1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Kobayashi A, Tabata S, Yoshida S. Highly substituted benzo[ b]furan synthesis through substituent migration. Chem Commun (Camb) 2024; 60:4545-4548. [PMID: 38578172 DOI: 10.1039/d4cc01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
An unusual benzofuran synthesis from 2,6-disubstituted phenols and alkynyl sulfoxides is disclosed. Various highly substituted benzofurans were synthesized via the charge-accelerated [3,3]-sigmatropic rearrangement and subsequent substituent migration. Multiaryl-substituted benzofurans and fully substituted benzofurans were prepared on the basis of the unique reaction mechanism.
Collapse
Affiliation(s)
- Akihiro Kobayashi
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shinya Tabata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.
| |
Collapse
|
3
|
Liang M, He M, Zhong Z, Wan B, Du Q, Mai S. Catalytic and Base-free Suzuki-type α-Arylation of Cyclic 1,3-Dicarbonyls via a Cyclic Iodonium Ylide Strategy. Angew Chem Int Ed Engl 2024; 63:e202400741. [PMID: 38385585 DOI: 10.1002/anie.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
To date, it remains challenging to achieve a general and catalytic α-arylation of cyclic 1,3-dicarbonyls, particularly ubiquitous heteroaromatic ones. In most cases, the preparation of their medically significant arylated derivatives requires multistep synthetic sequences. Herein, we introduce a new, convenient strategy involving the conversion of cyclic 1,3-dicarbonyls to cyclic iodonium ylides (CIYs), followed by rhodium-catalyzed α-arylation with arylboronic reagents via carbene coupling. This approach is mild, operationally simple, base-free, biocompatible, and exhibits broad substrate scope (>100 examples), especially with respect to various heteroaromatic 1,3-dicarbonyls and ortho-substituted or base-sensitive arylboronic acids. Importantly, owing to the excellent compatibility with various arylboronic acids or boronate esters (ArBpin, ArBneop, or ArBF3K), this method allows the late-stage installation of heterocyclic 1,3-dicarbonyl motifs in highly complex settings. The utility of this transformation is further demonstrated through significantly simplifying the synthesis of several bioactive molecules and natural products.
Collapse
Affiliation(s)
- Mingxuan Liang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Mengling He
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhiqing Zhong
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Bei Wan
- Centre of General Practice The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528000, China
| | - Qingfeng Du
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
- Centre of General Practice The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528000, China
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Shaoyu Mai
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
4
|
Linde E, Olofsson B. Synthesis of Complex Diarylamines through a Ring-Opening Difunctionalization Strategy. Angew Chem Int Ed Engl 2023; 62:e202310921. [PMID: 37847128 DOI: 10.1002/anie.202310921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
The diarylation and skeletal diversification of unstrained cyclic amines was exploited to expand and modify the favorable properties of this important substrate class with pivotal roles in drug discovery. Cyclic amines were employed in the synthesis of a novel class of amino-substituted diaryliodonium salts, which were converted to highly functionalized diarylamines through an atom-efficient one-pot N-arylation/ring opening reaction with external nucleophiles. The reaction proceeds through in situ formation of a diarylammonium intermediate that undergoes a nucleophilic ring opening by cleavage of the strong C-N bond. A wide variety of diarylamines was obtained through introduction of two different aryl groups of varied electronics, and the retained iodo-substituent enables downfield diversifications of the products. More than 20 nucleophiles, including amines, phenols, carboxylic acids, thiols and halides, were alkylated with high functional group tolerance, and the strategy proved efficient also in in late-stage functionalization of natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Erika Linde
- Department of Organic Chemistry Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry Arrhenius Laboratory, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
5
|
Du P, Zhou L, Zhang Z, Huang X, Peng B. Aromatic iodonium/sulfonium rearrangement using difluoroenol silyl ethers. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Peng Du
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, China
| | - Lijiang Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, China
| | - Zongwei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, China
