1
|
Yang Y, Han G, Xie M, Silva GVDO, Miao GX, Huang Y, Fu J. Magnetic Field Enhanced Oxygen Reduction Reaction via Oxygen Diffusion Speedup. SMALL METHODS 2024; 8:e2301594. [PMID: 38263805 DOI: 10.1002/smtd.202301594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The mass-transfer of oxygen in liquid phases (including in the bulk electrolyte and near the electrode surface) is a critical step to deliver oxygen to catalyst sites (especially immersed catalyst sites) and use the full capacity of oxygen reduction reaction (ORR). Despite the extensive efforts of optimizing the complex three-phase reaction interfaces to enhance the gaseous oxygen transfer, strong limitations remain due to oxygen's poor solubility and slow diffusion in electrolytes. Herein, a magnetic method for boosting the directional hydrodynamic pumping of oxygen toward immersed catalyst sites is demonstrated which allows the ORR to reach otherwise inaccessible catalytic regions where high currents normally would have depleted oxygen. For Pt foil electrodes without forced oxygen saturation in KOH electrolytes, the mass-transfer-limited current densities can be improved by 60% under an external magnetic field of 435 mT due to the synergistic effect between bulk- and surface-magnetohydrodynamic (MHD) flows induced by Lorentz forces. The residual magnetic fields are further used at the surface of magnetic materials (such as CoPt alloys and Pt/FeCo heterostructures) to enhance the surface-MHD effect, which helps to retain part of the ORR enhancement permanently without applying external magnetic fields.
Collapse
Affiliation(s)
- Yongqiang Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Guojun Han
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Minghui Xie
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | | | - Guo-Xing Miao
- Institute for Quantum Computing, Department of Electrical and Computer Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Yunhui Huang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jing Fu
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Shanghai Key Laboratory of Development & Application for Metallic Functional Materials, Shanghai, 201804, P. R. China
| |
Collapse
|
2
|
Arruda de Oliveira G, Kim M, Santos CS, Limani N, Chung TD, Tetteh EB, Schuhmann W. Controlling surface wetting in high-alkaline electrolytes for single facet Pt oxygen evolution electrocatalytic activity mapping by scanning electrochemical cell microscopy. Chem Sci 2024:d4sc04407j. [PMID: 39309094 PMCID: PMC11409436 DOI: 10.1039/d4sc04407j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Scanning electrochemical cell microscopy (SECCM) has been used to explore structure-electrocatalytic activity relationships through high-resolution mapping of local activities of electrocatalysts. However, utilizing SECCM in strongly alkaline conditions presents a significant challenge due to the high wettability of the alkaline electrolyte leading to a substantial instability of the droplet in contact with the sample surface, and hence to unpredictable wetting and spreading of the electrolyte. The spreading phenomena in SECCM is confirmed by the electrochemical response of a free-diffusing redox probe and finite element method (FEM) simulations. Considering the significance of alkaline electrolytes in electrocatalysis, these wetting issues restrict the application of SECCM for electrocatalyst elucidation in highly alkaline electrolytes. We resolve this issue by incorporating a small percentage of polyvinylpyrrolidone (PVP) in the electrolyte inside the SECCM capillary to increase the surface tension of the electrolyte. To demonstrate successful wetting mitigation and stable SECCM mapping, we performed oxygen evolution reaction (OER) mapping on polycrystalline Pt by using 1 M KOH with an optimized PVP concentration. The OER activity maps correlated with the orientation of the exposed facets determined by electron backscatter diffraction and reveal different activities between Pt facets, hence confirming our methodology for exploring electrocatalytic activities in single facet scale in concentrated alkaline media. Interestingly, the maximum OER current density was highest for (110) and (111) which contradicts the activity trends in acidic electrolyte for which (100) is most active for the OER.
Collapse
Affiliation(s)
- Geovane Arruda de Oliveira
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
| | - Moonjoo Kim
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
| | - Carla Santana Santos
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
| | - Ndrina Limani
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-si 16229 Gyeonggi-do Republic of Korea
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150 D-44780 Bochum Germany
| |
Collapse
|
3
|
Salek S, Byers JC. Influence of Particle Size on Mass Transport during the Oxygen Reduction Reaction at Single Silver Particles Using Scanning Electrochemical Cell Microscopy. J Phys Chem Lett 2024; 15:8494-8500. [PMID: 39133521 DOI: 10.1021/acs.jpclett.4c01832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Single entity electrochemical measurements enable insight into the electrocatalytic activity of individual particles based on composition, shape, and crystallographic orientation. In addition to structural effects, particle size can further influence electrocatalytic activity and reaction mechanisms through mass transport effects. In this work, electrodeposition was used to grow well-separated silver particles of varying sizes from 100 to 500 nm in radius. Using a multimicroscopy approach of scanning electrochemical cell microscopy combined with scanning electron microscopy, the electrocatalytic current of individual silver particles toward the oxygen reduction reaction was evaluated as a function of their size. It was found that the current density increased with decreasing particle radius, which was correlated to the mass transport of oxygen to the silver particle, demonstrating the importance of size dependent mass transport effects that can occur at the single particle level using scanning electrochemical cell microscopy and opening new opportunities for quantitative electrocatalysis measurements.
Collapse
Affiliation(s)
- Samaneh Salek
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - Joshua C Byers
- Département de Chimie, Université du Québec à Montréal, Case Postale 8888, succursale Centre-Ville, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
4
|
Roehrich B, Sepunaru L. Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles. ACS MEASUREMENT SCIENCE AU 2024; 4:467-474. [PMID: 39184362 PMCID: PMC11342456 DOI: 10.1021/acsmeasuresciau.4c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Among electroanalytical techniques, electrochemical impedance spectroscopy (EIS) offers the unique advantage of a high degree of frequency resolution. This enables EIS to readily deconvolute between the capacitive, resistive, and diffusional processes that underlie electrochemical devices. Here, we report the measurement of impedance spectra of individual, pseudocapacitive nanoparticles. We chose Prussian blue as our model system, as it couples an electron-transfer reaction with sodium ion intercalation-processes which, while intrinsically convoluted, can be readily resolved using EIS. We used a scanning electrochemical cell microscope (SECCM) to isolate single Prussian blue particles in a microdroplet and measured their impedance spectra using the multi-sine, fast Fourier transform technique. In doing so, we were able to extract the exchange current density and sodium ion diffusivity for each particle, which respectively inform on their electronic and ionic conductivities. Surprisingly, these parameters vary by over an order of magnitude between particles and are not correlated to particle size nor to each other. The implication of this apparent heterogeneity is that in a hypothetical battery cathode, one active particle may transfer electrons 10 times faster than its neighbor; another may suffer from sluggish sodium ion transport and have restricted charging rate capabilities compared to a better-performing particle elsewhere in the same electrode. Our results inform on this intrinsic heterogeneity while demonstrating the utility of EIS in future single-particle studies.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and
Biochemistry, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| | - Lior Sepunaru
- Department of Chemistry and
Biochemistry, University of California Santa
Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
5
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Jin R, Li Y, Xu Y, Cheng L, Jiang D. Stereoscopic Imaging of Single Molecules at Plasma Membrane of Single Cell Using Photoreduction-Assisted Electrochemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0443. [PMID: 39140091 PMCID: PMC11319615 DOI: 10.34133/research.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/14/2024] [Indexed: 08/15/2024]
Abstract
Stereoscopic imaging of single molecules at the plasma membrane of single cell requires spatial resolutions in 3 dimensions (x-y-z) at 10-nm level, which is rarely achieved using most optical super-resolution microscopies. Here, electrochemical stereoscopic microscopy with a detection limit down to a single molecule is achieved using a photoreduction-assisted cycle inside a 20-nm gel electrolyte nanoball at the tip of a nanopipette. On the basis of the electrochemical oxidation of Ru(bpy)3 2+ into Ru(bpy)3 3+ followed by the reduction of Ru(bpy)3 3+ into Ru(bpy)3 2+ by photogenerated isopropanol radicals, a charge of 1.5 fC is obtained from the cycling electron transfers involving one Ru(bpy)3 2+/3+ molecule. By using the nanopipette to scan the cellular membrane modified with Ru(bpy)3 2+-tagged antibody, the morphology of the cell membrane and the distribution of carcinoembryonic antigen (CEA) on the membrane are electrochemically visualized with a spatial resolution of 14 nm. The resultant stereoscopic image reveals more CEA on membrane protrusions, providing direct evidence to support easy access of membrane CEA to intravenous antibodies. The breakthrough in single-molecule electrochemistry at the cellular level leads to the establishment of high-resolution 3-dimensional single-cell electrochemical microscopy, offering an alternative strategy to remedy the imperfection of stereoscopic visualization in optical microscopes.
