1
|
Vaishanv NK, Eghbarieh N, Jagtap RA, Gose AE, Haines BE, Masarwa A. Stereoselective C-B and C-H Bonds Functionalization of PolyBorylated Alkenes. Angew Chem Int Ed Engl 2024; 63:e202412167. [PMID: 38980310 DOI: 10.1002/anie.202412167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/10/2024]
Abstract
Alkenes are fundamental functional groups which feature in various materials and bioactive molecules; however, efficient divergent strategies for their stereodefined synthesis are difficult. In this regard, numerous synthetic methodologies have been developed to construct carbon-carbon bonds with regio- and stereoselectivity, enabling the predictable and efficient synthesis of stereodefined alkenes. In fact, an appealing alternative approach for accessing challenging stereodefined alkene molecular frameworks could involve the sequential selective activation and cross-coupling of strong bonds instead of conventional C-C bond formation. In this study, we introduce a series of programmed site- and stereoselective strategies that capitalizes on the versatile reactivity of readily accessible polymetalloid alkenes (i.e. polyborylated alkenes), through a tandem cross-coupling reaction, which is catalyzed by an organometallic Rh-complex to produce complex molecular scaffolds. By merging selective C-B and remote C-H bond functionalization, we achieve the in situ generation of polyfunctional C(sp2)-nucleophilic intermediates. These species can be further modified by selective coupling reactions with various C-based electrophiles, enabling the formation of C(sp2)-C(sp3) bond for the generation of even more complex molecular architectures using the readily available starting polyborylated-alkenes. Mechanistic and computational studies provide insight into the origins of the stereoselectivities and C-H activation via a 1,4-Rh migration process.
Collapse
Affiliation(s)
- Narendra K Vaishanv
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Rahul A Jagtap
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Anthony E Gose
- Department of Chemistry, Westmont College, 955 La Paz Road, Santa Barbara, CA-93108, USA
| | - Brandon E Haines
- Department of Chemistry, Westmont College, 955 La Paz Road, Santa Barbara, CA-93108, USA
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
2
|
Shibutani Y, Kusumoto S, Nozaki K. Fully conjugated tetraborylethylene: selenium mediated C-C double bond formation from diborylcarbenoid. Chem Sci 2024:d4sc05928j. [PMID: 39397828 PMCID: PMC11463700 DOI: 10.1039/d4sc05928j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
Heteroatom-substituted ethylenes have long been studied owing to their potential application to electronic devices. In contrast to well-studied π-donor substituted ethylene, the π-acceptor substituted one has only been limitedly reported. While boron can be a candidate of π-acceptors, there has still been no example of fully conjugated tetraborylethylene (TBE). Herein, we synthesized the first fully conjugated TBE 2 by selenium-mediated C-C double bond formation from diborylcarbenoid 1, a synthetic equivalent of diborylcarbene (DBC). An intermediate of bis(diborylmethylene)-λ4-selane 3Se, wherein two DBC fragments were bound to one selenium atom, was confirmed. TBE 2 has a longer C-C bond length of 1.368(2) Å than typical C-C double bonds (1.34 Å) owing to π-electron deficiency. By density functional theory calculations, the LUMO was found to be low-lying at -1.75 eV by the contribution of vacant p-orbitals on the boron atoms adjacent to the C-C double bond.
Collapse
Affiliation(s)
- Yuki Shibutani
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| | - Shuhei Kusumoto
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University 1-1 Minamiosawa Hachioji Tokyo Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo Japan
| |
Collapse
|
3
|
Rutz PM, Kleeberg C. Copper Catalyzed Borylation of Alkynes: An Experimental Mechanistic Study. Chem Asian J 2024; 19:e202400286. [PMID: 38738792 DOI: 10.1002/asia.202400286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
The copper catalyzed hydroboration of alkynes with B2pin2 was studied by in detail studies of individual relevant steps along the catalytic pathway. A number of reaction steps were retraced by in situ NMR spectroscopy as well as central intermediates and side-products were isolated and comprehensively characterized. A copper boryl complex is central to the catalytic process by inserting the terminal alkyne substrate into the B-Cu bond. The selectivity of this step - depending on the NHC auxiliary ligand - determines the α/β selectivity observed in the product. The latter complex is protonated by the auxiliary alcohol reagent resulting in hydroboration product formation and formation of a Cu alkoxido complex. Reaction of the latter with B2pin2 results in the regeneration of the central copper boryl complex. This alcoholysis step depends on the acidity of the alcohol, in particular on the relative acidity of the alcohol vs. the alkyne substrate. A number of side reactions leading to the hydrogenation product of the alkyne substrate and a bis hydroborated product were identified and studied in some detail. It is concluded that the performance of a particular catalytic system depends crucially on the relative acidities of the reagents and generalizations may be difficult.
