel bifunctional photo-assisted Li-O2 system is constructed by using siloxene nanosheets with ultra-large size and few-layers due to its superior light harvesting, semiconductor characteristic, and low recombination rate. An ultra-low charge potential of 1.90 V and ultra-high discharge of 3.51 V have been obtained due to the introduction of this bifunctional photocatalyst into Li-O2 batteries, and these results have realized the round-trip efficiency up to 185 %. In addition, this photo-assisted Li-O2 batteries exhibits a high rate (129 % round-trip efficiency at 1 mA cm-2 ), a prolonged cycling life with 92 % efficiency retention after 100 cycles, and the highly reversible capacity of 1170 mAh g-1 at 0.75 mA cm-2 . This work will open the vigorous opportunity for high-efficiency utilization of solar energy into electric system.
Collapse
Affiliation(s)
- Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Liaona She
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Qi Li
- Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Xuexia He
- Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| | - Zong-Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University), Ministry of Education, Xi'an, 710062, P. R. China.,Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi'an, P. R. China.,School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, P. R. China
| |
Collapse
|
24
|
Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride. Proc Natl Acad Sci U S A 2021; 118:2024619118. [PMID: 33879619 DOI: 10.1073/pnas.2024619118] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aprotic lithium-oxygen (Li-O2) batteries have gained extensive interest in the past decade, but are plagued by slow reaction kinetics and induced large-voltage hysteresis. Herein, we use a plasmonic heterojunction of Au nanoparticle (NP)-decorated C3N4 with nitrogen vacancies (Au/NV-C3N4) as a bifunctional catalyst to promote oxygen cathode reactions of the visible light-responsive Li-O2 battery. The nitrogen vacancies on NV-C3N4 can adsorb and activate O2 molecules, which are subsequently converted to Li2O2 as the discharge product by photogenerated hot electrons from plasmonic Au NPs. While charging, the holes on Au NPs drive the reverse decomposition of Li2O2 with a reduced applied voltage. The discharge voltage of the Li-O2 battery with Au/NV-C3N4 is significantly raised to 3.16 V under illumination, exceeding its equilibrium voltage, and the decreased charge voltage of 3.26 V has good rate capability and cycle stability. This is ascribed to the plasmonic hot electrons on Au NPs pumped from the conduction bands of NV-C3N4 and the prolonged carrier life span of Au/NV-C3N4 This work highlights the vital role of plasmonic enhancement and sheds light on the design of semiconductors for visible light-mediated Li-O2 batteries and beyond.
Collapse
|
25
|
Yang B, Zhang S, Wang Y, Dai S, Wang X, Sun Q, Huang Y, Huang J. Highly sensitive 2D organic field-effect transistors for the detection of lithium-ion battery electrolyte leakage. Chem Commun (Camb) 2021; 57:3464-3467. [PMID: 33687418 DOI: 10.1039/d1cc00086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lithium ion batteries (LIBs) have become indispensable in daily life. Here, we fabricated a broad range of polymer semiconductor films as thin as 2 nm via a standard spin-coating method, and utilized the resulting organic transistors for the detection of LIB electrolytes, which can give an early warning signal before LIB failure.