Collapse
Affiliation(s)
- Rong Jin
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing, China
| | - Yu Li
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing, China
| | - Yanyan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing, China
| | - Lei Cheng
- College of Engineering and Technology,
Southwest University, Chongqing, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing, China
| |
Collapse
|
7
|
Gaudin LF, Wright IR, Harris-Lee TR, Jayamaha G, Kang M, Bentley CL. Five years of scanning electrochemical cell microscopy (SECCM): new insights and innovations. NANOSCALE 2024; 16:12345-12367. [PMID: 38874335 DOI: 10.1039/d4nr00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Scanning electrochemical cell microscopy (SECCM) is a nanopipette-based technique which enables measurement of localised electrochemistry. SECCM has found use in a wide range of electrochemical applications, and due to the wider uptake of this technique in recent years, new applications and techniques have been developed. This minireview has collected all SECCM research articles published in the last 5 years, to demonstrate and celebrate the recent advances, and to make it easier for SECCM researchers to remain well-informed. The wide range of SECCM applications is demonstrated, which are categorised here into electrocatalysis, electroanalysis, photoelectrochemistry, biological materials, energy storage materials, corrosion, electrosynthesis, and instrumental development. In the collection of this library of SECCM studies, a few key trends emerge. (1) The range of materials and processes explored with SECCM has grown, with new applications emerging constantly. (2) The instrumental capabilities of SECCM have grown, with creative techniques being developed from research groups worldwide. (3) The SECCM research community has grown significantly, with adoption of the SECCM technique becoming more prominent.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - India R Wright
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| | - Thom R Harris-Lee
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
- Department of Chemistry, University of Bath, Claverton Down, Bath, UK
| | - Gunani Jayamaha
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Minkyung Kang
- School of Chemistry, University of Sydney, Camperdown, 2050 NSW, Australia
| | - Cameron L Bentley
- School of Chemistry, Monash University, Clayton, 3800 VIC, Australia.
| |
Collapse
|
8
|
Aruchamy G, Kim BK. Recent Trends and Perspectives in Single-Entity Electrochemistry: A Review with Focus on a Water Splitting Reaction. Crit Rev Anal Chem 2024:1-17. [PMID: 38829955 DOI: 10.1080/10408347.2024.2358492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Electrochemical measurements involving single nanoparticles have attracted considerable research attention. In recent years, various studies have been conducted on single-entity electrochemistry (SEE) for the in-depth analyses of catalytic reactions. Although, several electrocatalysts have been developed for H2 energy production, designing innovative electrocatalysts for this purpose remains a challenging task. Stochastic collision electrochemistry is gaining increased attention because it has led to new findings in the SEE field. Importantly, it facilitates establishing structure activity relationships for electrocatalysts by monitoring transient signals. This article reviews the recent achievements related to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using different electrocatalysts at the nanoscale level. In particular, it discusses the electrocatalytic activities of noble metal nanoparticles, including Ag, Au, Pt, and Pd nanoparticles, at the single-particle level. Because heterogeneity is a key factor affecting the catalytic activity of nanostructures, our work focuses on the influence of heterogeneities in catalytic materials on the OER and HER activities. These results may help to achieve a better understanding of the fundamental processes involved in the water splitting reaction.
Collapse
Affiliation(s)
- Gowrisankar Aruchamy
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Byung-Kwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Gaudin LF, Funston AM, Bentley CL. Drop-cast gold nanoparticles are not always electrocatalytically active for the borohydride oxidation reaction. Chem Sci 2024; 15:7243-7258. [PMID: 38756820 PMCID: PMC11095372 DOI: 10.1039/d4sc00676c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
The next-generation of energy devices rely on advanced catalytic materials, especially electrocatalytic nanoparticles (NPs), to achieve the performance and cost required to reshape the energy landscape towards a more sustainable and cleaner future. It has become imperative to maximize the performance of the catalyst, both through improvement of the intrinsic activity of the NP, and by ensuring all particles are performing at the level of their capability. This requires not just a structure-function understanding of the catalytic material, but also an understanding of how the catalyst performance is impacted by its environment (substrate, ligand, etc.). The intrinsic activity and environment of catalytic particles on a support may differ wildly by particle, thus it is essential to build this understanding from a single-entity perspective. To achieve this herein, scanning electrochemical cell microscopy (SECCM) has been used, which is a droplet-based scanning probe technique which can encapsulate single NPs, and apply a voltage to the nanoparticle whilst measuring its resulting current. Using SECCM, single AuNPs have been encapsulated, and their activity for the borohydride oxidation reaction (BOR) is measured. A total of 268 BOR-active locations were probed (178 single particles) and a series of statistical analyses were performed in order to make the following discoveries: (1) a certain percentage of AuNPs display no BOR activity in the SECCM experiment (67.4% of single NPs), (2) visibly-similar particles display wildly varied BOR activities which cannot be explained by particle size, (3) the impact of cluster size (#NP at a single location) on a selection of diagnostic electrochemical parameters can be easily probed with SECCM, (4) exploratory statistical correlation between these parameters can be meaningfully performed with SECCM, and (5) outlying "abnormal" NP responses can be probed on a particle-by-particle basis. Each one of these findings is its own worthwhile study, yet this has been achieved with a single SECCM scan. It is hoped that this research will spur electrochemists and materials scientists to delve deeper into their substantial datasets in order to enhance the structure-function understanding, to bring about the next generation of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Lachlan F Gaudin
- School of Chemistry, Monash University Clayton 3800 VIC Australia
| | - Alison M Funston
- School of Chemistry, Monash University Clayton 3800 VIC Australia
- ARC Centre of Excellence in Exciton Science, Monash University Clayton 3800 VIC Australia
| | | |
Collapse
|
10
|
Quan L, Jiang H, Mei G, Sun Y, You B. Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chem Rev 2024; 124:3694-3812. [PMID: 38517093 DOI: 10.1021/acs.chemrev.3c00332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Electrocatalytic water splitting driven by renewable electricity has been recognized as a promising approach for green hydrogen production. Different from conventional strategies in developing electrocatalysts for the two half-reactions of water splitting (e.g., the hydrogen and oxygen evolution reactions, HER and OER) separately, there has been a growing interest in designing and developing bifunctional electrocatalysts, which are able to catalyze both the HER and OER. In addition, considering the high overpotentials required for OER while limited value of the produced oxygen, there is another rapidly growing interest in exploring alternative oxidation reactions to replace OER for hybrid water splitting toward energy-efficient hydrogen generation. This Review begins with an introduction on the fundamental aspects of water splitting, followed by a thorough discussion on various physicochemical characterization techniques that are frequently employed in probing the active sites, with an emphasis on the reconstruction of bifunctional electrocatalysts during redox electrolysis. The design, synthesis, and performance of diverse bifunctional electrocatalysts based on noble metals, nonprecious metals, and metal-free nanocarbons, for overall water splitting in acidic and alkaline electrolytes, are thoroughly summarized and compared. Next, their application toward hybrid water splitting is also presented, wherein the alternative anodic reactions include sacrificing agents oxidation, pollutants oxidative degradation, and organics oxidative upgrading. Finally, a concise statement on the current challenges and future opportunities of bifunctional electrocatalysts for both overall and hybrid water splitting is presented in the hope of guiding future endeavors in the quest for energy-efficient and sustainable green hydrogen production.