| | - Xin Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
6
|
Liang Y, Peng B. Revisiting Aromatic Claisen Rearrangement Using Unstable Aryl Sulfonium/Iodonium Species: The Strategy of Breaking Up the Whole into Parts. Acc Chem Res 2022; 55:2103-2122. [PMID: 35861672 DOI: 10.1021/acs.accounts.2c00263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusSince Ludwig Claisen's discovery of the sigmatropic rearrangement of allyl aryl ethers in 1912, aromatic Claisen rearrangement has continuously attracted the attention of both experimental and theoretical chemists. Over more than a century of growth, this protocol has proven to be a practical and powerful synthetic tool in many aspects. However, the reaction scope has long been limited to aryl ethers and their S or N analogs until the serendipitous discovery of aromatic iodonium-Claisen rearrangement by Oh et al. in 1988 and the development of aromatic sulfonium-Claisen rearrangement by Kita et al. in 2004. Unlike traditional Claisen rearrangements, these hypervalent-bonding-based Claisen-type rearrangements can be performed by simply mixing electrophilically activated aryl sulfoxides/iodanes with certain nucleophiles to directly deliver rearrangement products. In addition to the simple operation, remarkable features, such as readily available substrates, valuable products and intriguing rearrangement patterns, have led to a dramatic resurgence of this rearrangement chemistry.In this Account, we summarize our recent works on developing new aromatic rearrangement modes using sulfonium/iodonium reagents. Interestingly, the program started with an accidental discovery that aryl sulfoxides could be coupled with alkyl nitriles in the presence of Tf2O and base. Mechanistic studies reveal that the reaction proceeds in three major steps, including the Tf2O-triggered assembly of both coupling partners, base-promoted deprotonation of in situ-generated aryl sulfonium-imine species leading to a key rearrangement precursor called aryl sulfonium-ketenimine species, and subsequent facile and rapid [3,3]-rearrangement. On the basis of the mechanistic underpinning, we divided the one-step operation into two steps called the "assembly/deprotonation" protocol for constructing unstable rearrangement precursors. Most notably, the switch from the commonly used one-step to mechanism-based multiple-step manipulation, which can be termed "breaking up the whole into parts", not only enables the independent control of each step of the reaction, thus significantly expanding the accessible synthetic scope, but also raises opportunities for developing new rearrangement patterns. For example, the "assembly/deprotonation" protocol has also been applied to the development of [5,5]-rearrangement of aryl sulfoxides and the asymmetric rearrangement of aryl iodanes, thus enabling the unprecedented regio- and stereocontrol of the rearrangement process. Furthermore, the "breaking up the whole into parts" thinking triggered us to merge the Morita-Baylis-Hillman (MBH) reaction into the rearrangement process to accomplish Z-selective MBH-type [3,3]-rearrangement of α,β-unsaturated nitriles and E-selective MBH-type [3,3]-rearrangement of α,β-unsaturated 2-oxazolines, which expands the scope of rearrangement partners to include α,β-unsaturated carbonyls. In addition, the impressive rapidity of the rearrangement process found in our initial discovery has also been recognized as a congestion-acceleration effect, which was further utilized to forge the rapid ortho-cyanoalkylative rearrangement of aryl iodanes, and thus leading to the first dearomatization of aryl iodanes. We anticipate that our protocols and ideas behind the methods will be complementary to the traditional thinking of the aromatic Claisen rearrangement.
Collapse
Affiliation(s)
- Yuchen Liang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua321004, China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua321004, China
| |
Collapse
|
7
|
Katagiri K, Kuriyama M, Yamamoto K, Demizu Y, Onomura O. Organocatalytic Synthesis of Phenols from Diaryliodonium Salts with Water under Metal-Free Conditions. Org Lett 2022; 24:5149-5154. [PMID: 35822911 DOI: 10.1021/acs.orglett.2c01989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metal-free synthesis of phenols from diaryliodonium salts with water was developed by using N-benzylpyridin-2-one as an organocatalyst. In this process, sterically congested, functionalized, and heterocycle-containing iodonium salts were smoothly converted to the desired products, and the clofibrate and mecloqualone derivatives were also synthesized in high yields. In addition, the gram-scale experiment was successfully carried out with 10 mmol of a sterically congested substrate.
