1
|
Kehl A, Sielaff L, Remmel L, Rämisch ML, Bennati M, Meyer A. Frequency and time domain 19F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions. Phys Chem Chem Phys 2025; 27:1415-1425. [PMID: 39696963 PMCID: PMC11656155 DOI: 10.1039/d4cp04443f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
19F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in 19F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood. Here, we employ a combined approach of rational molecular design, frequency and time domain ENDOR methods as well as quantum mechanical spin dynamics simulations to analyze these mechanisms. We present the first application of Fourier transform ENDOR to remove power broadening and measure T2n of the 19F nucleus. We identify nuclear dipolar couplings between the fluorine and protons up to 14 kHz as a major source of spectral broadening. When removing these interactions by H/D exchange, an unprecedented spectral width of 9 kHz was observed suggesting that, generally, the accessible distance range can be extended. In a spin labeled RNA duplex we were able to predict the spectral ENDOR line width, which in turn enabled us to extract a distance distribution. This study represents a first step towards a quantitative determination of distance distributions in biomolecules from 19F ENDOR.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Lucca Sielaff
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Laura Remmel
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Maya L Rämisch
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Marina Bennati
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Andreas Meyer
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| |
Collapse
|
2
|
Remmel L, Meyer A, Ackermann K, Hagelueken G, Bennati M, Bode BE. Pulsed EPR Methods in the Angstrom to Nanometre Scale Shed Light on the Conformational Flexibility of a Fluoride Riboswitch. Angew Chem Int Ed Engl 2024; 63:e202411241. [PMID: 39225197 PMCID: PMC11586693 DOI: 10.1002/anie.202411241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Riboswitches control gene regulation upon external stimuli such as environmental factors or ligand binding. The fluoride sensing riboswitch from Thermotoga petrophila is a complex regulatory RNA proposed to be involved in resistance to F- cytotoxicity. The details of structure and dynamics underpinning the regulatory mechanism are currently debated. Here we demonstrate that a combination of pulsed electron paramagnetic resonance (ESR/EPR) spectroscopies, detecting distances in the angstrom to nanometre range, can probe distinct regions of conformational flexibility in this riboswitch. PELDOR (pulsed electron-electron double resonance) revealed a similar preorganisation of the sensing domain in three forms, i.e. the free aptamer, the Mg2+-bound apo, and the F--bound holo form. 19F ENDOR (electron-nuclear double resonance) was used to investigate the active site structure of the F--bound holo form. Distance distributions without a priori structural information were compared with in silico modelling of spin label conformations based on the crystal structure. While PELDOR, probing the periphery of the RNA fold, revealed conformational flexibility of the RNA backbone, ENDOR indicated low structural heterogeneity at the ligand binding site. Overall, the combination of PELDOR and ENDOR with sub-angstrom precision gave insight into structural organisation and flexibility of a riboswitch, not easily attainable by other biophysical techniques.
Collapse
Affiliation(s)
- Laura Remmel
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| | - Andreas Meyer
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- Institute of Physical ChemistryGeorg-August UniversityTammannstraße 637077GöttingenGermany
| | - Katrin Ackermann
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| | - Gregor Hagelueken
- Institute of Structural BiologyUniversity of BonnVenusberg-Campus 153127BonnGermany
| | - Marina Bennati
- Research Group EPR SpectroscopyMax Planck Institute for Multidisciplinary SciencesAm Fassberg 1137077GöttingenGermany
- Institute of Physical ChemistryGeorg-August UniversityTammannstraße 637077GöttingenGermany
| | - Bela E. Bode
- EaStCHEM School of ChemistryBiomedical Sciences Research Complex and Centre of Magnetic ResonanceUniversity of St AndrewsNorth HaughKY16 9STSt AndrewsUnited Kingdom
| |
Collapse
|
3
|
Bogdanov A, Gao L, Dalaloyan A, Zhu W, Seal M, Su XC, Frydman V, Liu Y, Gronenborn AM, Goldfarb D. Spin labels for 19F ENDOR distance determination: resolution, sensitivity and distance predictability. Phys Chem Chem Phys 2024; 26:26921-26932. [PMID: 39417349 DOI: 10.1039/d4cp02996h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
19F electron-nuclear double resonance (ENDOR) has emerged as an attractive method for determining distance distributions in biomolecules in the range of 0.7-2 nm, which is not easily accessible by pulsed electron dipolar spectroscopy. The 19F ENDOR approach relies on spin labeling, and in this work, we compare various labels' performance. Four protein variants of GB1 and ubiquitin bearing fluorinated residues were labeled at the same site with nitroxide and trityl radicals and a Gd(III) chelate. Additionally, a double-histidine variant of GB1 was labeled with a Cu(II) nitrilotriacetic acid chelate. ENDOR measurements were carried out at W-band (95 GHz) where 19F signals are well separated from 1H signals. Differences in sensitivity were observed, with Gd(III) chelates providing the highest signal-to-noise ratio. The new trityl label, OXMA, devoid of methyl groups, exhibited a sufficiently long phase memory time to provide an acceptable sensitivity. However, the longer tether of this label effectively reduces the maximum accessible distance between the 19F and the Cα of the spin-labeling site. The nitroxide and Cu(II) labels provide valuable additional geometric insights via orientation selection. Prediction of electron-nuclear distances based on the known structures of the proteins were the closest to the experimental values for Gd(III) labels, and distances obtained for Cu(II) labeled GB1 are in good agreement with previously published NMR results. Overall, our results offer valuable guidance for selecting optimal spin labels for 19F ENDOR distance measurement in proteins.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Longfei Gao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Arina Dalaloyan
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Wenkai Zhu
- Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Manas Seal
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Veronica Frydman
- Department of Chemical Research Support, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, The Weizmann Institute of Science, P. O. Box 26, Rehovot, 7610001, Israel.