Collapse
Affiliation(s)
- Li Quan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hui Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guoliang Mei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
11
|
Xue W, Zhou Q, Cui X, Zhang J, Zuo S, Mo F, Jiang J, Zhu X, Lin Z. Atomically Dispersed FeN 2 P 2 Motif with High Activity and Stability for Oxygen Reduction Reaction Over the Entire pH Range. Angew Chem Int Ed Engl 2023; 62:e202307504. [PMID: 37345265 DOI: 10.1002/anie.202307504] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/23/2023]
Abstract
The past decade has witnessed the great potential of Fe-based single-atom electrocatalysis in catalyzing oxygen reduction reaction (ORR). However, it remains a grand challenge to substantially improve their intrinsic activity and long-term stability in acidic electrolytes. Herein, we report a facile chemical vapor deposition strategy, by which high-density Fe atoms (3.97 wt%) are coordinated with square-planar para-positioned nitrogen and phosphorus atoms in a hierarchical carbon framework. The as-crafted atomically dispersed Fe catalyst (denoted Fe-SA/PNC) manifests an outstanding activity towards ORR over the entire pH range. Specifically, the half-wave potential of 0.92 V, 0.83 V, and 0.86 V vs. reversible hydrogen electrode (RHE) are attained in alkaline, neutral, and acidic electrolytes, respectively, representing the high performance among reported catalysts to date. Furthermore, after 30,000 durability cycles, the Fe-SA/PNC remains to be stable with no visible performance decay when tested in 0.1 M KOH and 0.5 M H2 SO4 , and only a minor negative shift of 40 mV detected in 0.1 M HClO4 , significantly outperforming commercial Pt/C counterpart. The coordination motif of Fe-SA/PNC is validated by density functional theory (DFT) calculations. This work provides atomic-level insight into improving the activity and stability of non-noble metal ORR catalysts, opening up an avenue to craft the desired single-atom electrocatalysts.
Collapse
Affiliation(s)
- Wendan Xue
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Xun Cui
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jiawei Zhang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Sijin Zuo
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Fan Mo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Jiwei Jiang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Xuya Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
12
|
Peng Y, Gao C, Deng X, Zhao J, Chen Q. Elucidating the Geometric Active Sites for Oxygen Evolution Reaction on Crystalline Iron-Substituted Cobalt Hydroxide Nanoplates. Anal Chem 2023. [PMID: 37490501 DOI: 10.1021/acs.analchem.3c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Transition-metal (oxy)hydroxides are among the most active and studied catalysts for the oxygen evolution reaction in alkaline electrolytes. However, the geometric distribution of active sites is still elusive. Here, using the well-defined crystalline iron-substituted cobalt hydroxide as a model catalyst, we reported the scanning electrochemical cell microscopy (SECCM) study of single-crystalline nanoplates, where the oxygen evolution reaction at individual nanoplates was isolated and evaluated independently. With integrated prior- and post-SECCM scanning electron microscopy of the catalyst morphology, correlated structure-activity information of individual electrocatalysts was obtained. Our result reveals that while the active sites are largely located at the edges of the pristine Co(OH)2 nanoplates, the Fe lattice incorporation significantly promotes the basal plane activities. Our approach of correlative imaging provides new insights into the effect of iron incorporation on active site distribution across nano-electrocatalysts.
Collapse
Affiliation(s)
- Yu Peng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Cong Gao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaoli Deng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jiao Zhao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
13
|
Jin R, Zhou W, Xu Y, Jiang D, Fang D. Electrochemical Visualization of Membrane Proteins in Single Cells at a Nanoscale Using Scanning Electrochemical Cell Microscopy. Anal Chem 2023. [PMID: 37358933 DOI: 10.1021/acs.analchem.3c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The electrochemical visualization of proteins in the plasma membrane of single fixed cells was achieved with a spatial resolution of 160 nm using scanning electrochemical cell microscopy. The model protein, the carcinoembryonic antigen (CEA), is linked with a ruthenium complex (Ru(bpy)32+)-tagged antibody, which exhibits redox peaks in its cyclic voltammetry curves after a nanopipette tip contacts the cellular membrane. Based on the potential-resolved oxidation or reduction currents, an uneven distribution of membrane CEAs on the cells is electrochemically visualized, which could only be achieved previously using super-resolution optical microscopy. Compared with current electrochemical microscopy, the single-cell scanning electrochemical cell microscopy (SECCM) strategy not only improves the spatial resolution but also utilizes the potential-resolved current from the antibody-antigen complex to increase electrochemical imaging accuracy. Eventually, the electrochemical visualization of cellular proteins at the nanoscale enables the super-resolution study of cells to provide more biological information.
Collapse
Affiliation(s)
- Rong Jin
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenting Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Yanyan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| |
Collapse
|
14
|
Anderson KL, Edwards MA. Evaluating Analytical Expressions for Scanning Electrochemical Cell Microscopy (SECCM). Anal Chem 2023; 95:8258-8266. [PMID: 37191580 DOI: 10.1021/acs.analchem.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) maps the electrochemical activity of a surface with nanoscale resolution using an electrolyte-filled nanopipette. The meniscus at the end of the pipet is sequentially placed at an array of locations across the surface, forming a series of nanometric electrochemical cells where the current-voltage response is measured. Quantitative interpretation of these responses typically employs numerical modeling to solve the coupled equations of transport and electron transfer, which require costly software or self-written code. Expertise and time are required to build and solve numerical models, which must be rerun for each new experiment. In contrast, algebraic expressions directly relate the current response to physical parameters. They are simpler to use, faster to calculate, and can provide greater insight but frequently require simplifying assumptions. In this work, we provide algebraic expressions for current and concentration distributions in SECCM experiments, which are formulated by approximating the pipet and meniscus using 1-D spherical coordinates. Expressions for the current and concentration distributions as a function of experimental parameters and in various conditions (steady state and time dependent, diffusion limited, and including migration) all show excellent agreement with numerical simulations employing a full geometry. Uses of the analytical expressions include determination of expected currents in experiments and quantifying electron-transfer rate constants in SECCM experiments.
Collapse
Affiliation(s)
- Kamsy Lerae Anderson
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Martin Andrew Edwards
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
15
|
Kim M, Tetteh EB, Savan A, Xiao B, Ludwig A, Schuhmann W, Chung TD. Reorganization energy in a polybromide ionic liquid measured by scanning electrochemical cell microscopy. J Chem Phys 2023; 158:134707. [PMID: 37031154 DOI: 10.1063/5.0143018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Room temperature ionic liquids (RT-ILs) are promising electrolytes for electrocatalysis. Understanding the effects of the electrode–electrolyte interface structure on electrocatalysis in RT-ILs is important. Ultrafast mass transport of redox species in N-methyl- N-ethyl-pyrrolidinium polybromide (MEPBr2n+1) enabled evaluation of the reorganization energy ( λ), which reflects the solvation structure in the inner Helmholtz plane (IHP). λ was achieved by fitting the electron transfer rate-limited voltammogram at a Pt ultramicroelectrode (UME) to the Marcus–Hush–Chidsey model for heterogeneous electron transfer kinetics. However, it is time-consuming or even impossible to prepare electrode materials, including alloys of numerous compositions in the form of UME, for each experiment. Herein, we report a method to evaluate the λ of MEPBr2n+1 by scanning electrochemical cell microscopy (SECCM), which allows high throughput electrochemical measurements using a single electrode with high spatial resolution. Fast mass transport in the nanosized SECCM tip is critical for achieving heterogeneous electron transfer-limited voltammograms. Furthermore, investigating λ on a high-entropy alloy materials library composed of Pt, Pd, Ru, Ir, and Ag suggests a negative correlation between λ and the work function. Given that the potential of zero charge correlates with the work function of electrodes, this can be attributed to the surface-charge sensitive ionic structure in the IHP of MEPBr2n+1, modulating the solvation energy of the redox-active species in the IHP.