Collapse
Affiliation(s)
- Kotone Katagiri
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki, Kanagawa 210-9501, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
8
|
Umakoshi Y, Takemoto Y, Tsubouchi A, Zhdankin VV, Yoshimura A, Saito A. Dehydrogenative Cycloisomerization/Arylation Sequence of
N
‐Propargyl Carboxamides with Arenes by Iodine(III)‐Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuki Umakoshi
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Yusuke Takemoto
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Akira Tsubouchi
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth MN 55812 USA
| | - Akira Yoshimura
- Department of Chemistry and Biochemistry University of Minnesota Duluth MN 55812 USA
- Research School of Chemistry and Applied Biomedical Sciences The Tomsk Polytechnic University, postCode/>634050 Tomsk Russia
| | - Akio Saito
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| |
Collapse
|
9
|
Huang LL, Lin PP, Li YX, Feng SX, Tu FH, Yang S, Zhao GY, Huang ZS, Wang H, Li Q. Oxidative Fluoroarylation of Benzylidenecyclopropanes with HF·Py and Aryl Iodides via Iodonio-[3,3]-Rearrangement. Org Lett 2022; 24:3389-3394. [PMID: 35486481 DOI: 10.1021/acs.orglett.2c01150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reported herein is an in situ-generated hypervalent iodine-incorporating fluoroarylation of benzylidenecyclopropanes using commercially available HF·Py and aryl iodides as fluorine and aryl sources, respectively. The reaction proceeds via regioselective 1,2-fluoroiodination of a double bond followed by an iodonio-[3,3]-rearrangement of the formed cyclopropyl-I(III) species. The protocol offers facile access to valuable monofluorinated 1,1-bis-benzyl-alkenes with mild reaction conditions and moderate to good yields. The synthetic utility of the products was demonstrated by further transformations. Preliminary mechanistic studies were conducted.
Collapse
Affiliation(s)
- Long-Ling Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Peng-Peng Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yu-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Si-Xin Feng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fang-Hai Tu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Gui-Yang Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China.,State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, P. R. China
| |
Collapse
|
10
|
Linde E, Bulfield D, Kervefors G, Purkait N, Olofsson B. Diarylation of N- and O-nucleophiles through a metal-free cascade reaction. Chem 2022. [DOI: 10.1016/j.chempr.2022.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Zhifang Y, Yifu C, Beibei Z, Yunyi D, Chi H, Yunfei D. Oxidative Rearrangement Reactions Mediated by Hypervalent-Iodine Reagents. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
YORIMITSU H, PERRY GJP. Sulfonium-aided coupling of aromatic rings via sigmatropic rearrangement. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:190-205. [PMID: 35400695 PMCID: PMC9071926 DOI: 10.2183/pjab.98.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Biaryl synthesis continues to occupy a central role in chemical synthesis. From blockbuster drug molecules to organic electronics, biaryls present numerous possibilities and new applications continue to emerge. Transition-metal-catalyzed coupling reactions represent the gold standard for biaryl synthesis and the mechanistic steps, such as reductive elimination, are well established. Developing routes that exploit alternative mechanistic scenarios could give unprecedented biaryl structures and expand the portfolio of biaryl applications. We have developed metal-free C-H/C-H couplings of aryl sulfoxides with phenols to afford 2-hydroxy-2'-sulfanylbiaryls. This cascade strategy consists of an interrupted Pummerer reaction and [3,3] sigmatropic rearrangement. Our method enables the synthesis of intriguing aromatic molecules, including oligoarenes, enantioenriched dihetero[8]helicenes, and polyfluorobiaryls. From our successes in aryl sulfoxide/phenol couplings and a deeper understanding of sigmatropic rearrangements for biaryl synthesis, we have established related methods, such as aryl sulfoxide/aniline and aryl iodane/phenol couplings. Overall, our fundamental interests in underexplored reaction mechanisms have led to various methods for accessing important biaryl architectures.
Collapse
Affiliation(s)
- Hideki YORIMITSU
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Gregory J. P. PERRY
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Hui C, Antonchick AP. Iodonitrene: a direct metal-free electrophilic aminating reagent. Org Chem Front 2022. [DOI: 10.1039/d2qo00739h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iodonitrene is a new type of reactive electrophilic aminating reagent that opens up opportunities for new discoveries.
Collapse
Affiliation(s)
- Chunngai Hui
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Andrey P. Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
- Nottingham Trent University, School of Science and Technology, Department of Chemistry and Forensics, Clifton Lane, NG11 8NS Nottingham, UK
| |
Collapse
|
14
|
Yanagi T, Yorimitsu H. Mechanistic Investigation of a Synthetic Route to Biaryls by the Sigmatropic Rearrangement of Arylsulfonium Species. Chemistry 2021; 27:13450-13456. [PMID: 34322930 DOI: 10.1002/chem.202101735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 12/26/2022]
Abstract
A comprehensive mechanistic investigation was conducted on the coupling reaction of aryl sulfoxides with phenols by using trifluoroacetic anhydride to yield biaryls. NMR experiments revealed that our previously proposed mechanism, which consists of a cascade of an interrupted Pummerer reaction and a rate-determining [3,3] sigmatropic rearrangement, is reasonable. The electronic effects of the substrates were also evaluated to elucidate the nature of the rearrangement step. Based on experimental observations and theoretical calculations, we conclude that the rearrangement is highly asynchronous and stepwise rather than concerted when electron-rich phenols are employed for the reaction.