Collapse
Affiliation(s)
- Ben Yang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 201804, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jia C, Zhang F, She L, Li Q, He X, Sun J, Lei Z, Liu Z. Ultra‐Large Sized Siloxene Nanosheets as Bifunctional Photocatalyst for a Li‐O
2
Battery with Superior Round‐Trip Efficiency and Extra‐Long Durability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Congying Jia
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Feng Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Liaona She
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Qi Li
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Xuexia He
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| | - Zong‐Huai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Shaanxi Normal University) Ministry of Education Xi'an 710062 P. R. China
- Key Laboratory for Advanced Energy Devices Shaanxi Normal University Xi'an P. R. China
- School of Materials Science and Engineering Shaanxi Normal University Xi'an P. R. China
| |
Collapse
|
27
|
Lv Q, Zhu Z, Zhao S, Wang L, Zhao Q, Li F, Archer LA, Chen J. Semiconducting Metal–Organic Polymer Nanosheets for a Photoinvolved Li–O2 Battery under Visible Light. J Am Chem Soc 2021; 143:1941-1947. [DOI: 10.1021/jacs.0c11400] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qingliang Lv
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liubin Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Zhao
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lynden A. Archer
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Chen K, Huang G, Zhang X. Efforts towards Practical and Sustainable Li/
Na‐Air
Batteries. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Chen
- State Key Laboratory of Rare Earth Resources Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Gang Huang
- Materials Science and Engineering, Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thu situ Designing a Gradient wal 23955‐6900 Saudi Arabia
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resources Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
29
|
Hu X, Luo G, Zhao Q, Wu D, Yang T, Wen J, Wang R, Xu C, Hu N. Ru Single Atoms on N-Doped Carbon by Spatial Confinement and Ionic Substitution Strategies for High-Performance Li–O2 Batteries. J Am Chem Soc 2020; 142:16776-16786. [DOI: 10.1021/jacs.0c07317] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaolin Hu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Gan Luo
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Qiannan Zhao
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Dan Wu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Tongxin Yang
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Jie Wen
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Ronghua Wang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Chaohe Xu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
30
|
Xiong Q, Huang G, Zhang XB. High-Capacity and Stable Li-O 2 Batteries Enabled by a Trifunctional Soluble Redox Mediator. Angew Chem Int Ed Engl 2020; 59:19311-19319. [PMID: 32692471 DOI: 10.1002/anie.202009064] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/08/2022]
Abstract
Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 - and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2 - , it not only reduces the formation of by-products (a high Li2 O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2 O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2 O2 and the decomposition of main by-products (Li2 CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g-1 and 1000 mA g-1 ).
Collapse
Affiliation(s)
- Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Gang Huang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
31
|
Xiong Q, Huang G, Zhang X. High‐Capacity and Stable Li‐O
2
Batteries Enabled by a Trifunctional Soluble Redox Mediator. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009064] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of Automobile Materials Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130022 P. R. China
| | - Gang Huang
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
32
|
Du D, Zhao S, Zhu Z, Li F, Chen J. Photo‐excited Oxygen Reduction and Oxygen Evolution Reactions Enable a High‐Performance Zn–Air Battery. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dongfeng Du
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
33
|
Du D, Zhao S, Zhu Z, Li F, Chen J. Photo‐excited Oxygen Reduction and Oxygen Evolution Reactions Enable a High‐Performance Zn–Air Battery. Angew Chem Int Ed Engl 2020; 59:18140-18144. [PMID: 32602608 DOI: 10.1002/anie.202005929] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Dongfeng Du
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Shuo Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Zhuo Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Fujun Li
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center (RECAST) College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
34
|
Shu K, Xu L, Wu H, Xu Y, Luo L, Yang J, Tang Z, Wang Z. In Situ Adsorption of Mixed Anionic/Cationic Collectors in a Spodumene-Feldspar Flotation System: Implications for Collector Design. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8086-8099. [PMID: 32559106 DOI: 10.1021/acs.langmuir.0c00795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we investigated the effects of mixed collectors with varying alkyl chain lengths and ligand types on the hydrophobicity of the spodumene-feldspar flotation system. Various collector-mineral interactions were compared using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy with two-dimensional correlation spectroscopy (2D-COS), in situ microcalorimetry, and X-ray photoelectron spectroscopy (XPS). The highest flotation separation performance can be achieved at a molar ratio of 6:1 and pH 8-9. The in situ microcalorimetry results revealed that the difference in the adsorption reaction heat of the mixed collector is larger than that of the single anionic collector. Moreover, the inconformity between the magnitude of adsorption reaction heat and the results observed for flotation recovery indicates that the heat of the reaction presumably involves the adsorption configurations of the collectors and the amounts adsorbed. In in situ ATR-FTIR with 2D-COS, it can be observed that octanohydroxamic acid/dodecylamine (OHA/DDA) is adsorbed much more intensely onto feldspar than onto spodumene due to the availability of more space on feldspar for the subsequent sorption of DDA after the prior bidentate chemisorption of OHA under alkaline conditions, whereas the sodium oleate (NaOL)/DDA adsorption sequence at pH 4-5 was the reverse of that at pH 8-9. Lastly, XPS was employed to provide further supplemental evidence for the bonding between these two minerals and single anionic/mixed collectors at the optimal pH of 8-9. In this study, the powerful in situ detection technologies can establish a new platform for exploring the underlying mechanism of new reagents at the solid-liquid interface. Moreover, the in-depth understanding related to the adsorption behavior of the mixed collector is beneficial for facilitating the selection and design of efficient and environmentally friendly flotation collectors with improved selectivity.