| |
Collapse
|
4
|
Belyaeva J, Elgeti M. Exploring protein structural ensembles: Integration of sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling methods. eLife 2024; 13:e99770. [PMID: 39283059 PMCID: PMC11405019 DOI: 10.7554/elife.99770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Under physiological conditions, proteins continuously undergo structural fluctuations on different timescales. Some conformations are only sparsely populated, but still play a key role in protein function. Thus, meaningful structure-function frameworks must include structural ensembles rather than only the most populated protein conformations. To detail protein plasticity, modern structural biology combines complementary experimental and computational approaches. In this review, we survey available computational approaches that integrate sparse experimental data from electron paramagnetic resonance spectroscopy with molecular modeling techniques to derive all-atom structural models of rare protein conformations. We also propose strategies to increase the reliability and improve efficiency using deep learning approaches, thus advancing the field of integrative structural biology.
Collapse
Affiliation(s)
- Julia Belyaeva
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
| | - Matthias Elgeti
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
- Institute for Medical Physics and Biophysics, Leipzig University Medical School, Leipzig, Germany
- Integrative Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
5
|
Gauger M, Heinz M, Halbritter ALJ, Stelzl LS, Erlenbach N, Hummer G, Sigurdsson ST, Prisner TF. Structure and Internal Dynamics of Short RNA Duplexes Determined by a Combination of Pulsed EPR Methods and MD Simulations. Angew Chem Int Ed Engl 2024; 63:e202402498. [PMID: 38530284 DOI: 10.1002/anie.202402498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
We used EPR spectroscopy to characterize the structure of RNA duplexes and their internal twist, stretch and bending motions. We prepared eight 20-base-pair-long RNA duplexes containing the rigid spin-label Çm, a cytidine analogue, at two positions and acquired orientation-selective PELDOR/DEER data. By using different frequency bands (X-, Q-, G-band), detailed information about the distance and orientation of the labels was obtained and provided insights into the global conformational dynamics of the RNA duplex. We used 19F Mims ENDOR experiments on three singly Çm- and singly fluorine-labeled RNA duplexes to determine the exact position of the Çm spin label in the helix. In a quantitative comparison to MD simulations of RNA with and without Çm spin labels, we found that state-of-the-art force fields with explicit parameterization of the spin label were able to describe the conformational ensemble present in our experiments. The MD simulations further confirmed that the Çm spin labels are excellent mimics of cytidine inducing only small local changes in the RNA structure. Çm spin labels are thus ideally suited for high-precision EPR experiments to probe the structure and, in conjunction with MD simulations, motions of RNA.