Collapse
Affiliation(s)
- Philipp M Rutz
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Christian Kleeberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Hanania N, Eghbarieh N, Masarwa A. PolyBorylated Alkenes as Energy-Transfer Reactive Groups: Access to Multi-Borylated Cyclobutanes Combined with Hydrogen Atom Transfer Event. Angew Chem Int Ed Engl 2024; 63:e202405898. [PMID: 38603554 DOI: 10.1002/anie.202405898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
While polyborylated alkenes are being recognized for their elevated status as highly valuable reagents in modern organic synthesis, allowing efficient access to a diverse array of transformations, including the formation of C-C and C-heteroatom bonds, their potential as energy-transfer reactive groups has remained unexplored. Yet, this potential holds the key to generating elusive polyborylated biradical species, which can be captured by olefins, thereby leading to the construction of new highly-borylated scaffolds. Herein, we report a designed energy-transfer strategy for photosensitized [2+2]-cycloadditions of poly-borylated alkenes with various olefins enabling the regioselective synthesis of diverse poly-borylated cyclobutane motifs, including the 1,1-di-, 1,1,2-tri-, and 1,1,2,2-tetra-borylated cyclobutanes. In fact, these compounds belong to a family that presently lacks efficient synthetic pathways. Interestingly, when α-methylstyrene was used, the reaction involves an interesting 1,5-hydrogen atom transfer (HAT). Mechanistic deuterium-labeling studies have provided insight into the outcome of 1,5-hydrogen atom transfer process. In addition, the polyborylated cyclobutanes are then demonstrated to be useful in selective oxidation processes resulting in the formation of cyclobutanones and γ-lactones.
Collapse
Affiliation(s)
- Nicole Hanania
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
5
|
Alamer B, Sagadevan A, Bodiuzzaman M, Murugesan K, Alsharif S, Huang RW, Ghosh A, Naveen MH, Dong C, Nematulloev S, Yin J, Shkurenko A, Abulikemu M, Dong X, Han Y, Eddaoudi M, Rueping M, Bakr OM. Planar Core and Macrocyclic Shell Stabilized Atomically Precise Copper Nanocluster Catalyst for Efficient Hydroboration of C-C Multiple Bond. J Am Chem Soc 2024; 146:16295-16305. [PMID: 38816788 PMCID: PMC11177319 DOI: 10.1021/jacs.4c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.
Collapse
Affiliation(s)
- Badriah Alamer
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohammad Bodiuzzaman
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Kathiravan Murugesan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Salman Alsharif
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Ren-Wu Huang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Green
Catalysis Center, College of Chemistry, Henan International Joint
Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Atanu Ghosh
- Institute
for Organic and Bimolecular Chemistry, Georg-August-University
Goettingen Tammannstr, 237077 Goettingen, Germany
| | - Malenahalli H. Naveen
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Chunwei Dong
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Saidkhodzha Nematulloev
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, 999077 Hong Kong, P. R. China
| | - Aleksander Shkurenko
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mutalifu Abulikemu
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Xinglong Dong
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Yu Han
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohamed Eddaoudi
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
6
|
Li W, Ricker R, Lok Chan K, Fung Lau P, Buchbinder NW, Krebs J, Friedrich A, Lin Z, Santos WL, Radius U, Marder TB. Phosphine-Catalyzed 1,2-cis-Diboration of 1,3-Butadiynes. Chemistry 2024; 30:e202401235. [PMID: 38593362 DOI: 10.1002/chem.202401235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Trialkyl phosphines PMe3 and PEt3 catalyze the 1,2-cis-diboration of 1,3-butadiynes to give 1,2-diboryl enynes. The products were utilized to synthesize 1,1,2,4-tetraaryl enynes using a Suzuki-Miyaura protocol and can readily undergo proto-deborylation.
Collapse
Affiliation(s)
- Weipeng Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Robert Ricker
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Ka Lok Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pak Fung Lau
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | - Johannes Krebs
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Webster L Santos
- Department of Chemistry Virginia Tech, Blacksburg, VA, 24061, USA
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Würzburg, 97074, Germany
| |
Collapse
|
7
|
Fang T, Wang L, Wu M, Qi X, Liu C. Diborodichloromethane as Versatile Reagent for Chemodivergent Synthesis of gem-Diborylalkanes. Angew Chem Int Ed Engl 2024; 63:e202315227. [PMID: 38059834 DOI: 10.1002/anie.202315227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023]
Abstract
The development of boron reagents is crucial for synthetic chemistry. Herein, we present a scalable and practical synthesis of diborodichloromethane (DBDCM) through the reaction of trichloromethyllithium with bis(pinacolato)diboron (B2 pin2 ). The resulting DBDCM reagent serves as a basic synthetic unit for the construction of various structurally diverse gem-diborylalkanes through controllable C-Cl functionalizations. Moreover, we have developed consecutive tetra-functionalizations of DBDCM for the construction of diverse tertiary and quaternary carbon containing molecules. The use of isotopically enriched 13 C-chloroform and 10 B2 pin2 enables the synthesis of isotopically enriched 13 C-DBDCM and 10 B-DBDCM reagents, which are beneficial for the convenient synthesis of carbon-13 and boron-10 molecules.
Collapse
Affiliation(s)
- Tongchang Fang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Liwei Wang
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Miaomiao Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| |
Collapse
|
8
|
Dong W, Zhao Z, Gu CZ, Liu JG, Yang S, Fang X. Copper-Catalyzed Umpolung Reactivity of Propargylic Carbonates in the Presence of Diboronates: One Stone Four Birds. J Am Chem Soc 2023; 145:27539-27554. [PMID: 38019885 DOI: 10.1021/jacs.3c09155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Allylation and propargylation are two powerful synthetic strategies for making new substances that have been of significant importance in chemistry, medicine, and material fields. Conventional tactics employ various preformed allylation and propargylation reagents. In this study, a conceptually novel copper-catalyzed and B2pin2-mediated Umpolung reactivity of propargylic carbonates has been achieved for the first time, realizing both allylation and propargylation of aldehydes and ketones without additional reductants. Three types of allylation products and one type of propargylation product are generated efficiently, and all allylation products are formed with syn-configurations predominantly. The choice of ligands plays a vital role in modulating the Umpolung modes. The synthetic applications have been demonstrated in a myriad of further transformations including natural product synthesis, and systematic mechanistic studies have been conducted to reveal detailed insights into the Umpolung processes.