Collapse
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
15
|
Chen WW, Fernández NP, Baranda MD, Cunillera A, Rodríguez LG, Shafir A, Cuenca AB. Exploring benzylic gem-C(sp 3)-boron-silicon and boron-tin centers as a synthetic platform. Chem Sci 2021; 12:10514-10521. [PMID: 34447544 PMCID: PMC8356736 DOI: 10.1039/d1sc01741a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/28/2021] [Indexed: 01/31/2023] Open
Abstract
A stepwise build-up of multi-substituted Csp3 carbon centers is an attractive, conceptually simple, but often synthetically challenging type of disconnection. To this end, this report describes how gem-α,α-dimetalloid-substituted benzylic reagents bearing boron/silicon or boron/tin substituent sets are an excellent stepping stone towards diverse substitution patterns. These gem-dimetalloids were readily accessed, either by known carbenoid insertion into C-B bonds or by the newly developed scalable deprotonation/metallation approach. Highly chemoselective transformations of either the C-Si (or C-Sn) or the C-B bonds in the newly formed gem-Csp3 centers have been achieved through a set of approaches, with a particular focus on exploiting the synthetically versatile polarity reversal in organometalloids by λ3-aryliodanes. Of particular note is the metal-free arylation of the C-Si (or C-Sn) bonds in such gem-dimetalloids via the iodane-guided C-H coupling approach. DFT calculations show that this transfer of the (α-Bpin)benzyl group proceeds via unusual [5,5]-sigmatropic rearrangement and is driven by the high-energy iodine(iii) center. As a complementary tool, the gem-dimetalloid C-B bond is shown to undergo a potent and chemoselective Suzuki-Miyaura arylation with diverse Ar-Cl, thanks to the development of the reactive gem-α,α-silyl/BF3K building blocks.
Collapse
Affiliation(s)
- Wei W Chen
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Nahiane Pipaon Fernández
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
| | - Marta Díaz Baranda
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Anton Cunillera
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Laura G Rodríguez
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Alexandr Shafir
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/ Jordi Girona 20 Barcelona 08034 Spain
| | - Ana B Cuenca
- Department of Organic and Pharmaceutical Chemistry, Institut Químic de Sarrià, URL Vía Augusta 390 Barcelona 08017 Spain
| |
Collapse
|
16
|
Zhang J, Jalil A, He J, Yu Z, Cheng Y, Li G, Du Y, Zhao K. Lactonization with concomitant 1,2-aryl migration and alkoxylation mediated by dialkoxyphenyl iodides generated in situ. Chem Commun (Camb) 2021; 57:7426-7429. [PMID: 34231573 DOI: 10.1039/d1cc03110d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of alkoxylated isobenzofuranones were conveniently synthesized from the reaction of 2-(1-arylvinyl)benzoic acids with PhI(OR)2, generated in situ from the reaction of iodosobenzene (PhIO) with alkyl alcohols. This hypervalent iodine mediated one-pot transformation is postulated to undergo a cascade reaction involving lactonization, 1,2-aryl migration and alkoxylation processes. The organocatalytic and chiral organoiodine-catalyzed asymmetric reactions of the current transformation were also probed.