Collapse
Affiliation(s)
- Maximilian Gauger
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Marcel Heinz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | | | - Lukas S Stelzl
- Faculty of Biology, Johannes Gutenberg University, 55128, Mainz, Germany
- KOMET 1, Institute of Physics, Johannes Gutenberg University, Staudingerweg 9, 55128, Mainz, Germany
- Institute of Quantitative and Computational Bioscience (IQCB), Johannes Gutenberg University Mainz, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Max-von-Laue Str. 1, 60438, Frankfurt am Main, Germany
| | | | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Bogdanov A, Frydman V, Seal M, Rapatskiy L, Schnegg A, Zhu W, Iron M, Gronenborn AM, Goldfarb D. Extending the Range of Distances Accessible by 19F Electron-Nuclear Double Resonance in Proteins Using High-Spin Gd(III) Labels. J Am Chem Soc 2024; 146:6157-6167. [PMID: 38393979 PMCID: PMC10921402 DOI: 10.1021/jacs.3c13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Fluorine electron-nuclear double resonance (19F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of 19F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved 19F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with 19F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved 19F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended 19F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Veronica Frydman
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Manas Seal
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Leonid Rapatskiy
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Iron
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| |
Collapse
|
7
|
Schumann SL, Kotnig S, Kutin Y, Drosou M, Stratmann LM, Streltsova Y, Schnegg A, Pantazis DA, Clever GH, Kasanmascheff M. Structure and Flexibility of Copper-Modified DNA G-Quadruplexes Investigated by 19 F ENDOR Experiments at 34 GHz. Chemistry 2023; 29:e202302527. [PMID: 37602522 DOI: 10.1002/chem.202302527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
DNA G-quadruplexes (GQs) are of great interest due to their involvement in crucial biological processes such as telomerase maintenance and gene expression. Furthermore, they are reported as catalytically active DNAzymes and building blocks in bio-nanotechnology. GQs exhibit remarkable structural diversity and conformational heterogeneity, necessitating precise and reliable tools to unravel their structure-function relationships. Here, we present insights into the structure and conformational flexibility of a unimolecular GQ with high spatial resolution via electron-nuclear double resonance (ENDOR) experiments combined with Cu(II) and fluorine labeling. These findings showcase the successful application of the 19 F-ENDOR methodology at 34 GHz, overcoming the limitations posed by the complexity and scarcity of higher-frequency spectrometers. Importantly, our approach retains both sensitivity and orientational resolution. This integrated study not only enhances our understanding of GQs but also expands the methodological toolbox for studying other macromolecules.
Collapse
Affiliation(s)
- Simon L Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Simon Kotnig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yana Streltsova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
8
|
Kardam V, Dubey KD. Tyr 118-Mediated Electron Transfer is Key to the Chlorite Decomposition in Heme-Dependent Chlorite Dismutase. Inorg Chem 2023; 62:18322-18330. [PMID: 37885054 DOI: 10.1021/acs.inorgchem.3c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chlorite dismutase (Cld) is a crucial enzyme that catalyzes the decomposition of chlorite ions into chloride ions (Cl-) and molecular oxygen (O2). Despite playing an important role in the detoxification of toxic chlorite ions, the mechanism of cleavage of the Cl-O bond by Cld remains highly debatable. The present study highlights the mechanism of such Cl-O bond cleavage in Cld using sophisticated computational tools such as hybrid quantum mechanical/molecular mechanical calculations and long-time scale molecular dynamics simulations. Here, we show that Cld forms a high spin ferric hexacoordinated substrate adduct in the presence of a chlorite ion, which subsequently reduces to a ferrous state. Our study shows a stepwise pathway with the homolytic cleavage of the Cl-O bond that produces a high spin Fe(III)-OH species and a diradicaloid species formed by the combination of a chlorine-based ClO• radical and a protein-based tyrosine118• radical. The findings provide significant insights into Cl-O bond cleavage and O2 formation which shows a crucial role of the tyrosine118 during the electron transfer process.
Collapse
Affiliation(s)
- Vandana Kardam
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi NCR, NH91 Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
9
|
Asanbaeva NB, Novopashina DS, Rogozhnikova OY, Tormyshev VM, Kehl A, Sukhanov AA, Shernyukov AV, Genaev AM, Lomzov AA, Bennati M, Meyer A, Bagryanskaya EG. 19F electron nuclear double resonance (ENDOR) spectroscopy for distance measurements using trityl spin labels in DNA duplexes. Phys Chem Chem Phys 2023; 25:23454-23466. [PMID: 37609874 DOI: 10.1039/d3cp02969g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims 19F ENDOR experiments on reporting intermolecular distances in trityl- and 19F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical. Fluorine labels were introduced into two positions of a DNA oligonucleotide. The results indicated that hyperfine splittings visible in the ENDOR spectra are consistent with the most populated interspin distances between 19F and the trityl radical predicted from molecular dynamic (MD) simulations. Moreover, for some cases, ENDOR spectral simulations based on MD results were able to reproduce the conformational distribution reflected in the experimental ENDOR line broadening. Additionally, MD simulations provided more detailed information about the melting of terminal base pairs of the oligonucleotides and about the configuration of the trityls relative to a DNA end.