Collapse
Affiliation(s)
- Wennan Dong
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhifei Zhao
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Cheng-Zhi Gu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Jing-Gong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
9
|
Bhawar R, Saini S, Patil KS, Nagaraju DH, Bose SK. Synthesis of Alkyl and Aryl Boronate Esters via CeO 2-Catalyzed Borylation of Alkyl and Aryl Electrophiles Including Alkyl Chlorides. J Org Chem 2023; 88:16270-16279. [PMID: 37957832 DOI: 10.1021/acs.joc.3c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A recyclable protocol using a CeO2-nanorod catalyst for borylation of alkyl halides with B2pin2 (pin = OCMe2CMe2O) is reported. A wide range of synthetically useful alkyl boronate esters are readily obtained from primary and secondary alkyl electrophiles, including unactivated alkyl chlorides, demonstrating broad utility and functional group tolerance. Preliminary investigation revealed an involvement of in situ formed catalytically active boryl species. The catalyst can be reused for up to six runs without appreciable loss in activity. In addition, we have demonstrated the use of this recyclable catalyst for the borylation of aryl halides with B2pin2, providing valuable aryl boronate esters under neat conditions.
Collapse
Affiliation(s)
- Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - Suresh Saini
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - Kiran S Patil
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore, 560064, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), JAIN (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, India
| |
Collapse
|
10
|
Dai Y, Li Z, Pu M, Lei M. Understanding the Mechanism and Selectivity of 1,1-Diborylalkanes from Alkenes Catalyzed by a Zirconium Complex. Inorg Chem 2023. [PMID: 37365139 DOI: 10.1021/acs.inorgchem.3c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The synthesis of 1,1-diborylalkanes from readily available alkenes is an appealing method. The density functional theory (DFT) method was employed to investigate the reaction mechanism of 1,1-diborylalkanes, which was synthesized from alkenes and a borane, and the reaction was catalyzed by a zirconium complex Cp2ZrCl2. The entire reaction is divided into two cycles: dehydrogenative boration to form vinyl boronate esters (VBEs) and hydroboration of VBEs. This article focuses on the hydroboration cycle and elaborates on the role of the reducing reagents in the equilibrium of self-contradictory reactivity (dehydrogenative boration and hydroboration). The H2 and HBpin pathways were investigated as the reducing reagents in the hydroboration process. The calculated results showed that it is more advantageous to use H2 as a reducing agent (path A). Furthermore, the σ-bond metathesis is the rate-determining step (RDS) with an energetic span of 21.4 kcal/mol. This is consistent with the self-contradictory reactivity balance proposed in the experiment. The reaction modes of the hydroboration process were also discussed. These analyses revealed the origin of selectivity in this boration reaction, in which the σ-bond metathesis of HBpin needs to overcome the strong interaction between HBpin and the Zr metal. Meanwhile, the origin of the selectivity of different positions of H2 is the interaction between the σ(H1-H2) → σ*(Zr1-C1) overlap and these findings have implications for catalyst design and application.
Collapse
Affiliation(s)
- Yulan Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Eghbarieh N, Hanania N, Masarwa A. Stereodefined polymetalloid alkenes synthesis via stereoselective boron-masking of polyborylated alkenes. Nat Commun 2023; 14:2022. [PMID: 37041219 PMCID: PMC10090189 DOI: 10.1038/s41467-023-37733-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Polyborylated-alkenes are valuable polymetalloid reagents in modern organic synthesis, providing access to a wide array of transformations, including the construction of multiple C-C and C-heteroatom bonds. However, because they contain similar boryl groups, many times their transformation faces the main challenge in controlling the chemo-, regio- and stereoselectivity. One way to overcome these limitations is by installing different boron groups that can provide an opportunity to tune their reactivity toward better chemo-, regio- and stereoselectivity. Yet, the preparation of polyborylated-alkenes containing different boryl groups has been rare. Herein we report concise, highly site-selective, and stereoselective boron-masking strategies of polyborylated alkenes. This is achieved by designed stereoselective trifluorination and MIDA-ation reactions of readily available starting polyborylated alkenes. Additionally, the trifluoroborylated-alkenes undergo a stereospecific interconversion to Bdan-alkenes. These transition-metal free reactions provide a general and efficient method for the conversion of polyborylated alkenes to access 1,1-di-, 1,2-di-, 1,1,2-tris-(borylated) alkenes containing BF3M, Bdan, and BMIDA, a family of compounds that currently lack efficient synthetic access. Moreover, tetraborylethene undergoes the metal-free MIDA-ation reaction to provide the mono BMIDA tetraboryl alkene selectively. The mixed polyborylalkenes are then demonstrated to be useful in selective C-C and C-heteroatom bond-forming reactions. Given its simplicity and versatility, these stereoselective boron-masking approaches hold great promise for organoboron synthesis and will result in more transformations.