Collapse
Affiliation(s)
- Moonjoo Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials, Faculty of Mechanical Engineering, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
- ZGH, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| |
Collapse
|
16
|
Varhade S, Tetteh EB, Saddeler S, Schumacher S, Aiyappa HB, Bendt G, Schulz S, Andronescu C, Schuhmann W. Crystal Plane-Related Oxygen-Evolution Activity of Single Hexagonal Co 3 O 4 Spinel Particles. Chemistry 2023; 29:e202203474. [PMID: 36423237 DOI: 10.1002/chem.202203474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
The electrocatalytic activity for the oxygen evolution reaction in alkaline electrolyte of hexagonal spinel Co3 O4 nanoparticles derived using scanning electrochemical cell microscopy (SECCM) is correlated with scanning electron microscopy and atomic force microscopy images of the droplet landing sites. A unique way to deconvolute the intrinsic catalytic activity of individual crystal facets of the hexagonal Co3 O4 spinel particle is demonstrated in terms of the turnover frequency (TOF) of surface Co atoms. The top surface exposing 111 crystal planes displayed a thickness-dependent TOF with a TOF of about 100 s-1 at a potential of 1.8 V vs. RHE and a particle thickness of 100 nm. The edge of the particle exposing (110) planes, however, showed an average TOF of 270±68 s-1 at 1.8 V vs. RHE and no correlation with particle thickness. The higher atomic density of Co atoms on the edge surface (2.5 times of the top) renders the overall catalytic activity of the edge planes significantly higher than that of the top planes. The use of a free-diffusing Os complex in the alkaline electrolyte revealed the low electrical conductivity through individual particles, which explains the thickness-dependent TOF of the top planes and could be a reason for the low activity of the top (111) planes.
Collapse
Affiliation(s)
- Swapnil Varhade
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany.,Inorganic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Simon Schumacher
- Chemical Technology III, Faculty of Chemistry, University of Duisburg Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Harshitha Barike Aiyappa
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| | - Georg Bendt
- Inorganic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany
| | - Stephan Schulz
- Inorganic Chemistry, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45141, Essen, Germany.,Center for Nanointegration (CENIDE), University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry, University of Duisburg Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany.,Center for Nanointegration (CENIDE), University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Universitätsstrasse 150, 44780, Bochum, Germany
| |
Collapse
|
17
|
Tao B, McPherson IJ, Daviddi E, Bentley CL, Unwin PR. Multiscale Electrochemistry of Lithium Manganese Oxide (LiMn 2O 4): From Single Particles to Ensembles and Degrees of Electrolyte Wetting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1459-1471. [PMID: 36743391 PMCID: PMC9890564 DOI: 10.1021/acssuschemeng.2c06075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Scanning electrochemical cell microscopy (SECCM) facilitates single particle measurements of battery materials using voltammetry at fast scan rates (1 V s-1), providing detailed insight into intrinsic particle kinetics, otherwise obscured by matrix effects. Here, we elucidate the electrochemistry of lithium manganese oxide (LiMn2O4) particles, using a series of SECCM probes of graded size to determine the evolution of electrochemical characteristics from the single particle to ensemble level. Nanometer scale control over the SECCM meniscus cell position and height further allows the study of variable particle/substrate electrolyte wetting, including comparison of fully wetted particles (where contact is also made with the underlying glassy carbon substrate electrode) vs partly wetted particles. We find ensembles of LiMn2O4 particles show voltammograms with much larger peak separations than those of single particles. In addition, if the SECCM meniscus is brought into contact with the substrate electrode, such that the particle-support contact changes from dry to wet, a further dramatic increase in peak separation is observed. Finite element method modeling of the system reveals the importance of finite electronic conductivity of the particles, contact resistance, surface kinetics, particle size, and contact area with the electrode surface in determining the voltammetric waveshape at fast scan rates, while the responses are relatively insensitive to Li+ diffusion coefficients over a range of typical values. The simulation results explain the variability in voltammetric responses seen at the single particle level and reveal some of the key factors responsible for the evolution of the response, from ensemble, contact, and wetting perspectives. The variables and considerations explored herein are applicable to any single entity (nanoscale) electrochemical study involving low conductivity materials and should serve as a useful guide for further investigations of this type. Overall, this study highlights the potential of multiscale measurements, where wetting, electronic contact, and ionic contact can be varied independently, to inform the design of practical composite electrodes.
Collapse
Affiliation(s)
- Binglin Tao
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian J. McPherson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Enrico Daviddi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
18
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
19
|
Chen R, Liu S, Zhang Y. A nanoelectrode-based study of water splitting electrocatalysts. MATERIALS HORIZONS 2023; 10:52-64. [PMID: 36485037 DOI: 10.1039/d2mh01143c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of low-cost and efficient catalytic materials for key reactions like water splitting, CO2 reduction and N2 reduction is crucial for fulfilling the growing energy consumption demands and the pursuit of renewable and sustainable energy. Conventional electrochemical measurements at the macroscale lack the potential to characterize single catalytic entities and nanoscale surface features on the surface of a catalytic material. Recently, promising results have been obtained using nanoelectrodes as ultra-small platforms for the study of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on innovative catalytic materials at the nanoscale. In this minireview, we summarize the recent progress in the nanoelectrode-based studies on the HER and OER on various nanostructured catalytic materials. These electrocatalysts can be generally categorized into two groups: 0-dimensional (0D) single atom/molecule/cluster/nanoparticles and 2-dimensional (2D) nanomaterials. Controlled growth as well as the electrochemical characterization of single isolated atoms, molecules, clusters and nanoparticles has been achieved on nanoelectrodes. Moreover, nanoelectrodes greatly enhanced the spatial resolution of scanning probe techniques, which enable studies at the surface features of 2D nanomaterials, including surface defects, edges and nanofacets at the boundary of a phase. Nanoelectrode-based studies on the catalytic materials can provide new insights into the reaction mechanisms and catalytic properties, which will facilitate the pursuit of sustainable energy and help to solve CO2 release issues.
Collapse
Affiliation(s)
- Ran Chen
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Songqin Liu
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanjian Zhang
- Jiangsu Province Key Laboratory of Critical Care Medicine, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
20
|
Li Y, Morel A, Gallant D, Mauzeroll J. Controlling Surface Contact, Oxygen Transport, and Pitting of Surface Oxide via Single-Channel Scanning Electrochemical Cell Microscopy. Anal Chem 2022; 94:14603-14610. [PMID: 36214771 DOI: 10.1021/acs.analchem.2c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In single-channel scanning electrochemical cell microscopy, the applied potential during the approach of a micropipette to the substrate generates a transient current upon droplet contact with the substrate. Once the transient current exceeds a set threshold, the micropipette is automatically halted. Currently, the effect of the approach potential on the subsequent electrochemical measurements, such as the open-circuit potential and potentiodynamic polarization, is considered to be inconsequential. Herein, we demonstrate that the applied approach potential does impact the extent of probe-to-substrate interaction and subsequent microscale electrochemical measurements on aluminum alloy AA7075-T73.
Collapse
Affiliation(s)
- Yuanjiao Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, H3A 0B8 Quebec, Canada
| | - Alban Morel
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, Aluminum Technology Center, 501 University Blvd East, Saguenay, G7H 8C3 Quebec, Canada
| | - Danick Gallant
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, Aluminum Technology Center, 501 University Blvd East, Saguenay, G7H 8C3 Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, H3A 0B8 Quebec, Canada
| |
Collapse
|
21
|
Scanning gel electrochemical microscopy: Combination with quartz crystal microbalance for studying the electrolyte residue. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Schumacher S, Madauß L, Liebsch Y, Tetteh EB, Varhade S, Schuhmann W, Schleberger M, Andronescu C. Revealing the Heterogeneity of Large-Area MoS 2 Layers in the Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem 2022; 9:e202200586. [PMID: 36246850 PMCID: PMC9544614 DOI: 10.1002/celc.202200586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Indexed: 11/30/2022]
Abstract
The electrocatalytic activity concerning the hydrogen evolution reaction (HER) of micrometer-sized MoS2 layers transferred on a glassy carbon surface was evaluated by scanning electrochemical cell microscopy (SECCM) in a high-throughput approach. Multiple areas on single or multiple MoS2 layers were assessed using a hopping mode nanocapillary positioning with a hopping distance of 500 nm and a nanopipette size of around 55 nm. The locally recorded linear sweep voltammograms revealed a high lateral heterogeneity over the MoS2 sheet regarding their HER activity, with currents between -40 and -60 pA recorded at -0.89 V vs. reversible hygrogen electrode over about 4400 different measured areas on the MoS2 sheet. Stacked MoS2 layers did not show different electrocatalytic activity than the single MoS2 sheet, suggesting that the interlayer resistance influences the electrocatalytic activity less than the resistances induced by possible polymer residues or water layers formed between the transferred MoS2 sheet and the glassy carbon electrode.