Collapse
Affiliation(s)
- N B Asanbaeva
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - D S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - O Yu Rogozhnikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - V M Tormyshev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A A Sukhanov
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, 10/7 Sibirsky Tract, Kazan 420029, Russia
| | - A V Shernyukov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A M Genaev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| | - A A Lomzov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 8 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Institute of Physical Chemistry, Department of Chemistry, Georg August University of Göttingen, Tammannstr.6, Göttingen, Germany
| | - E G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Pr. Ak. Lavrentjeva, Novosibirsk 630090, Russia.
| |
Collapse
|
10
|
Wiechers H, Kehl A, Hiller M, Eltzner B, Huckemann SF, Meyer A, Tkach I, Bennati M, Pokern Y. Bayesian optimization to estimate hyperfine couplings from 19F ENDOR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107491. [PMID: 37301045 DOI: 10.1016/j.jmr.2023.107491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
ENDOR spectroscopy is a fundamental method to detect nuclear spins in the vicinity of paramagnetic centers and their mutual hyperfine interaction. Recently, site-selective introduction of 19F as nuclear labels has been proposed as a tool for ENDOR-based distance determination in biomolecules, complementing pulsed dipolar spectroscopy in the range of angstrom to nanometer. Nevertheless, one main challenge of ENDOR still consists of its spectral analysis, which is aggravated by a large parameter space and broad resonances from hyperfine interactions. Additionally, at high EPR frequencies and fields (⩾94 GHz/3.4 Tesla), chemical shift anisotropy might contribute to broadening and asymmetry in the spectra. Here, we use two nitroxide-fluorine model systems to examine a statistical approach to finding the best parameter fit to experimental 263 GHz 19F ENDOR spectra. We propose Bayesian optimization for a rapid, global parameter search with little prior knowledge, followed by a refinement by more standard gradient-based fitting procedures. Indeed, the latter suffer from finding local rather than global minima of a suitably defined loss function. Using a new and accelerated simulation procedure, results for the semi-rigid nitroxide-fluorine two and three spin systems lead to physically reasonable solutions, if minima of similar loss can be distinguished by DFT predictions. The approach also delivers the stochastic error of the obtained parameter estimates. Future developments and perspectives are discussed.
Collapse
Affiliation(s)
- H Wiechers
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - B Eltzner
- Research Group Computational Biomolecular Dynamics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - S F Huckemann
- Felix-Bernstein-Institute for Mathematical Statistics in the Biosciences, Georgia-Augusta-University, Goldschmidtstr. 7, D-37077 Göttingen, Germany
| | - A Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany
| | - I Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| | - M Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany; Institute of Physical Chemistry, Georgia-Augusta-University, Tammanstr. 6, D-37077 Göttingen, Germany.
| | - Y Pokern
- Department of Statistical Science, University College London, WC1E 6BT, United Kingdom.
| |
Collapse
|
11
|
Fluorinated Human Serum Albumin as Potential 19F Magnetic Resonance Imaging Probe. Molecules 2023; 28:molecules28041695. [PMID: 36838682 PMCID: PMC9959765 DOI: 10.3390/molecules28041695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Fluorinated human serum albumin conjugates were prepared and tested as potential metal-free probes for 19F magnetic resonance imaging (MRI). Each protein molecule was modified by several fluorine-containing compounds via the N-substituted natural acylating reagent homocysteine thiolactone. Albumin conjugates retain the protein's physical and biological properties, such as its 3D dimensional structure, aggregation ability, good solubility, proteolysis efficiency, biocompatibility, and low cytotoxicity. A dual-labeled with cyanine 7 fluorescence dye and fluorine reporter group albumin were synthesized for simultaneous fluorescence imaging and 19F MRI. The preliminary in vitro studies show the prospects of albumin carriers for multimodal imaging.
Collapse
|
12
|
Kaiser F, Endeward B, Collauto A, Scheffer U, Prisner TF, Göbel MW. Spin-Labeled Riboswitch Synthesized from a Protected TPA Phosphoramidite Building Block. Chemistry 2022; 28:e202201822. [PMID: 35903916 PMCID: PMC9804336 DOI: 10.1002/chem.202201822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
The nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached. The light sensitive 2-nitrobenzyloxymethyl group can be removed in high yield by short irradiation at 365 nm. Based on this approach, a doubly spin-labeled 27mer neomycin sensing riboswitch was synthesized and studied by PELDOR. The overall thermal stability of the fold is not much reduced by TPA. In-line probing nevertheless detected changes in local mobility.