Collapse
Affiliation(s)
- Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nicole Hanania
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
12
|
Wang Y, Li Y, Wang L, Ding S, Song L, Zhang X, Wu YD, Sun J. Ir-Catalyzed Regioselective Dihydroboration of Thioalkynes toward Gem-Diboryl Thioethers. J Am Chem Soc 2023; 145:2305-2314. [PMID: 36657379 DOI: 10.1021/jacs.2c10881] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While 1,1-diboryl (gem-diboryl) compounds are valuable synthetic building blocks, currently, related studies have mainly focused on those 1,1-diboryl alkanes without a hetero functional group in the α-position. gem-Diboryl compounds with an α-hetero substituent, though highly versatile, have been limitedly accessible and thus rarely utilized. Herein, we have developed the first α-dihydroboration of heteroalkynes leading to the efficient construction of gem-diboryl, hetero-, and tetra-substituted carbon centers. This straightforward, practical, mild, and atom-economic reaction is an attractive complement to the conventional multistep synthetic strategy relying on deprotonation of gem-diborylmethane by a strong base. Specifically, [Ir(cod)(OMe)]2 was found to be uniquely effective for this process of thioalkynes, leading to excellent α-regioselectivity when delivering the two boryl groups, which is remarkable in view of the many competitive paths including monohydroboration, 1,2-dihydroboration, dehydrodiboration, triboration, tetraboration, etc. Control experiments combined with DFT calculations suggested that this process involves two sequential hydroboration events. The second hydroboration requires a higher energy barrier due to severe steric repulsion in generating the highly congested α-sulfenyl gem-diboryl carbon center, a structural motif that was almost unknown before.
Collapse
Affiliation(s)
- Yong Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yuxuan Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Lei Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Shengtao Ding
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
13
|
Zhang M, Liu Z, Zhao W. Rhodium-Catalyzed Remote Borylation of Alkynes and Vinylboronates. Angew Chem Int Ed Engl 2023; 62:e202215455. [PMID: 36445794 DOI: 10.1002/anie.202215455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Zheming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| |
Collapse
|
14
|
Dai Y, Yuan B, Li Z, Zhang L, Li L, Pu M, Lei M. Density Functional Theory Study on the H 2-Acceptorless Dehydrogenative Boration of Alkenes Catalyzed by a Zirconium Complex. J Org Chem 2022; 87:16632-16643. [PMID: 36446027 DOI: 10.1021/acs.joc.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the synthesis of vinyl boronate esters, the direct catalytic H2-acceptorless dehydrogenative boration of alkenes is one of the promising strategies. In this paper, the density functional theory method was employed to investigate the reaction mechanism of dehydrogenative boration and transfer boration of alkenes catalyzed by a zirconium complex (Cp2ZrH2). There are two possible pathways for this reaction: the alkene insertion followed by the dehydrogenative boration (path A) and the alkene insertion after the dehydrogenative boration (path B). The calculated results showed that path A is more favorable than path B, and that the rate-determining step is the C-B coupling step with an energy barrier of 18.7 kcal/mol. The reaction modes of the C-B coupling assisted dehydrogenative boration and the alkene insertion were also discussed. These analyses reveal a novel hydrogen release behavior in dehydrogenative boration and the alkene insertion modes and sequences were proposed to be of importance in the chemoselectivity of this reaction. In addition, the X ligand effect (X = H, Cl) on the catalytic activity of the zirconium complex was explored, indicating that the H ligand could enhance the catalytic activity of the complex for styrene dehydrogenative boration.
Collapse
Affiliation(s)
- Yulan Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binfang Yuan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Longfei Li
- College of Pharmaceutical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
15
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
16
|
Affiliation(s)
- Son H. Doan
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Nhan N. H. Ton
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, Pennsylvania, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
17
|
Ghosh S, Chakrabortty R, Kumar S, Das A, Ganesh V. Copper-Catalyzed Protoboration of 1,3-Diynes as a Platform for Iterative Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Suman Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Rajesh Chakrabortty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Shailendra Kumar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Aniruddha Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
18
|
Zhang X, Friedrich A, Marder TB. Copper-Catalyzed Borylation of Acyl Chlorides with an Alkoxy Diboron Reagent: A Facile Route to Acylboron Compounds. Chemistry 2022; 28:e202201329. [PMID: 35510606 PMCID: PMC9400893 DOI: 10.1002/chem.202201329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/15/2022]
Abstract
Herein, the copper-catalyzed borylation of readily available acyl chlorides with bis(pinacolato)diboron, (B2 pin2 ) or bis(neopentane glycolato)diboron (B2 neop2 ) is reported, which provides stable potassium acyltrifluoroborates (KATs) in good yields from the acylboronate esters. A variety of functional groups are tolerated under the mild reaction conditions (room temperature) and substrates containing different carbon-skeletons, such as aryl, heteroaryl and primary, secondary, tertiary alkyl are applicable. Acyl N-methyliminodiacetic acid (MIDA) boronates can also been accessed by modification of the workup procedures. This process is scalable and also amenable to the late-stage conversion of carboxylic acid-containing drugs into their acylboron analogues, which have been challenging to prepare previously. A catalytic mechanism is proposed based on in situ monitoring of the reaction between p-toluoyl chloride and an NHC-copper(I) boryl complex as well as the isolation of an unusual lithium acylBpinOBpin compound as a key intermediate.