Collapse
Affiliation(s)
- Simon Schumacher
- Chemical Technology IIIFaculty of Chemistry and CENIDEUniversity of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| | - Lukas Madauß
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburg47057Germany
| | - Yossarian Liebsch
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburg47057Germany
| | - Emmanuel Batsa Tetteh
- Analytical Chemistry - Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Swapnil Varhade
- Analytical Chemistry - Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Marika Schleberger
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburg47057Germany
| | - Corina Andronescu
- Chemical Technology IIIFaculty of Chemistry and CENIDEUniversity of Duisburg-EssenCarl-Benz-Straße 19947057DuisburgGermany
| |
Collapse
|
23
|
An S, Shang N, Zhang J, Nsabimana A, Su M, Zhang S, Zhang Y. Fabrication of electrocatalytically active, cobalt-embedded nitrogen-doped ordered macroporous carbon for sensitive detection of nitrobenzene. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Jeong S, Choi MH, Jagdale GS, Zhong Y, Siepser NP, Wang Y, Zhan X, Baker LA, Ye X. Unraveling the Structural Sensitivity of CO 2 Electroreduction at Facet-Defined Nanocrystals via Correlative Single-Entity and Macroelectrode Measurements. J Am Chem Soc 2022; 144:12673-12680. [PMID: 35793438 DOI: 10.1021/jacs.2c02001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The conversion of CO2 into value-added products is a compelling way of storing energy derived from intermittent renewable sources and can bring us closer to a closed-loop anthropogenic carbon cycle. The ability to synthesize nanocrystals of well-defined structure and composition has invigorated catalysis science with the promise of nanocrystals that selectively express the most favorable sites for efficient catalysis. The performance of nanocrystal catalysts for the CO2 reduction reaction (CO2RR) is typically evaluated with nanocrystal ensembles, which returns an averaged system-level response of complex catalyst-modified electrodes with each nanocrystal likely contributing a different (unknown) amount. Measurements at single nanocrystals, taken in the context of statistical analysis of a population, and comparison to macroscale measurements are necessary to untangle the complexity of the ever-present heterogeneity in nanocrystal catalysts, achieve true structure-property correlation, and potentially identify nanocrystals with outlier performance. Here, we employ environment-controlled scanning electrochemical cell microscopy to isolate and investigate the electrocatalytic CO2RR response of individual facet-defined gold nanocrystals. Using correlative microscopy approaches, we conclusively demonstrate that {110}-terminated gold rhombohedra possess superior activity and selectivity for CO2RR compared with {111}-terminated octahedra and high-index {310}-terminated truncated ditetragonal prisms, especially at low overpotentials where electrode kinetics is anticipated to dominate the current response. The methodology framework described here could inform future studies of complex electrocatalytic processes through correlative single-entity and macroscale measurement techniques.
Collapse
Affiliation(s)
- Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States.,Department of Chemistry, Texas A&M University, 580 Ross St, College Station, Texas 77843, United States
| | - Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yaxu Zhong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xun Zhan
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, 580 Ross St, College Station, Texas 77843, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Direct measuring of single-heterogeneous bubble nucleation mediated by surface topology. Proc Natl Acad Sci U S A 2022; 119:e2205827119. [PMID: 35858338 PMCID: PMC9303989 DOI: 10.1073/pnas.2205827119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Heterogeneous bubble nucleation is one of the most fundamental interfacial processes ranging from nature to technology. There is excellent evidence that surface topology is important in directing heterogeneous nucleation; however, deep understanding of the energetics by which nanoscale architectures promote nucleation is still challenging. Herein, we report a direct and quantitative measurement of single-bubble nucleation on a single silica nanoparticle within a microsized droplet using scanning electrochemical cell microscopy. Local gas concentration at nucleation is determined from finite element simulation at the corresponding faradaic current of the peak-featured voltammogram. It is demonstrated that the criteria gas concentration for nucleation first drops and then rises with increasing nanoparticle radius. An optimum nanoparticle radius around 10 nm prominently expedites the nucleation by facilitating the special topological nanoconfinements that consequently catalyze the nucleation. Moreover, the experimental result is corroborated by our theoretical calculations of free energy change based on the classic nucleation theory. This study offers insights into the impact of surface topology on heterogenous nucleation that have not been previously observed.
Collapse
|
26
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
27
|
Liu G, Hao L, Li H, Zhang K, Yu X, Li D, Zhu X, Hao D, Ma Y, Ma L. Topography Mapping with Scanning Electrochemical Cell Microscopy. Anal Chem 2022; 94:5248-5254. [PMID: 35312291 DOI: 10.1021/acs.analchem.1c04692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-resolution scanning electrochemical cell microscopy (SECCM), synchronously visualizing the topography and electrochemical activity, could be used to directly correlate the structure and activity of materials nanoscopically. However, its topographical measurement is largely restricted by the size and stability of the meniscus droplet formed at the end of the nanopipette. In this paper, we report a scheme that could reliably gain several tens nanometer resolution (≥65 nm) of SECCM using homemade ∼50 nm inner diameter probes. Furthermore, the topography and hydrogen evolution reaction (HER) activity of ∼45 nm self-assembled Au nanoparticles monolayer were simultaneously recorded successfully. This scheme could make mapping of both topologic and chemical properties of samples in the nanometer regime with SECCM routinely, which potentially can largely expand the field of SECCM applications.