Collapse
Affiliation(s)
- Frank Kaiser
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Burkhard Endeward
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Alberto Collauto
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Thomas F. Prisner
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Michael W. Göbel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
13
|
Kuzin S, Jeschke G, Yulikov M. Diffusion equation for the longitudinal spectral diffusion: the case of the RIDME experiment. Phys Chem Chem Phys 2022; 24:23517-23531. [PMID: 36129124 PMCID: PMC9533373 DOI: 10.1039/d2cp03039j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Relaxation-induced dipolar modulation enhancement (RIDME) time trace shapes reveal linear scaling with the proton concentration in homogeneous glassy samples. We describe here an approximate diffusion equation-based analysis of such data, which uses only two fit parameters and allows for global data fitting with good accuracy. By construction, the approach should be transferable to other pulse EPR experiments with longitudinal mixing block(s) present. The two fit parameters appear to be sensitive to the type of the glassy matrix and can be thus used for sample characterisation. The estimates suggest that the presented technique should be sensitive to protons at distances up to 3 nm from the electron spin at a 90% matrix deuteration level. We propose that a structural method might be developed based on such an intermolecular hyperfine (ih-)RIDME technique, which would be useful, for instance, in structural biology or dynamic nuclear polarisation experiments.
Collapse
Affiliation(s)
- Sergei Kuzin
- ETH Zürich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Gunnar Jeschke
- ETH Zürich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| | - Maxim Yulikov
- ETH Zürich, Department of Chemistry and Applied Bioscience, Laboratory of Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
14
|
Meyer A, Kehl A, Cui C, Reichardt FAK, Hecker F, Funk LM, Pan KT, Urlaub H, Tittmann K, Stubbe J, Bennati M. 19F Electron-Nuclear Double Resonance Reveals Interaction between Redox-Active Tyrosines across the α/β Interface of E. coli Ribonucleotide Reductase. J Am Chem Soc 2022; 144:11270-11282. [PMID: 35652913 PMCID: PMC9248007 DOI: 10.1021/jacs.2c02906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Ribonucleotide reductases
(RNRs) catalyze the reduction of ribonucleotides
to deoxyribonucleotides, thereby playing a key role in DNA replication
and repair. Escherichia coli class
Ia RNR is an α2β2 enzyme complex
that uses a reversible multistep radical transfer (RT) over 32 Å
across its two subunits, α and β, to initiate, using its
metallo-cofactor in β2, nucleotide reduction in α2. Each step is proposed to involve a distinct proton-coupled
electron-transfer (PCET) process. An unresolved step is the RT involving
Y356(β) and Y731(α) across the α/β
interface. Using 2,3,5-F3Y122-β2 with 3,5-F2Y731-α2, GDP (substrate) and TTP (allosteric effector), a Y356• intermediate was trapped and its identity was
verified by 263 GHz electron paramagnetic resonance (EPR) and 34 GHz
pulse electron–electron double resonance spectroscopies. 94
GHz 19F electron-nuclear double resonance spectroscopy
allowed measuring the interspin distances between Y356• and the 19F nuclei of 3,5-F2Y731 in this RNR mutant. Similar experiments with the
double mutant E52Q/F3Y122-β2 were carried out for comparison to the recently published
cryo-EM structure of a holo RNR complex. For both mutant combinations,
the distance measurements reveal two conformations of 3,5-F2Y731. Remarkably, one conformation is consistent with
3,5-F2Y731 within the H-bond distance to Y356•, whereas the second one is consistent
with the conformation observed in the cryo-EM structure. The observations
unexpectedly suggest the possibility of a colinear PCET, in which
electron and proton are transferred from the same donor to the same
acceptor between Y356 and Y731. The results
highlight the important role of state-of-the-art EPR spectroscopy
to decipher this mechanism.
Collapse
Affiliation(s)
- Andreas Meyer
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Annemarie Kehl
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Chang Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Fehmke A K Reichardt
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Lisa-Marie Funk
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - Kuan-Ting Pan
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Henning Urlaub
- Research group bioanalytical mass spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Bioanalytics, University Medical Center, 37075 Göttingen, Germany
| | - Kai Tittmann
- Department of structural dynamics, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Molecular Enzymology, Georg-August University, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department of Chemistry and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Research group ESR spectroscopy, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany.,Department of Chemistry, Georg-August University, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Richardson KH, Seif-Eddine M, Sills A, Roessler MM. Controlling and exploiting intrinsic unpaired electrons in metalloproteins. Methods Enzymol 2022; 666:233-296. [PMID: 35465921 DOI: 10.1016/bs.mie.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electron paramagnetic resonance spectroscopy encompasses a versatile set of techniques that allow detailed insight into intrinsically occurring paramagnetic centers in metalloproteins and enzymes that undergo oxidation-reduction reactions. In this chapter, we discuss the process from isolating the protein to acquiring and analyzing pulse EPR spectra, adopting a practical perspective. We start with considerations when preparing the protein sample, explain techniques and procedures available for determining the reduction potential of the redox-active center of interest and provide details on methodologies to trap a given paramagnetic state for detailed pulse EPR studies, with an emphasis on biochemical and spectroscopic tools available when multiple EPR-active species are present. We elaborate on some of the most commonly used pulse EPR techniques and the choices the user has to make, considering advantages and disadvantages and how to avoid pitfalls. Examples are provided throughout.