Collapse
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
19
|
Palladium-Catalyzed Cross-Coupling Reactions of Borylated Alkenes for the Stereoselective Synthesis of Tetrasubstituted Double Bond. ORGANICS 2022. [DOI: 10.3390/org3030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The stereoselective formation of tetrasubstituted alkenes remains one of the key goals of modern organic synthesis. In addition to other methods, the stereoselective synthesis of tetrasubstituted alkenes can be achieved by means of cross-coupling reactions of electrophilic and nucleophilic alkene templates. The use of electrophilic templates for the stereoselective synthesis of tetrasubstituted alkenes has previously been described. Therefore, the present review summarizes the procedures available for the stereoselective preparation of tetrasubstituted alkenes using stable and isolable nucleophilic templates.
Collapse
|
20
|
Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nat Commun 2022; 13:1784. [PMID: 35379818 PMCID: PMC8980057 DOI: 10.1038/s41467-022-29466-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/11/2022] [Indexed: 11/23/2022] Open
Abstract
Tetracoordinate boron species have emerged as radical precursors via deboronation by photo-induced single electron transfer (SET) pathway. These reactions usually produce an alkyl radical and boron-bound species, and the valuable boron species are always discarded as a by-product. Given the importance of boron species, it will be very attractive if the two parts could be incorporated into the eventual products. Herein we report a photo-catalyzed strategy in which in situ generated tetracoordinated boron species decomposed into both alkyl radicals and boron species under visible light irradiation, due to the pre-installation of a vinyl group on the aromatic ring, the newly generated alkyl radical attacks the vinyl group while leaving the boron species on ipso-position, then both radical part and boron moiety are safely incorporated into the final product. Tertiary borons, secondary borons, gem-diborons as well as 1,2-diborons, and versatile electrophiles are all well tolerated under this transformation, of note, ortho-, meta- and para-bromostyrenes all demonstrated good capabilities. The reaction portraits high atom economy, broad substrate scope, and diversified valuable products with tertiary or quaternary carbon center generated, with diborons as substrates, Csp2-B and Csp3-B are established simultaneously, which are precious synthetic building blocks in chemical synthesis. Tetracoordinate boron species are common radical precursors in organic synthesis, but the boron species are discarded as by-products. Herein the authors report a strategy to incorporate both the alkyl moiety and boron species into the eventual products, yielding organoboron compounds.
Collapse
|
21
|
Yang X, Ge S. Cobalt-Catalyzed 1,1,3-Triborylation of Terminal Alkynes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoxu Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
22
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
23
|
Huang M, Hu J, Krummenacher I, Friedrich A, Braunschweig H, Westcott SA, Radius U, Marder TB. Base-Mediated Radical Borylation of Alkyl Sulfones. Chemistry 2022; 28:e202103866. [PMID: 34713940 PMCID: PMC9299846 DOI: 10.1002/chem.202103866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/06/2022]
Abstract
A practical and direct method was developed for the production of versatile alkyl boronate esters via transition metal-free borylation of primary and secondary alkyl sulfones. The key to the success of the strategy is the use of bis(neopentyl glycolato) diboron (B2 neop2 ), with a stoichiometric amount of base as a promoter. The practicality and industrial potential of this protocol are highlighted by its wide functional group tolerance, the late-stage modification of complex compounds, no need for further transesterification, and operational simplicity. Radical clock, radical trap experiments, and EPR studies were conducted which show that the borylation process involves radical intermediates.
Collapse
Affiliation(s)
- Mingming Huang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jiefeng Hu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Stephen A. Westcott
- Department of Chemistry & BiochemistryMount Allison UniversitySackvilleNB E4L 1G8Canada
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
24
|
Alam S, Karim R, Khan A, Pal AK, Maruani A. Copper‐Catalyzed Preparation of Alkenylboronates and Arylboronates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Safiul Alam
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Rejaul Karim
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Aminur Khan
- Department of Chemistry Aliah University IIA/27, New Town Kolkata 700160 India
| | - Amarta Kumar Pal
- Centre for Advance Studies in Chemistry North-Eastern Hill University Mawlai Campus Shillong 793022 India
| | - Antoine Maruani
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques – UMR 8601 Université de Paris UFR Biomédicale 45 rue des Saints Pères Paris 75006 France
| |
Collapse
|
25
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
26
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos JM, Chrostowska A, Miqueu K, Liu SY. C-Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3-Enynes. Angew Chem Int Ed Engl 2021; 60:21231-21236. [PMID: 34245074 DOI: 10.1002/anie.202108534] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 12/17/2022]
Abstract
A new family of carbon-bound boron enolates, generated by a kinetically controlled halogen exchange between chlorocatecholborane and silylketene acetals, is described. These C-boron enolates are demonstrated to activate 1,3-enyne substrates in the presence of a Pd0 /Senphos ligand complex, resulting in the first examples of a carboboration reaction of an alkyne with enolate-equivalent nucleophiles. Highly substituted dienyl boron building blocks are produced in excellent site-, regio-, and diastereoselectivity by the described catalytic cis-carboboration reaction.