Collapse
Affiliation(s)
- Gen Liu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Luzhen Hao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Hao Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Kaimin Zhang
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xue Yu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Dong Li
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaodong Zhu
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Danni Hao
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| | - Yanqing Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China.,State Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, P. R. China
| | - Lei Ma
- Tianjin International Center for Nanoparticles and Nanosystems, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
28
|
Li M, Ye KH, Qiu W, Wang Y, Ren H. Heterogeneity between and within Single Hematite Nanorods as Electrocatalysts for Oxygen Evolution Reaction. J Am Chem Soc 2022; 144:5247-5252. [PMID: 35298886 DOI: 10.1021/jacs.2c00506] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the structural nature of the active sites in electrocatalysis is central to discovering general design rules for better catalysts in fuel cells and electrolyzers. Nanostructures are widely used as electrocatalysts, but the location and structure of the active sites within the nanostructure are often unknown. This information is hidden in conventional bulk measurements due to ensemble averaging, hindering direct structure-activity correlation. Herein, we use a single-entity electrochemical approach to reveal the heterogeneity in electrocatalysts via scanning electrochemical cell microscopy (SECCM). Using hematite (α-Fe2O3) nanorods as the model catalyst for oxygen evolution reaction (OER), the electrocatalytic activity is measured at individual nanorods. Finer mapping within a single nanorod shows that the OER activity is consistently higher at the body portion vs the tip of the nanorod. Our results directly suggest the benefit of synthesizing longer hematite nanorods for better OER performance. The origin of the enhanced local activity is explained by the larger fraction of {001} facet exposed on the body compared to the tip. The finding goes beyond OER on hematite nanorods, highlighting the critical role of single-entity activity mapping and colocalized structural characterization in revealing active sites in electrocatalysis.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kai-Hang Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weitao Qiu
- School of Chemical Biology and Biotechnology, Peking University, Shenzhen 518055, China
| | - Yufei Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
29
|
Shan Y, Deng X, Lu X, Gao C, Li Y, Chen Q. Surface facets dependent oxygen evolution reaction of single Cu2O nanoparticles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Makarova MV, Amano F, Nomura S, Tateishi C, Fukuma T, Takahashi Y, Korchev YE. Direct Electrochemical Visualization of the Orthogonal Charge Separation in Anatase Nanotube Photoanodes for Water Splitting. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marina V. Makarova
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Institute of Physics CAS, Na Slovance, 2, Prague 18200, Czech Republic
| | - Fumiaki Amano
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinpei Nomura
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Chihiro Tateishi
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yasufumi Takahashi
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuri E. Korchev
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
- National University of Science and Technology (MISiS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
31
|
Huang K, Crooks RM. Enhanced electrocatalytic activity of Cu-modified, high-index single Pt NPs for formic acid oxidation. Chem Sci 2022; 13:12479-12490. [PMID: 36349269 PMCID: PMC9628932 DOI: 10.1039/d2sc03433f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
A key goal of nanoparticle-based catalysis research is to correlate the structure of nanoparticles (NPs) to their catalytic function. The most common approach for achieving this goal is to synthesize ensembles of NPs, characterize the ensemble, and then evaluate its catalytic properties. This approach is effective, but it excludes the certainty of structural heterogeneity in the NP ensemble. One means of addressing this shortcoming is to carry out analyses on individual NPs. This approach makes it possible to establish direct correlations between structures of single NPs and, in the case reported here, their electrocatalytic properties. Accordingly, we report on enhanced electrocatalytic formic acid oxidation (FAO) activity using individual Cu-modified, high-indexed Pt NPs. The results show that the Cu-modified Pt NPs exhibit significantly higher currents for FAO than the Pt-only analogs. The increased activity is enabled by the Cu submonolayer on the highly stepped Pt surface, which enhances the direct FAO pathway but not the indirect pathway which proceeds via surface-absorbed CO*. Single-crystal Pt nanoparticles with a diameter of ∼200 nm were electrosynthesized, covered with a single monolayer of Cu, and then fully characterized. The resulting materials exhibit excellent electrocatalytic properties for formic acid oxidation.![]()
Collapse
Affiliation(s)
- Ke Huang
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| | - Richard M. Crooks
- Department of Chemistry, Texas Materials Institute, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, Texas, 78712, USA
| |
Collapse
|
32
|
Lu X, Li M, Peng Y, Xi X, Li M, Chen Q, Dong A. Direct Probing of the Oxygen Evolution Reaction at Single NiFe 2O 4 Nanocrystal Superparticles with Tunable Structures. J Am Chem Soc 2021; 143:16925-16929. [PMID: 34612638 DOI: 10.1021/jacs.1c08592] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Due to the precisely controllable size, shape, and composition, self-assembled nanocrystal superlattices exhibit unique collective properties and find wide applications in catalysis and energy conversion. Identifying their intrinsic electrocatalytic activity is challenging, as their averaged properties on ensembles can hardly be dissected from binders or additives. We here report the direct measurement of the oxygen evolution reaction at single superparticles self-assembled from ∼8 nm NiFe2O4 and/or ∼4 nm Au nanocrystals using scanning electrochemical cell microscopy. Combined with coordinated scanning electron microscopy, it is found that the turnover frequency (TOF) estimated from single NiFe2O4 superparticles at 1.92 V vs RHE ranges from 0.2 to 11 s-1 and is sensitive to size only when it is smaller than ∼800 nm in diameter. After the incorporation of Au nanocrystals, the TOF increases by ∼6-fold and levels off with further increasing Au content. Our study demonstrates the first direct single entity electrochemical study on individual nanocrystal superlattices with tunable structures and unravels the intrinsic structure-activity relationship that is not accessible by other methods.
Collapse
Affiliation(s)
- Xiaoxi Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Mingzhong Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyun Xi
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Man Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
33
|
Quast T, Varhade S, Saddeler S, Chen YT, Andronescu C, Schulz S, Schuhmann W. Single Particle Nanoelectrochemistry Reveals the Catalytic Oxygen Evolution Reaction Activity of Co 3 O 4 Nanocubes. Angew Chem Int Ed Engl 2021; 60:23444-23450. [PMID: 34411401 PMCID: PMC8596605 DOI: 10.1002/anie.202109201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Indexed: 01/24/2023]
Abstract
Co3O4 nanocubes are evaluated concerning their intrinsic electrocatalytic activity towards the oxygen evolution reaction (OER) by means of single‐entity electrochemistry. Scanning electrochemical cell microscopy (SECCM) provides data on the electrocatalytic OER activity from several individual measurement areas covering one Co3O4 nanocube of a comparatively high number of individual particles with sufficient statistical reproducibility. Single‐particle‐on‐nanoelectrode measurements of Co3O4 nanocubes provide an accelerated stress test at highly alkaline conditions with current densities of up to 5.5 A cm−2, and allows to derive TOF values of up to 2.8×104 s−1 at 1.92 V vs. RHE for surface Co atoms of a single cubic nanoparticle. Obtaining such high current densities combined with identical‐location transmission electron microscopy allows monitoring the formation of an oxy(hydroxide) surface layer during electrocatalysis. Combining two independent single‐entity electrochemistry techniques provides the basis for elucidating structure–activity relations of single electrocatalyst nanoparticles with well‐defined surface structure.
Collapse
Affiliation(s)
- Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Swapnil Varhade
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Inorganic Chemistry, Faculty of Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Yen-Ting Chen
- Center for Solvation Science (ZEMOS), Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Stephan Schulz
- Inorganic Chemistry, Faculty of Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
34
|
Quast T, Varhade S, Saddeler S, Chen Y, Andronescu C, Schulz S, Schuhmann W. Einzelpartikel‐Nanoelektrochemie für die Untersuchung der Aktivität der elektrokatalytischen Sauerstoffentwicklungsreaktion an Co
3
O
4
Nanowürfeln. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Deutschland
| | - Swapnil Varhade
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Deutschland
| | - Sascha Saddeler
- Inorganic Chemistry Faculty of Chemistry Center for Nanointegration (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Deutschland
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS) Ruhr University Bochum Universitätsstr. 150 44801 Bochum Deutschland
| | - Corina Andronescu
- Chemical Technology III Faculty of Chemistry and Center for Nanointegration (CENIDE) University of Duisburg-Essen Carl-Benz-Strasse 199 47057 Duisburg Deutschland
| | - Stephan Schulz
- Inorganic Chemistry Faculty of Chemistry Center for Nanointegration (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Deutschland
| |
Collapse
|
35
|
Jagdale GS, Choi MH, Siepser NP, Jeong S, Wang Y, Skalla RX, Huang K, Ye X, Baker LA. Electrospray deposition for single nanoparticle studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4105-4113. [PMID: 34554166 DOI: 10.1039/d1ay01295a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per μm2 and observation of 96.3% single Au OD deposition.