Collapse
Affiliation(s)
| | - Maryam Seif-Eddine
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Adam Sills
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - Maxie M Roessler
- Imperial College London, Molecular Sciences Research Hub, London, United Kingdom.
| |
Collapse
|
16
|
Asanbaeva N, Sukhanov A, Diveikina AA, Rogozhnikova O, Trukhin DV, Tormyshev VM, Chubarov AS, Maryasov AG, Genaev A, Shernyukov AV, Salnikov GE, Lomzov AA, Pyshnyi DV, Bagryanskaya E. Application of W-band 19F electron nuclear double resonance (ENDOR) spectroscopy to distance measurement using a trityl spin probe and a fluorine label. Phys Chem Chem Phys 2022; 24:5982-6001. [DOI: 10.1039/d1cp05445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, Marina Bennati and coworkers (Angew. Chemie - Int. Ed., 2020, 59, 373–379., A. J. Magn. Reson., 2021, 333, 107091) proposed to use electron nuclear double resonance (ENDOR) spectroscopy in...
Collapse
|
17
|
Kehl A, Hiller M, Hecker F, Tkach I, Dechert S, Bennati M, Meyer A. Resolution of chemical shift anisotropy in 19F ENDOR spectroscopy at 263 GHz/9.4 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107091. [PMID: 34749036 DOI: 10.1016/j.jmr.2021.107091] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Pulsed 19F ENDOR spectroscopy provides a selective method for measuring angstrom to nanometer distances in structural biology. Here, the performance of 19F ENDOR at fields of 3.4 T and 9.4 T is compared using model compounds containing one to three 19F atoms. CF3 groups are included in two compounds, for which the possible occurrence of uniaxial rotation might affect the distance distribution. At 9.4 T, pronounced asymmetric features are observed in many of the presented 19F ENDOR spectra. Data analysis by spectral simulations shows that these features arise from the chemical shift anisotropy (CSA) of the 19F nuclei. This asymmetry is also observed at 3.4 T, albeit to a much smaller extent, confirming the physical origin of the effect. The CSA parameters are well consistent with DFT predicted values and can be extracted from simulation of the experimental data in favourable cases, thereby providing additional information about the geometrical and electronic structure of the spin system. The feasibility of resolving the CSA at 9.4 T provides important information for the interpretation of line broadening in ENDOR spectra also at lower fields, which is relevant for developing methods to extract distance distributions from 19F ENDOR spectra.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Hiller
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Fabian Hecker
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Igor Tkach
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Sebastian Dechert
- Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany
| | - Marina Bennati
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Department of Chemistry, Georg August University of Göttingen, Tammannstr. 4, Göttingen, Germany.
| | - Andreas Meyer
- Research Group EPR Spectroscopy, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
18
|
Isaev N, Steinhoff HJ. Protein and solutes freeze-concentration in water/glycerol mixtures revealed by pulse EPR. Eur J Pharm Biopharm 2021; 169:44-51. [PMID: 34534655 DOI: 10.1016/j.ejpb.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022]
Abstract
Lyophilization can extend protein drugs stability and shelf life, but it also can lead to protein degradation in some cases. The development of safe freeze-drying approaches for sensitive proteins requires a better understanding of lyophilization on the molecular level. The evaluation of the freezing process and its impact on the protein environment in the nm scale is challenging because feasible experimental methods are scarce. In the present work we apply pulse EPR as a tool to study the local concentrations of the solute in the 20 nm range and of the solvent in the 1 nm range for a spin labeled 27 kDa monomeric green fluorescent protein, mEGFP, and the 172 Da TEMPOL spin probe, frozen in different water/glycerol-d5 mixtures. For average glycerol volume fractions, φgly-d5avg, ≥ 0.4 we observed transparent glassy media; the local concentration and the 1 nm solvent shell of TEMPOL and the protein correspond to those of a uniform vitrified glass. At φgly-d5avg ≤ 0.3 we observed partial ice crystallization, which led to ice exclusion of glycerol and TEMPOL with freeze-concentration up to the glycerol maximal-freeze local volume fraction, φgly-d5loc, of 0.64. The protein concentration and its shell behavior was similar except for the lowest φgly-d5avg (0.1), which showed a 4.7-fold freeze-concentration factor compared to sevenfold for TEMPOL, and also a smaller φgly-d5loc. We explain this behavior with an increased probability for proteins to get stuck in the ice phase during fast freezing at higher freeze-concentration and the related large-scale mass transfer.