Collapse
Affiliation(s)
- Ziyong Wang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jason Wu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jean-Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA.,Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR 5254, 64053, Pau cedex 09, France
| |
Collapse
|
27
|
Wang Z, Wu J, Lamine W, Li B, Sotiropoulos J, Chrostowska A, Miqueu K, Liu S. C−Boron Enolates Enable Palladium Catalyzed Carboboration of Internal 1,3‐Enynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyong Wang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jason Wu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Walid Lamine
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Jean‐Marc Sotiropoulos
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Anna Chrostowska
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Karinne Miqueu
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
- Université de Pau et des Pays de l'Adour, E2S UPPA CNRS, IPREM, UMR 5254 64053 Pau cedex 09 France
| |
Collapse
|
28
|
Jin S, Liu K, Wang S, Song Q. Enantioselective Cobalt-Catalyzed Cascade Hydrosilylation and Hydroboration of Alkynes to Access Enantioenriched 1,1-Silylboryl Alkanes. J Am Chem Soc 2021; 143:13124-13134. [PMID: 34382392 DOI: 10.1021/jacs.1c04248] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enantioenriched 1,1-silylboryl alkanes possess silyl and boryl groups that are both connected to the same stereogenic carbon center at well-defined orientations. As these chiral multifunctionalized compounds potentially offer two synthetic handles, they are highly valued building blocks in asymmetric synthesis as well as medicinal chemistry. Despite the potential usefulness, efficient synthetic approaches for their preparation are scarce. Seeking to address this deficiency, an enantioselective cobalt-catalyzed hydrosilylation/hydroboration cascade of terminal alkynes has been realized. This protocol constitutes an impressive case of chemo-, regio-, and stereoselectivity wherein the two different hydrofunctionalization events are exquisitely controlled by a single set of metal catalyst and ligand, an operation which would usually require two separate catalytic systems. Downstream transformations of enantioenriched 1,1-silyboryl alkanes led to various valuable chiral compounds. Mechanistic studies suggest that the present reaction undergoes highly regioselective and stereocontrolled sequential hydrosilylation and hydroboration processes.
Collapse
Affiliation(s)
- Shengnan Jin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Kang Liu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Shuai Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, Fujian 361021, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
29
|
Kuramochi A, Komine N, Kiyota S, Hirano M. Ru(0)-Catalyzed Synthesis of Borylated-Conjugated Triene Building Blocks by Cross-Dimerization and Their Use in Cross-Coupling Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayumi Kuramochi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Nobuyuki Komine
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Sayori Kiyota
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Masafumi Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
30
|
Li Z, Sun J. Copper-Catalyzed 1,1-Boroalkylation of Terminal Alkynes: Access to Alkenylboronates via a Three-Component Reaction. Org Lett 2021; 23:3706-3711. [PMID: 33881877 DOI: 10.1021/acs.orglett.1c01081] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A copper-catalyzed three-component reaction of terminal alkynes, diazo compounds, and B2pin2 to prepare trisubstituted alkenylboronates has been developed. This difunctionalization of alkynes selectively occurs at the terminal carbon atom and proceeds via a tandem sequence. The copper catalyst plays dual roles in the whole process, namely, the initial copper-catalyzed cross-coupling and the following copper-catalyzed stereoselective boration reaction. Typically, different carbene precursors selectively lead to Z- and E-alkenes.
Collapse
Affiliation(s)
- Ziyong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| |
Collapse
|
31
|
Huang J, Li X, Wen H, Ouyang L, Luo N, Liao J, Luo R. Substrate-Controlled Cu(OAc) 2-Catalyzed Stereoselective Semi-Reduction of Alkynes with MeOH as the Hydrogen Source. ACS OMEGA 2021; 6:11740-11749. [PMID: 34056327 PMCID: PMC8154033 DOI: 10.1021/acsomega.1c01083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
A substrate-controlled stereoselective semi-reduction of alkynes with MeOH as the hydrogen source has been developed, and readily available Cu(OAc)2 (copper acetate) is utilized as an optimal catalyst. The detailed investigation of the mechanism revealed distinct catalytic processes for the (Z)- and (E)-alkenes, respectively. As a result, a diversity of alkynes (including terminal, internal alkynes etc.) were compatible under the mild reaction conditions. Furthermore, the high proportion of deuterium in Z-alkenes (up to 96%) was obtained using d 4-methanol as a solvent.
Collapse
Affiliation(s)
- Jiuzhong Huang
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Xiaoning Li
- Key
Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular
Diseases of Ministry of Education, Gannan
Medical University, Ganzhou 341000, P. R. China
| | - Huiling Wen
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Lu Ouyang
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Nianhua Luo
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Jianhua Liao
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| | - Renshi Luo
- School
of Pharmacy, Gannan Medical University, Ganzhou 341000, P. R. China
| |
Collapse
|
32
|
Kakkar A. Celebrating Todd Marder: 65th Birthday and His Contributions to Inorganic Chemistry. Molecules 2021; 26:776. [PMID: 33546127 PMCID: PMC7913161 DOI: 10.3390/molecules26040776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/17/2022] Open
Abstract
Professor Todd B [...].