Collapse
Affiliation(s)
- Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Soojin Jeong
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| |
Collapse
|
36
|
Liu Y, Lu X, Peng Y, Chen Q. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Anal Chem 2021; 93:12337-12345. [PMID: 34460230 DOI: 10.1021/acs.analchem.1c02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic gas evolution reactions, where gaseous molecules are electrogenerated by reduction or oxidation of a species, play a central role in many energy conversion systems. Superaerophobic electrodes, usually constructed by their surface microstructures, have demonstrated excellent performance for electrochemical gas evolution reactions due to their bubble-repellent properties. Understanding and quantification of the gas bubble behavior including nucleation and dynamics on such microstructured electrodes is an important but underexplored issue. In this study, we reported a scanning electrochemical cell microscopy (SECCM) investigation of individual gas bubble nucleation and dynamics on nanoscale electrodes. A classic Pt film and a nonconventional transition-metal dichalcogenide MoS2 film with different surface topologies were employed as model substrates for both H2 and N2 bubble electrochemical studies. Interestingly, the nanostructured catalyst surface exhibit significantly less supersaturation for gas bubble nucleation and a notable increase of bubble detachment compared to its flat counterpart. Electrochemical mapping results reveal that there is no clear correlation between bubble nucleation and hydrogen evolution reaction (HER) activity, regardless of local electrode surface microstructures. Our results also indicate that while the hydrophobicity of the nanostructured MoS2 surface promotes bubble nucleation, it has little effect on bubble dynamics. This work introduces a new method for nanobubble electrochemistry on broadly interesting catalysts and suggests that the deliberate microstructure on a catalyst surface is a promising strategy for improving electrocatalytic gas evolution both in terms of bubble nucleation and elimination.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
37
|
Tetteh EB, Banko L, Krysiak OA, Löffler T, Xiao B, Varhade S, Schumacher S, Savan A, Andronescu C, Ludwig A, Schuhmann W. Zooming‐in – Visualization of active site heterogeneity in high entropy alloy electrocatalysts using scanning electrochemical cell microscopy. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Emmanuel Batsa Tetteh
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Lars Banko
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Olga A. Krysiak
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Tobias Löffler
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Bin Xiao
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Swapnil Varhade
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Simon Schumacher
- Technical Chemistry III and CENIDE Center for Nanointegration Faculty of Chemistry University of Duisburg‐Essen Carl‐Benz‐Straße 199 Duisburg Germany
| | - Alan Savan
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Corina Andronescu
- Technical Chemistry III and CENIDE Center for Nanointegration Faculty of Chemistry University of Duisburg‐Essen Carl‐Benz‐Straße 199 Duisburg Germany
| | - Alfred Ludwig
- Chair for Materials Discovery and Interfaces, Institute for Materials Faculty of Mechanical Engineering Ruhr University Bochum Universitätsstraße 150 Bochum Germany
- ZGH Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 Bochum Germany
| |
Collapse
|
38
|
Hou S, Kluge RM, Haid RW, Gubanova EL, Watzele SA, Bandarenka AS, Garlyyev B. A Review on Experimental Identification of Active Sites in Model Bifunctional Electrocatalytic Systems for Oxygen Reduction and Evolution Reactions. ChemElectroChem 2021. [DOI: 10.1002/celc.202100584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shujin Hou
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
- Catalysis Research Center TUM Ernst-Otto-Fischer-Str. 1 85748 Garching bei München Germany
| | - Regina M. Kluge
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Richard W. Haid
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Elena L. Gubanova
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Sebastian A. Watzele
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| | - Aliaksandr S. Bandarenka
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
- Catalysis Research Center TUM Ernst-Otto-Fischer-Str. 1 85748 Garching bei München Germany
| | - Batyr Garlyyev
- Physics of Energy Conversion and Storage Physik-Department Technische Universität München James-Franck-Str. 1 85748 Garching bei München Germany
| |
Collapse
|
39
|
Wen H, Zhang S, Yu T, Yi Z, Guo R. ZIF-67-based catalysts for oxygen evolution reaction. NANOSCALE 2021; 13:12058-12087. [PMID: 34231644 DOI: 10.1039/d1nr01669e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As a new type of crystalline porous material, the imidazole zeolite framework (ZIF) has attracted widespread attention due to its ultra-high surface area, large pore volume, and unique advantage of easy functionalization. Developing different methods to control the shape and composition of ZIF is very important for its practical application as catalyst. In recent years, nano-ZIF has been considered an electrode material with excellent oxygen evolution reaction (OER) performance, which provides a new way to research electrolyzed water. This review focuses on the morphological engineering of the original ZIF-67 and its derivatives (core-shell, hollow, and array structures) through doping (cation doping, anion doping, and co-doping), derivative composition engineering (metal oxide, phosphide, sulfide, selenide, and telluride), and the corresponding single-atom catalysis. Besides, combined with DFT calculations, it emphasizes the in-depth understanding of actual active sites and provides insights into the internal mechanism of enhancing the OER and proposes the challenges and prospects of ZIF-67 based electrocatalysts. We summarize the application of ZIF-67 and its derivatives in the OER for the first time, which has significantly guided research in this field.
Collapse
Affiliation(s)
- Hui Wen
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | | | | | | | | |
Collapse
|
40
|
Bentley CL. Scanning electrochemical cell microscopy for the study of (nano)particle electrochemistry: From the sub‐particle to ensemble level. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
41
|
Wang J, Chen F, Guo Q, Meng Y, Jiang M, Wu C, Zhuang J, Zhang DW. Light-Addressable Square Wave Voltammetry (LASWV) Based on a Field-Effect Structure for Electrochemical Sensing and Imaging. ACS Sens 2021; 6:1636-1642. [PMID: 33832225 DOI: 10.1021/acssensors.1c00170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Here, we describe a new photoelectrochemical imaging method termed light-addressable square wave voltammetry (LASWV). It measures local SWV currents at an unstructured electrolyte/insulator/semiconductor (EIS) field-effect substrate by illuminating and addressing the substrate with an intensity-constant laser. Due to the continuous generation of charge carriers in the light-irradiated semiconductor, the drift and diffusion of photoinjected carriers within the semiconductor bulk would slow down the equilibrium processes of charge and discharge in one potential pulse cycle. Therefore, even though SWV is sampled at the end of the direct and reverse pulses to reject capacitive currents, in our approach, photoinduced capacitive current can still be detected as an effective sensory signal. The obtained current-potential (I-V) curve shows a typical shape corresponding to the accumulation, depletion, and inversion regions of field-effect devices. We demonstrated that LASWV can be used as a field-effect chemical sensor to measure the solution pH and monitor enzymatic reactions. More importantly, since the charge carriers are only generated in the illuminated area, the laser spot in the device can be used as a virtual probe to record local electrochemical properties such as impedance with microresolution.
Collapse
Affiliation(s)
- Jian Wang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an 710061, China
| | - Fangming Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Qin Guo
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Yao Meng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Mingrui Jiang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi’an Jiaotong University, Xi’an 710049, China
- School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - De-Wen Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education of China, Xi’an 710061, China
| |
Collapse
|
42
|
JIN C, LIU YL, SHAN Y, CHEN QJ. Scanning Electrochemical Cell Microscope Study of Individual H2 Gas Bubble Nucleation on Platinum: Effect of Surfactants. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(21)60096-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
43
|
Liu Y, Jin C, Liu Y, Ruiz KH, Ren H, Fan Y, White HS, Chen Q. Visualization and Quantification of Electrochemical H 2 Bubble Nucleation at Pt, Au, and MoS 2 Substrates. ACS Sens 2021; 6:355-363. [PMID: 32449344 DOI: 10.1021/acssensors.0c00913] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Electrolytic gas evolution is a significant phenomenon in many electrochemical technologies from water splitting, chloralkali process to fuel cells. Although it is known that gas evolution may substantially affect the ohmic resistance and mass transfer, studies focusing on the electrochemistry of individual bubbles are critical but also challenging. Here, we report an approach using scanning electrochemical cell microscopy (SECCM) with a single channel pipet to quantitatively study individual gas bubble nucleation on different electrode substrates, including conventional polycrystalline Pt and Au films, as well as the most interesting two-dimensional semiconductor MoS2. Due to the confinement effect of the pipet, well-defined peak-shaped voltammetric features associated with single bubble nucleation and growth are consistently observed. From stochastic bubble nucleation measurement and finite element simulation, the surface H2 concentration corresponding to bubble nucleation is estimated to be ∼218, 137, and 157 mM, with critical nuclei contact angles of ∼156°, ∼161°, and ∼160° at polycrystalline Pt, Au, and MoS2 substrates, respectively. We further demonstrated the surface faceting at polycrystalline Pt is not specifically correlated with the bubble nucleation behavior.