Collapse
Affiliation(s)
- Nikolay Isaev
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, Russia.
| | | |
Collapse
|
19
|
Abstract
Electron-nuclear double resonance (ENDOR) measures the hyperfine interaction of magnetic nuclei with paramagnetic centers and is hence a powerful tool for spectroscopic investigations extending from biophysics to material science. Progress in microwave technology and the recent availability of commercial electron paramagnetic resonance (EPR) spectrometers up to an electron Larmor frequency of 263 GHz now open the opportunity for a more quantitative spectral analysis. Using representative spectra of a prototype amino acid radical in a biologically relevant enzyme, the [Formula: see text] in Escherichia coli ribonucleotide reductase, we developed a statistical model for ENDOR data and conducted statistical inference on the spectra including uncertainty estimation and hypothesis testing. Our approach in conjunction with 1H/2H isotopic labeling of [Formula: see text] in the protein unambiguously established new unexpected spectral contributions. Density functional theory (DFT) calculations and ENDOR spectral simulations indicated that these features result from the beta-methylene hyperfine coupling and are caused by a distribution of molecular conformations, likely important for the biological function of this essential radical. The results demonstrate that model-based statistical analysis in combination with state-of-the-art spectroscopy accesses information hitherto beyond standard approaches.
Collapse
|
20
|
Hecker F, Stubbe J, Bennati M. Detection of Water Molecules on the Radical Transfer Pathway of Ribonucleotide Reductase by 17O Electron-Nuclear Double Resonance Spectroscopy. J Am Chem Soc 2021; 143:7237-7241. [PMID: 33957040 PMCID: PMC8154519 DOI: 10.1021/jacs.1c01359] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/19/2022]
Abstract
The role of water in biological proton-coupled electron transfer (PCET) is emerging as a key for understanding mechanistic details at atomic resolution. Here we demonstrate 17O high-frequency electron-nuclear double resonance (ENDOR) in conjunction with H217O-labeled protein buffer to establish the presence of ordered water molecules at three radical intermediates in an active enzyme complex, the α2β2 E. coli ribonucleotide reductase. Our data give unambiguous evidence that all three, individually trapped, intermediates are hyperfine coupled to one water molecule with Tyr-O···17O distances in the range 2.8-3.1 Å. The availability of this structural information will allow for quantitative models of PCET in this prototype enzyme. The results also provide a spectroscopic signature for water H-bonded to a tyrosyl radical.
Collapse
Affiliation(s)
- Fabian Hecker
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - JoAnne Stubbe
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 20139, United States
| | - Marina Bennati
- Max
Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department
of Chemistry, Georg-August-University, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Pribitzer S, Mannikko D, Stoll S. Determining electron-nucleus distances and Fermi contact couplings from ENDOR spectra. Phys Chem Chem Phys 2021; 23:8326-8335. [PMID: 33875997 DOI: 10.1039/d1cp00229e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hyperfine coupling between an electron spin and a nuclear spin depends on the Fermi contact coupling aiso and, through dipolar coupling, the distance r between the electron and the nucleus. It is measured with electron-nuclear double resonance (ENDOR) spectroscopy and provides insight into the electronic and spatial structure of paramagnetic centers. The analysis and interpretation of ENDOR spectra is commonly done by ordinary least-squares fitting. As this is an ill-posed, inverse mathematical problem, this is challenging, in particular for spectra that show features from several nuclei or where the hyperfine coupling parameters are distributed. We introduce a novel Tikhonov-type regularization approach that analyzes an experimental ENDOR spectrum in terms of a complete non-parametric distribution over r and aiso. The approach uses a penalty function similar to the cross entropy between the fitted distribution and a Bayesian prior distribution that is derived from density functional theory calculations. Additionally, we show that smoothness regularization, commonly used for a similar purpose in double electron-electron resonance (DEER) spectroscopy, is not suited for ENDOR. We demonstrate that the novel approach is able to identify and quantitate ligand protons with electron-nucleus distances between 4 and 9 Å in a series of vanadyl porphyrin compounds.
Collapse
Affiliation(s)
- Stephan Pribitzer
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
22
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
23
|
Tkach I, Diederichsen U, Bennati M. Studies of transmembrane peptides by pulse dipolar spectroscopy with semi-rigid TOPP spin labels. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:143-157. [PMID: 33640998 PMCID: PMC8071797 DOI: 10.1007/s00249-021-01508-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/01/2022]
Abstract
Electron paramagnetic resonance (EPR)-based pulsed dipolar spectroscopy measures the dipolar interaction between paramagnetic centers that are separated by distances in the range of about 1.5-10 nm. Its application to transmembrane (TM) peptides in combination with modern spin labelling techniques provides a valuable tool to study peptide-to-lipid interactions at a molecular level, which permits access to key parameters characterizing the structural adaptation of model peptides incorporated in natural membranes. In this mini-review, we summarize our approach for distance and orientation measurements in lipid environment using novel semi-rigid TOPP [4-(3,3,5,5-tetramethyl-2,6-dioxo-4-oxylpiperazin-1-yl)-L-phenylglycine] labels specifically designed for incorporation in TM peptides. TOPP labels can report single peak distance distributions with sub-angstrom resolution, thus offering new capabilities for a variety of TM peptide investigations, such as monitoring of various helix conformations or measuring of tilt angles in membranes.