Collapse
Affiliation(s)
- Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
33
|
Wang X, Wang Y, Huang W, Xia C, Wu L. Direct Synthesis of Multi(boronate) Esters from Alkenes and Alkynes via Hydroboration and Boration Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03418] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049 People’s Republic of China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Wei Huang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, People’s Republic of China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
34
|
Zhou J, Jiang B, Guo M, Sumii Y, Shibata N. Aryl gem-Difluorovinyl Pinacolboronates: Synthesis and Utility for Suzuki-Miyaura Coupling Reaction. CHEM LETT 2020. [DOI: 10.1246/cl.200621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jun Zhou
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Bingyao Jiang
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Ming Guo
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yuji Sumii
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Aichi 466-8555, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, P. R. China
| |
Collapse
|
35
|
Tani T, Takahashi N, Sawatsugawa Y, Osano M, Tsuchimoto T. Stepwise Suzuki−Miyaura Cross‐Coupling of Triborylalkenes Derived from Alkynyl−B(dan)s: Regioselective and Flexible Synthesis of Tetrasubstituted Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tomohiro Tani
- Department of Applied Chemistry School of Science and Technology Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Naomi Takahashi
- Department of Applied Chemistry School of Science and Technology Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Yuuki Sawatsugawa
- Department of Applied Chemistry School of Science and Technology Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Mana Osano
- Department of Applied Chemistry School of Science and Technology Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| | - Teruhisa Tsuchimoto
- Department of Applied Chemistry School of Science and Technology Meiji University, 1-1-1 Higashimita, Tama-ku Kawasaki 214-8571 Japan
| |
Collapse
|
36
|
Georg I, Bursch M, Stückrath JB, Alig E, Bolte M, Lerner HW, Grimme S, Wagner M. Building up Strain in One Step: Synthesis of an Edge-Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion. Angew Chem Int Ed Engl 2020; 59:16181-16187. [PMID: 32484309 PMCID: PMC7540532 DOI: 10.1002/anie.202006463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Indexed: 01/10/2023]
Abstract
The exhaustive trichlorosilylation of hexachloro‐1,3‐butadiene was achieved in one step by using a mixture of Si2Cl6 and [nBu4N]Cl (7:2 equiv) as the silylation reagent. The corresponding butadiene dianion salt [nBu4N]2[1] was isolated in 36 % yield after recrystallization. The negative charges of [1]2− are mainly delocalized across its two carbanionic (Cl3Si)2C termini (α‐effect of silicon) such that the central bond possesses largely C=C double‐bond character. Upon treatment with 4 equiv of HCl, [1]2− is converted into neutral 1,2,3,4‐tetrakis(trichlorosilyl)but‐2‐ene, 3. The Cl− acceptor AlCl3, induces a twofold ring‐closure reaction of [1]2− to form a six‐membered bicycle 4 in which two silacyclobutene rings are fused along a shared C=C double bond (84 %). Compound 4, which was structurally characterized by X‐ray crystallography, undergoes partial ring opening to a monocyclic silacyclobutene 2 in the presence of HCl, but is thermally stable up to at least 180 °C.
Collapse
Affiliation(s)
- Isabelle Georg
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Julius B Stückrath
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Edith Alig
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Michael Bolte
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt (Main), Germany
| |
Collapse
|
37
|
Georg I, Bursch M, Stückrath JB, Alig E, Bolte M, Lerner H, Grimme S, Wagner M. Building up Strain in One Step: Synthesis of an Edge‐Fused Double Silacyclobutene from an Extensively Trichlorosilylated Butadiene Dianion. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Isabelle Georg
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt (Main) Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Julius B. Stückrath
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Edith Alig
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt (Main) Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstrasse 4 53115 Bonn Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe-Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
38
|
Whyte A, Torelli A, Mirabi B, Zhang A, Lautens M. Copper-Catalyzed Borylative Difunctionalization of π-Systems. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02758] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexa Torelli
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
39
|
Gao Y, Wu ZQ, Engle KM. Synthesis of Stereodefined 1,1-Diborylalkenes via Copper-Catalyzed Diboration of Terminal Alkynes. Org Lett 2020; 22:5235-5239. [PMID: 32574499 DOI: 10.1021/acs.orglett.0c01901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed method for the E-selective 1,1-diboration of terminal alkynes is described. The tandem process involves sequential dehydrogenative borylation of the alkyne substrate with HBdan (1,8-diaminonaphthalatoborane), followed by hydroboration with HBpin (pinacolborane). This method proceeds efficiently under mild conditions, furnishing 1,1-diborylalkenes with excellent stereoselectivity and broad functional group tolerance. Taking advantage of the different reactivities of the two boryl moieties, the products can then be employed in stepwise cross-couplings with aryl halides for the stereocontrolled construction of trisubstituted alkenes.
Collapse
Affiliation(s)
- Yang Gao
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Zhong-Qian Wu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
40
|
Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Zirconium‐Catalyzed Atom‐Economical Synthesis of 1,1‐Diborylalkanes from Terminal and Internal Alkenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Strasse 29a 18059 Rostock Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
41
|
Wang X, Cui X, Li S, Wang Y, Xia C, Jiao H, Wu L. Zirconium-Catalyzed Atom-Economical Synthesis of 1,1-Diborylalkanes from Terminal and Internal Alkenes. Angew Chem Int Ed Engl 2020; 59:13608-13612. [PMID: 32297413 PMCID: PMC7496309 DOI: 10.1002/anie.202002642] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/23/2022]
Abstract
A general and atom‐economical synthesis of 1,1‐diborylalkanes from alkenes and a borane without the need for an additional H2 acceptor is reported for the first time. The key to our success is the use of an earth‐abundant zirconium‐based catalyst, which allows a balance of self‐contradictory reactivities (dehydrogenative boration and hydroboration) to be achieved. Our method avoids using an excess amount of another alkene as an H2 acceptor, which was required in other reported systems. Furthermore, substrates such as simple long‐chain aliphatic alkenes that did not react before also underwent 1,1‐diboration in our system. Significantly, the unprecedented 1,1‐diboration of internal alkenes enabled the preparation of 1,1‐diborylalkanes.