Collapse
Affiliation(s)
- Yulong Liu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Cheng Jin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuwen Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Karla Hernandez Ruiz
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hang Ren
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Henry S. White
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
44
|
Quast T, Aiyappa HB, Saddeler S, Wilde P, Chen Y, Schulz S, Schuhmann W. Single-Entity Electrocatalysis of Individual "Picked-and-Dropped" Co 3 O 4 Nanoparticles on the Tip of a Carbon Nanoelectrode. Angew Chem Int Ed Engl 2021; 60:3576-3580. [PMID: 33210797 PMCID: PMC7898714 DOI: 10.1002/anie.202014384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Indexed: 12/01/2022]
Abstract
Nano-electrochemical tools to assess individual catalyst entities are critical to comprehend single-entity measurements. The intrinsic electrocatalytic activity of an individual well-defined Co3 O4 nanoparticle supported on a carbon-based nanoelectrode is determined by employing an efficient SEM-controlled robotic technique for picking and placing a single catalyst particle onto a modified carbon nanoelectrode surface. The stable nanoassembly is microscopically investigated and subsequently electrochemically characterized. The hexagonal-shaped Co3 O4 nanoparticles demonstrate size-dependent electrochemical activity and exhibit very high catalytic activity with a current density of up to 11.5 A cm-2 at 1.92 V (vs. RHE), and a turnover frequency of 532±100 s-1 at 1.92 V (vs. RHE) towards catalyzing the oxygen evolution reaction.
Collapse
Affiliation(s)
- Thomas Quast
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Harshitha Barike Aiyappa
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Sascha Saddeler
- Inorganic ChemistryFaculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstasse 745141EssenGermany
| | - Patrick Wilde
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS)Ruhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Stephan Schulz
- Inorganic ChemistryFaculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstasse 745141EssenGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
45
|
Quast T, Aiyappa HB, Saddeler S, Wilde P, Chen Y, Schulz S, Schuhmann W. Elektrokatalyse einzelner, auf der Spitze einer Kohlenstoff‐Nanoelektrode platzierter Co
3
O
4
‐Nanopartikel. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Harshitha Barike Aiyappa
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Sascha Saddeler
- Inorganic Chemistry Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstaße 7 45141 Essen Deutschland
| | - Patrick Wilde
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS) Ruhr University Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Stephan Schulz
- Inorganic Chemistry Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstaße 7 45141 Essen Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
46
|
|
47
|
Bentley CL, Agoston R, Tao B, Walker M, Xu X, O'Mullane AP, Unwin PR. Correlating the Local Electrocatalytic Activity of Amorphous Molybdenum Sulfide Thin Films with Microscopic Composition, Structure, and Porosity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44307-44316. [PMID: 32880446 DOI: 10.1021/acsami.0c11759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thin-film electrodes, produced by coating a conductive support with a thin layer (nanometer to micrometer) of active material, retain the unique properties of nanomaterials (e.g., activity, surface area, conductivity, etc.) while being economically scalable, making them highly desirable as electrocatalysts. Despite the ever-increasing methods of thin-film deposition (e.g., wet chemical synthesis, electrodeposition, chemical vapor deposition, etc.), there is insufficient understanding on the nanoscale electrochemical activity of these materials in relation to structure/composition, particularly for those that lack long-range order (i.e., amorphous thin-film materials). In this work, scanning electrochemical cell microscopy (SECCM) is deployed in tandem with complementary, colocated compositional/structural analysis to understand the microscopic factors governing the electrochemical activity of amorphous molybdenum sulfide (a-MoSx) thin films, a promising class of hydrogen evolution reaction (HER) catalyst. The a-MoSx thin films, produced under ambient conditions by electrodeposition, possess spatially heterogeneous electrocatalytic activity on the tens-of-micrometer scale, which is not attributable to microscopic variations in elemental composition or chemical structure (i.e., Mo and/or S bonding environments), shown through colocated, local energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis. A new SECCM protocol is implemented to directly correlate electrochemical activity to the electrochemical surface area (ECSA) in a single measurement, revealing that the spatially heterogeneous HER response of a-MoSx is predominantly attributable to variations in the nanoscale porosity of the thin film, with surface roughness ruled out as a major contributing factor by complementary atomic force microscopy (AFM). As microscopic composition, structure, and porosity (ECSA) are all critical factors dictating the functional properties of nanostructured materials in electrocatalysis and beyond (e.g., battery materials, electrochemical sensors, etc.), this work further cements SECCM as a premier tool for structure-function studies in (electro)materials science.
Collapse
Affiliation(s)
- Cameron L Bentley
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Roland Agoston
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Binglin Tao
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Marc Walker
- Department of Physics, University of Warwick, Coventry CV4 7AL, U.K
| | - Xiangdong Xu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
48
|
Masa J, Andronescu C, Schuhmann W. Electrocatalysis as the Nexus for Sustainable Renewable Energy: The Gordian Knot of Activity, Stability, and Selectivity. Angew Chem Int Ed Engl 2020; 59:15298-15312. [PMID: 32608122 PMCID: PMC7496542 DOI: 10.1002/anie.202007672] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 01/11/2023]
Abstract
The use of renewable energy by means of electrochemical techniques by converting H2 O, CO2 and N2 into chemical energy sources and raw materials, is the basis for securing a future sustainable "green" energy supply. Some weaknesses and inconsistencies in the practice of determining the electrocatalytic performance, which prevents a rational bottom-up catalyst design, are discussed. Large discrepancies in material properties as well as in electrocatalytic activity and stability become obvious when materials are tested under the conditions of their intended use as opposed to the usual laboratory conditions. They advocate for uniform activity/stability correlations under application-relevant conditions, and the need for a clear representation of electrocatalytic performance by contextualization in terms of functional investigation or progress towards application is emphasized.
Collapse
Affiliation(s)
- Justus Masa
- Max Planck Institute for Chemical Energy ConversionStiftstrasse 34–3645470Mülheim an der RuhrGermany
| | - Corina Andronescu
- Faculty of ChemistryTechnical Chemistry IIIUniversity of Duisburg-EssenCarl-Benz-Str. 201, ZBT 24147057DuisburgGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätstr. 15044780BochumGermany
| |
Collapse
|
49
|
Li Y, Morel A, Gallant D, Mauzeroll J. Oil-Immersed Scanning Micropipette Contact Method Enabling Long-term Corrosion Mapping. Anal Chem 2020; 92:12415-12422. [PMID: 32786459 DOI: 10.1021/acs.analchem.0c02177] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This work reports the development of an oil-immersed scanning micropipette contact method, a variant of the scanning micropipette contact method, where a thin layer of oil wets the investigated substrate. The oil-immersed scanning micropipette contact method significantly increases the droplet stability, allowing for prolonged mapping and the use of highly evaporative saline solutions regardless of ambient humidity levels. This systematic mapping technique was used to conduct a detailed investigation of localized corrosion taking place at the surface of an AA7075-T73 aluminum alloy in a 3.5 wt % NaCl electrolyte solution, which is typically challenging in the conventional scanning micropipette contact method. Maps of corrosion potentials and corrosion currents extracted from potentiodynamic polarization curves showed good correlations with the chemical composition of surface features and known galvanic interactions at the microscale level. This demonstrates the viability of the oil-immersed scanning micropipette contact method and opens up the avenue to mechanistic corrosion investigations at the microscale level using aqueous solutions that are prone to evaporation under noncontrolled humidity levels.
Collapse
Affiliation(s)
- Yuanjiao Li
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, H3A 0B8 Quebec, Canada
| | - Alban Morel
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, National Research Council Canada, 75 de Mortagne Blvd, Boucherville, J4B 6Y4 Quebec, Canada
| | - Danick Gallant
- Automotive and Surface Transportation Research Centre, Division of Transportation and Manufacturing, Aluminum Technology Center, National Research Council Canada, 501 University Blvd East, Saguenay, G7H 8C3 Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, H3A 0B8 Quebec, Canada
| |
Collapse
|
50
|
Masa J, Andronescu C, Schuhmann W. Elektrokatalyse als Nexus für nachhaltige erneuerbare Energien – der gordische Knoten aus Aktivität, Stabilität und Selektivität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Justus Masa
- Max Planck Institut für Chemische Energiekonversion Stiftstraße 34–36 45470 Mülheim an der Ruhr Deutschland
| | - Corina Andronescu
- Fakultät für Chemie Technische Chemie III Universität Duisburg-Essen Carl-Benz-Straße 201, ZBT 241 47057 Duisburg Deutschland
| | - Wolfgang Schuhmann
- Analytische Chemie – Zentrum für Elektrochemie (CES) Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätstraße 150 44780 Bochum Deutschland
| |
Collapse
|