Collapse
Affiliation(s)
- Kaiqian Shu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Longhua Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Houqin Wu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Yanbo Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Liping Luo
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Jie Yang
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Zhen Tang
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| | - Zhoujie Wang
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, P. R. China
| |
Collapse
|
35
|
Yu H, Liu D, Feng X, Zhang Y. Recent progresses, challenges and perspectives on rechargeable Li‐O
2
batteries. NANO SELECT 2020. [DOI: 10.1002/nano.202000002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Haohan Yu
- Key Laboratory of Bio‐inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Dapeng Liu
- Key Laboratory of Bio‐inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Xilan Feng
- Key Laboratory of Bio‐inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
| | - Yu Zhang
- Key Laboratory of Bio‐inspired Smart Interfacial Science and Technology of Ministry of EducationSchool of ChemistryBeihang University Beijing 100191 P. R. China
- International Research Institute for Multidisciplinary ScienceBeihang University Beijing 100191 P. R. China
- Beijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| |
Collapse
|
36
|
Gao C, Yang J, Han X, Abuzar M, Chen Y, Liu W, Zhang W, Wu J, Li S, Zheng B, Huo F. An in situ decorated cathode with LiF and F@C for performance enhanced Li-S batteries. Chem Commun (Camb) 2020; 56:6444-6447. [PMID: 32393939 DOI: 10.1039/d0cc01462a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple but effective in situ decorated cathode is presented for Li-S batteries, utilizing the irreversible discharge products between a cathode additive (carbon fluoride) and Li. The in situ formed LiF and F doped carbon can be functional and beneficial to the battery performance, not only suppressing the "shuttle effect", but also facilitating the electron and ion transportation and accelerating the reaction kinetics.
Collapse
Affiliation(s)
- Cong Gao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Jiayi Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Xu Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Muhammad Abuzar
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Yangshen Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Wenjing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| |
Collapse
|
37
|
Shi H, Qin J, Huang K, Lu P, Zhang C(J, Dong Y, Ye M, Liu Z, Wu Z. A Two‐Dimensional Mesoporous Polypyrrole–Graphene Oxide Heterostructure as a Dual‐Functional Ion Redistributor for Dendrite‐Free Lithium Metal Anodes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haodong Shi
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jieqiong Qin
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kai Huang
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pengfei Lu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | | | - Yanfeng Dong
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
- Northeastern University Shenyang 110819 P. R. China
| | - Mao Ye
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhongmin Liu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Zhong‐Shuai Wu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China
| |
Collapse
|
38
|
Shi H, Qin J, Huang K, Lu P, Zhang CJ, Dong Y, Ye M, Liu Z, Wu ZS. A Two-Dimensional Mesoporous Polypyrrole-Graphene Oxide Heterostructure as a Dual-Functional Ion Redistributor for Dendrite-Free Lithium Metal Anodes. Angew Chem Int Ed Engl 2020; 59:12147-12153. [PMID: 32237031 DOI: 10.1002/anie.202004284] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Indexed: 11/10/2022]
Abstract
Guiding the lithium ion (Li-ion) transport for homogeneous, dispersive distribution is crucial for dendrite-free Li anodes with high current density and long-term cyclability, but remains challenging for the unavailable well-designed nanostructures. Herein, we propose a two-dimensional (2D) heterostructure composed of defective graphene oxide (GO) clipped on mesoporous polypyrrole (mPPy) as a dual-functional Li-ion redistributor to regulate the stepwise Li-ion distribution and Li deposition for extremely stable, dendrite-free Li anodes. Owing to the synergy between the Li-ion transport nanochannels of mPPy and the Li-ion nanosieves of defective GO, the 2D mPPy-GO heterostructure achieves ultralong cycling stability (1000 cycles), even tests at 0 and 50 °C, and an ultralow overpotential of 70 mV at a high current density of 10.0 mA cm-2 , outperforming most reported Li anodes. Furthermore, mPPy-GO-Li/LiCoO2 full batteries demonstrate remarkably enhanced performance with a capacity retention of >90 % after 450 cycles. Therefore, this work opens many opportunities for creating 2D heterostructures for high-energy-density Li metal batteries.