Collapse
Affiliation(s)
- Igor Tkach
- Max Planck Institute for Biophysical Chemistry, RG Electron-Spin Resonance Spectroscopy, 37077, Göttingen, Germany.
| | - Ulf Diederichsen
- Department of Organic and Biomolecular Chemistry, University of Göttingen, 37077, Göttingen, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, RG Electron-Spin Resonance Spectroscopy, 37077, Göttingen, Germany
- Department of Organic and Biomolecular Chemistry, University of Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
24
|
Chen XR, Zhang SQ, Meyer TH, Yang CH, Zhang QH, Liu JR, Xu HJ, Cao FH, Ackermann L, Hong X. Carboxylate breaks the arene C-H bond via a hydrogen-atom-transfer mechanism in electrochemical cobalt catalysis. Chem Sci 2020; 11:5790-5796. [PMID: 34094081 PMCID: PMC8159317 DOI: 10.1039/d0sc01898h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
Combined computational and experimental studies elucidated the distinctive mechanistic features of electrochemical cobalt-catalyzed C-H oxygenation. A sequential electrochemical-chemical (EC) process was identified for the formation of an amidylcobalt(iii) intermediate. The synthesis, characterization, cyclic voltammetry studies, and stoichiometric reactions of the related amidylcobalt(iii) intermediate suggested that a second on-cycle electro-oxidation occurs on the amidylcobalt(iii) species, which leads to a formal Co(iv) intermediate. This amidylcobalt(iv) intermediate is essentially a cobalt(iii) complex with one additional single electron distributed on the coordinating heteroatoms. The radical nature of the coordinating pivalate allows the formal Co(iv) intermediate to undergo a novel carboxylate-assisted HAT mechanism to cleave the arene C-H bond, and a CMD mechanism could be excluded for a Co(iii/i) catalytic scenario. The mechanistic understanding of electrochemical cobalt-catalyzed C-H bond activation highlights the multi-tasking electro-oxidation and the underexplored reaction channels in electrochemical transition metal catalysis.
Collapse
Affiliation(s)
- Xin-Ran Chen
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Shuo-Qing Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Chun-Hui Yang
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Qin-Hao Zhang
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Ji-Ren Liu
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Fa-He Cao
- School of Materials, Sun Yat-sen University Guangzhou 510006 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Xin Hong
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
25
|
Meyer A, Dechert S, Dey S, Höbartner C, Bennati M. Measurement of Angstrom to Nanometer Molecular Distances with 19 F Nuclear Spins by EPR/ENDOR Spectroscopy. Angew Chem Int Ed Engl 2020; 59:373-379. [PMID: 31539187 PMCID: PMC6973229 DOI: 10.1002/anie.201908584] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/02/2019] [Indexed: 12/22/2022]
Abstract
Spectroscopic and biophysical methods for structural determination at atomic resolution are fundamental in studies of biological function. Here we introduce an approach to measure molecular distances in bio-macromolecules using 19 F nuclear spins and nitroxide radicals in combination with high-frequency (94 GHz/3.4 T) electron-nuclear double resonance (ENDOR). The small size and large gyromagnetic ratio of the 19 F label enables to access distances up to about 1.5 nm with an accuracy of 0.1-1 Å. The experiment is not limited by the size of the bio-macromolecule. Performance is illustrated on synthesized fluorinated model compounds as well as spin-labelled RNA duplexes. The results demonstrate that our simple but strategic spin-labelling procedure combined with state-of-the-art spectroscopy accesses a distance range crucial to elucidate active sites of nucleic acids or proteins in the solution state.
Collapse
Affiliation(s)
- Andreas Meyer
- Research Group EPR SpectroscopyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
| | - Sebastian Dechert
- Department of ChemistryGeorg-August-UniversityTammannstr37077GöttingenGermany
| | - Surjendu Dey
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryJulius-Maximilians-University WürzburgAm Hubland97074WürzburgGermany
| | - Marina Bennati
- Research Group EPR SpectroscopyMax Planck Institute for Biophysical ChemistryAm Fassberg 1137077GöttingenGermany
- Department of ChemistryGeorg-August-UniversityTammannstr37077GöttingenGermany
| |
Collapse
|