Collapse
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yue Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
42
|
Salvadó O, Fernández E. Tri(boryl)alkanes and Tri(boryl)alkenes: The Versatile Reagents. Molecules 2020; 25:molecules25071758. [PMID: 32290330 PMCID: PMC7180881 DOI: 10.3390/molecules25071758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
The interest of organoboron chemistry in organic synthesis is growing, together with the development of new and versatile polyborated reagents. Here, the preparation of 1,1,1-tri(boryl)alkanes, 1,2,3-tri(boryl)alkanes, 1,1,2-tri(boryl)alkanes, as well as 1,1,2-tri(boryl)alkenes as suitable and accessible polyborated systems is demonstrated as being easily applied in the construction of new carbon-carbon and carbon-heteroatom bonds. Synthetic procedures and limitations have been collected to demonstrate the powerful strategies to construct selective molecules, taking advantages of the easy transformation of carbon-boron bond in multiple functionalities, under the total control of chemo- and stereoselectivity.
Collapse
|
43
|
Liu X, Ming W, Luo X, Friedrich A, Maier J, Radius U, Santos WL, Marder TB. Regio- and Stereoselective Synthesis of 1,1-Diborylalkenes via Brønsted Base-Catalyzed Mixed Diboration of Alkynyl Esters and Amides with BpinBdan. European J Org Chem 2020; 2020:1941-1946. [PMID: 32362780 PMCID: PMC7187442 DOI: 10.1002/ejoc.202000128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Indexed: 01/06/2023]
Abstract
The NaOtBu-catalyzed mixed 1,1-diboration of terminal alkynes using the unsymmetrical diboron reagent BpinBdan (pin = pinacolato; dan = 1,8-diaminonaphthalene) proceeds in a regio- and stereoselective fashion affording moderate to high yields of 1,1-diborylalkenes bearing orthogonal boron protecting groups. It is applicable to gram-scale synthesis without loss of yield or selectivity. The mixed 1,1-diborylalkene products can be utilized in Suzuki-Miyaura cross-coupling reactions which take place selectivly at the C-B site. DFT calculations suggest the NaOtBu-catalyzed mixed 1,1-diboration of alkynes occurs through deprotonation of the terminal alkyne, stepwise addition of BpinBdan to the terminal carbon followed by protonation with tBuOH. Experimentally observed selective formation of (Z)-diborylalkenes is supported by our theoretical studies.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
| | - Xiaoling Luo
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
- Chongqing Key Laboratory of Inorganic Functional MaterialsCollege of ChemistryChongqing Normal University401331ChongqingChina
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jan Maier
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
| | - Webster L. Santos
- Department of ChemistryCollege of ChemistryVirginia Tech900 West Campus Drive24061BlacksburgVirginiaUSA
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius‐Maximilians‐Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
44
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Copper-Catalyzed Triboration of Terminal Alkynes Using B 2 pin 2 : Efficient Synthesis of 1,1,2-Triborylalkenes. Angew Chem Int Ed Engl 2020; 59:304-309. [PMID: 31502712 PMCID: PMC6972586 DOI: 10.1002/anie.201908466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Indexed: 02/04/2023]
Abstract
We report herein the catalytic triboration of terminal alkynes with B2 pin2 (bis(pinacolato)diboron) using readily available Cu(OAc)2 and Pn Bu3 . Various 1,1,2-triborylalkenes, a class of compounds that have been demonstrated to be potential matrix metalloproteinase (MMP-2) inhibitors, were obtained directly in moderate to good yields. The process features mild reaction conditions, a broad substrate scope, and good functional group tolerance. This copper-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products was demonstrated by further transformations of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohaloborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Kerner
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
45
|
Kuang Z, Yang K, Zhou Y, Song Q. Base-promoted domino-borylation-protodeboronation strategy. Chem Commun (Camb) 2020; 56:6469-6479. [PMID: 32436551 DOI: 10.1039/d0cc00614a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Since a nucleophilic sp2 boron species can be generated in situ under the combined action of an inorganic base, B2pin2 and methanol, research on base-promoted nucleophilic borylation of unsaturated compounds has attracted significant attention. A series of multi-borylated compounds, such as alkyl 1,2-bis(boronates), gem-diborylalkanes, and 1,1,2-tris(boronates), are constructed based on this strategy. These multi-borylated compounds can in turn undergo selective protodeboronation, creating a variety of useful boron-containing compounds. This Feature article documents the development of base-promoted domino-borylation-protodeboronation (DBP) strategies and their applications in organic synthesis.
Collapse
Affiliation(s)
- Zhijie Kuang
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China.
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Yao Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, P. R. China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Materials Science & Engineering and College of Chemical Engineering at Huaqiao University, 668 Jimei Blvd, Xiamen, Fujian 361021, P. R. China. and Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
46
|
Liu X, Ming W, Zhang Y, Friedrich A, Marder TB. Copper-Catalyzed Triboration: Straightforward, Atom-Economical Synthesis of 1,1,1-Triborylalkanes from Terminal Alkynes and HBpin. Angew Chem Int Ed Engl 2019; 58:18923-18927. [PMID: 31490606 PMCID: PMC6972527 DOI: 10.1002/anie.201909376] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/28/2019] [Indexed: 02/06/2023]
Abstract
A convenient and efficient one-step synthesis of 1,1,1-triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroborations of terminal alkynes with HBpin (HBpin=pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)2 . This process proceeds under mild conditions, furnishing 1,1,1-tris(boronates) with wide substrate scope, excellent selectivity, and good functional-group tolerance, and is applicable to gram-scale synthesis without loss of yield. The 1,1,1-triborylalkanes can be used in the preparation of α-vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base-mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Yixiao Zhang
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|