Collapse
Affiliation(s)
- Jingran Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Ayesha Jalil
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Jiaxin He
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhenyang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yifu Cheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Guangchen Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Kang Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
17
|
Zhang L, Bao W, Liang Y, Pan W, Li D, Kong L, Wang ZX, Peng B. Morita-Baylis-Hillman-Type [3,3]-Rearrangement: Switching from Z- to E-Selective α-Arylation by New Rearrangement Partners. Angew Chem Int Ed Engl 2021; 60:11414-11422. [PMID: 33644970 DOI: 10.1002/anie.202100497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/25/2021] [Indexed: 01/03/2023]
Abstract
α-aryl α,β-unsaturated carbonyls represent an important class of derivatizable synthetic intermediates, however, the synthesis of such compounds still remains a challenge. Recently, we showcased a novel Z-selective α-arylation of α,β-unsaturated nitriles with aryl sulfoxides via [3,3]-rearrangement involving an Morita-Baylis-Hillman (MBH) process. Herein, we demonstrate the feasibility of reversing the stereoselectivity of such MBH-type [3,3]-rearrangement by switching to a new pair of rearrangement partners consisting of aryl iodanes and α,β-unsaturated oxazolines. As a result, the two protocols complement each other in approaching E- or Z-α-aryl α,β-unsaturated carbonyl derivatives. Mechanistic studies reveal a possible reaction pathway and provide an explanation for the opposite stereoselectivities.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Wangzhen Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuchen Liang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Dongyang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
18
|
Zhang L, Bao W, Liang Y, Pan W, Li D, Kong L, Wang Z, Peng B. Morita–Baylis–Hillman‐Type [3,3]‐Rearrangement: Switching from
Z
‐ to
E
‐Selective α‐Arylation by New Rearrangement Partners. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China
| | - Wangzhen Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China
| | - Yuchen Liang
- School of Chemical Sciences University of the Chinese Academy of Sciences Beijing 100049 China
| | - Wenjing Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China
| | - Dongyang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China
| | - Zhi‐Xiang Wang
- School of Chemical Sciences University of the Chinese Academy of Sciences Beijing 100049 China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
19
|
Heinen F, Reinhard DL, Engelage E, Huber SM. A Bidentate Iodine(III)-Based Halogen-Bond Donor as a Powerful Organocatalyst*. Angew Chem Int Ed Engl 2021; 60:5069-5073. [PMID: 33215804 PMCID: PMC7986438 DOI: 10.1002/anie.202013172] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/11/2020] [Indexed: 12/12/2022]
Abstract
In contrast to iodine(I)-based halogen bond donors, iodine(III)-derived ones have only been used as Lewis acidic organocatalysts in a handful of examples, and in all cases they acted in a monodentate fashion. Herein, we report the first application of a bidentate bis(iodolium) salt as organocatalyst in a Michael and a nitro-Michael addition reaction as well as in a Diels-Alder reaction that had not been activated by noncovalent organocatalysts before. In all cases, the performance of this bidentate XB donor distinctly surpassed the one of arguably the currently strongest iodine(I)-based organocatalyst. Bidentate coordination to the substrate was corroborated by a structural analysis and by DFT calculations of the transition states. Overall, the catalytic activity of the bis(iodolium) system approaches that of strong Lewis acids like BF3 .
Collapse
Affiliation(s)
- Flemming Heinen
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Dominik L. Reinhard
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Elric Engelage
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| | - Stefan M. Huber
- Fakultät für Chemie und BiochemieRuhr-Universität BochumUniversitätsstrasse 15044801BochumGermany
| |
Collapse
|
20
|
Zu B, Ke J, Guo Y, He C. Synthesis of Diverse Aryliodine(
III
) Reagents by Anodic Oxidation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bing Zu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150080 China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
21
|
Heinen F, Reinhard DL, Engelage E, Huber SM. Ein zweizähniger Iod(III)‐basierter Halogenbrückendonor als leistungsfähiger Organokatalysator**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Flemming Heinen
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Dominik L. Reinhard
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Elric Engelage
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Stefan M. Huber
- Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
22
|
Matsunaga S, Nakano A, Okabe Y, Matsuoka K, Komami N, Watanabe K, Kojima M, Yoshino T. Generation of Monoaryl-λ3-iodanes from Arylboron Compounds through ipso-Substitution. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhang B, Li X, Guo B, Du Y. Hypervalent iodine reagent-mediated reactions involving rearrangement processes. Chem Commun (Camb) 2020; 56:14119-14136. [PMID: 33140751 DOI: 10.1039/d0cc05354f] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervalent iodine reagents have been extensively employed in various types of oxidative organic reactions including oxidative coupling/cyclization, bifunctionalization of olefins and cyclopropane, C-H functionalization, and oxidative rearrangement reactions. In this review, the developments of the exclusive hypervalent iodine-mediated reactions involving oxidative rearrangement processes, including [1,2]-migration, Hofmann rearrangement, Beckmann rearrangement, ring contraction, ring expansion, [3,3]-sigmatropic/iodonium-Claisen rearrangement and some miscellaneous rearrangements, have been summarized.
Collapse
Affiliation(s)
- Beibei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | | | | | | |
Collapse
|
24
|
Vlasenko YА, Yusubov MS, Shafir A, Postnikov PS. Hypervalent iodine in the structure of N-heterocycles: synthesis, structure, and application in organic synthesis. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02742-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Tian J, Luo F, Zhang Q, Liang Y, Li D, Zhan Y, Kong L, Wang ZX, Peng B. Asymmetric Iodonio-[3,3]-Sigmatropic Rearrangement to Access Chiral α-Aryl Carbonyl Compounds. J Am Chem Soc 2020; 142:6884-6890. [DOI: 10.1021/jacs.0c00783] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Junsong Tian
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Fan Luo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Qifeng Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchen Liang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dongyang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Yaling Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|