Collapse
Affiliation(s)
- Haodong Shi
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jieqiong Qin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pengfei Lu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Chuanfang John Zhang
- Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Yanfeng Dong
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.,Northeastern University, Shenyang, 110819, P. R. China
| | - Mao Ye
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhongmin Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhong-Shuai Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| |
Collapse
|
39
|
Chen CJ, Yang JJ, Chen CH, Wei DH, Hu SF, Liu RS. Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li-CO 2 batteries. NANOSCALE 2020; 12:8385-8396. [PMID: 32239028 DOI: 10.1039/d0nr00971g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, ruthenium (Ru) nanoparticles were anchored on carbon nanotubes (Ru/CNTs) functionalized as catalyst cathodes for non-aqueous Li-CO2 cells. For cycling tests through a low cut-off capacity (100 mA h g-1), the origin of battery deterioration resulted from the accumulation of Li2CO3 discharging products on catalytic surfaces, identical to the observations in previous studies. However, the Li-CO2 cells in this work showed a sudden death within several cycles of high cut-off capacity (500 mA h g-1), and no Li2CO3 residues were investigated on the cathode. In contrast, Li dendrites and passivation materials (LiOH and Li2CO3) were generated on Li anodes upon cycling at a limited capacity of 500 mA h g-1, which dominantly contributed to the battery degradation. A Li foil-replacement method was adopted to make the Ru/CNT cathode perform continuous 100 cycles under a cut-off capacity of 500 mA h g-1. These results indicate that not only Li2CO3 residues blocked on the active sites of the cathode but also Li dendrites and passivation materials produced on the anode caused Li-CO2 battery deterioration. Moreover, in the present work, a carbon thin film was deposited on Li metal (C/Li) by a sputtering system for suppressing the dendrite formation upon cycling and promoting the defense of the H2O attack from the electrolyte disintegration. The Li-CO2 cell with a Ru/CNT catalyst and a C/Li anode revealed an improved electrochemical stability of 115 cycles at a limited capacity of 500 mA h g-1. This proto strategy provided a significant research direction focusing on Li anodes for elevating the Li-CO2 battery durability.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| | | | | | | | | | | |
Collapse
|
40
|
Fang Z, Hu X, Yu D. Integrated Photo-Responsive Batteries for Solar Energy Harnessing: Recent Advances, Challenges, and Opportunities. Chempluschem 2020; 85:600-612. [PMID: 31945278 DOI: 10.1002/cplu.201900608] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Photo-responsive batteries that enable the effective combination of solar harvesting and energy conversion/storage functionalities render a potential solution to achieve the large-scale utilization of unlimited and cost-effective solar energy and alleviate the limits of conventional energy storage devices. The internal integration of photo-responsive electrodes into rechargeable batteries with the simplest two-electrode configuration is regarded as a reliable and appealing strategy for highly-efficient and low-cost utilization of solar energy by simplifying the device architecture and improving the energy efficiency. This progress report provides a brief review on photo-responsive batteries with integrated two-electrode configuration that can achieve solar energy conversion/storage in one single device. The basic device architecture, operating principles and practical performance of various photo-responsive systems based on solar energy harvesting in various batteries including Li ion batteries, Li-S batteries, Li-I batteries, dual-liquid redox batteries, Li-O2 batteries, non-Li anode-O2 /air batteries are summarized and discussed. Finally, the future opportunities and challenges regarding the two-electrode photo-responsive batteries are proposed.
Collapse
Affiliation(s)
- Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xuanhe Hu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|