1
|
Zhang Q, Ma S, Xie Y, Pan S, Miao Z, Wang J, Yang Z. Cobalt Incorporation Promotes CO 2 Desorption from Nickel Active Sites Encapsulated by Nitrogen-Doped Carbon Nanotubes in Urea-Assisted Water Electrolysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26212-26220. [PMID: 39572867 DOI: 10.1021/acs.langmuir.4c03711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The potential application prospects of urea-assisted water electrolysis toward hydrogen production in renewable energy infrastructure can effectively alleviate energy shortages and environmental pollution caused by rich urea wastewater. It is of prominent significance that adjusting the CO2 desorption of nickel-based electrocatalysts can overcome the slow reaction kinetics for urea oxidation reaction (UOR) to achieve exceptional catalytic activity. In this work, cobalt (Co) metal doping is employed to boost the UOR performance of nitrogen-doped carbon nanotubes encapsulating nickel nanoparticle electrocatalysts (Ni@N-CNT). The influence of diverse Co doping concentrations on the performance of UOR and hydrogen evolution reaction (HER) catalytic activities associated with stability are systematically investigated. The Co dopant can effectively promote the dynamical conversion of Ni to Ni3+ species; as a result, the UOR catalytic activity is improved by 1.8-fold at 1.6 V vs RHE. The DFT calculation results show that the CoNi bimetallic structure possesses a comparably lower binding energy for CO2 adsorption accelerating the rate-limiting step. Meanwhile, the Co dopant also boosts the HER performance, achieving a 57 mV reduction in overpotential at 100 mA cm-2 due to the creation of more active sites. In addition, the assembled urea-assisted water electrolysis attains 10 mA cm-2 at merely 1.51 V as well as excellent stability.
Collapse
Affiliation(s)
- Quan Zhang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuangxiu Ma
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Yuhua Xie
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Shuyuan Pan
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhengpei Miao
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jiatang Wang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zehui Yang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| |
Collapse
|
2
|
Meng H, Li J, Wu C, Zhang Q, Wang Z, Tang Y, Zou A, Zhang Y, Ma R, Yu Z, Gao F, Xi S, Xue J, Wang X, Wu J. Hydrothermal-Induced Cationic Vacancies in NiAl Hydroxide for Enhanced Oxygen Evolution Activities through Optimization of e g* Band Broadening. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63602-63611. [PMID: 39528358 DOI: 10.1021/acsami.4c14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nickel-based hydroxides [Ni(OH)2] have attracted significant attention as effective oxygen evolution reaction (OER) catalysts. In recent years, defect engineering has been extensively utilized in Ni(OH)2 modification research. Numerous studies have confirmed that the generation of defects can expose more active sites and regulate electronic states, particularly through the introduction of Al cationic vacancies, which enhance conductivity and thereby improve the catalytic performance. The traditional method for producing cationic vacancies is electrochemical etching. However, this method generates a limited number of vacancies in the catalysts and has the complex etching process. Herein, we found that when NiAl layered double hydroxides were treated using a hydrothermal process at 100 °C in a KOH solution, more Al cationic vacancies were generated. Compared to the traditional method with an Al leaching efficiency of 24%, our proposed method achieved an Al leaching efficiency of 44%. Meanwhile, the electrochemical results showed that the overpotential was reduced by 110 mV at 10 A/g. Further experiments showed that the enhanced OER activities resulting from an increased number of cationic defects lead to structural distortions, which broaden the eg* band, significantly affecting the rate of electron transfer between the electrocatalyst and external circuitry, thereby enhancing the OER activity. This work presents a promising approach to creating cationic defects in Ni(OH)2 for high-performance electrocatalysts.
Collapse
Affiliation(s)
- Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yiming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rui Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhigen Yu
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Feng Gao
- BGRIMM Advanced Materials Science & Technology Co., Ltd., Beijing 102206, China
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Ding S, Wu L, Yuan X. Enhanced Li-O 2 battery performance using NiS/MoS 2 heterostructure by building internal electric field to promote the one-electron oxygen reduction/oxidation. J Colloid Interface Sci 2024; 673:909-921. [PMID: 38909490 DOI: 10.1016/j.jcis.2024.06.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Electrocatalysts with appropriate electron coupling toward LiO2 intermediates can exhibit superior oxygen reduction/evolution reaction kinetics in Li-O2 batteries (LOBs). In this work, a charge redistribution strategy has been developed by constructing NiS/MoS2 heterostructure nanosheet self-assembled hollow microspheres with an internal electric field to regulate the interaction with LiO2 and then improve the electrochemical performance of LOBs. Density functional theory calculations and physicochemical characterizations reveal that the difference of work functions between NiS and MoS2 promotes the electron redistribution in heterointerface via built-in electrical field, leading to increased electron density of interfacial Ni atom, thereby enhancing its electron coupling toward LiO2 intermediates and promoting one-electron oxygen reduction/oxidation reaction kinetics. As a result, the NiS/MoS2-based LOBs exhibit evidently higher discharge capacity and much better cycling performance than the batteries using NiS and MoS2. This work provides a reliable charge redistribution strategy induced by build-in electric field to design efficient catalysts for LOBs.
Collapse
Affiliation(s)
- Shengqi Ding
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liang Wu
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianxia Yuan
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Chu D, Liang Z, Cheng Y, Chai DF, Li M. Mono-/Bimetallic Doped and Heterostructure Engineering for Electrochemical Energy Applications. CHEMSUSCHEM 2024:e202401435. [PMID: 39321338 DOI: 10.1002/cssc.202401435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Designing efficient materials is crucial to meeting specific requirements in various electrochemical energy applications. Mono-/bimetallic doped and heterostructure engineering have attracted considerable research interest due to their unique functionalities and potential for electrochemical energy conversion and storage. However, addressing material imperfections such as low conductivity and poor active sites requires a strategic approach to design. This review explores the latest advancements in materials modified by mono-/bimetallic doped and heterojunction strategies for electrochemical energy applications. It can be subdivided into three key points: (i) the regulatory mechanisms of metal doping and heterostructure engineering for materials; (ii) the preparation methods of materials with various engineering strategies; and (iii) the synergistic effects of two engineering approaches, further highlighting their applications in supercapacitors, alkaline ion batteries, and electrocatalysis. Finally, the review concludes with perspectives and recommendations for further research to advance these technologies.
Collapse
Affiliation(s)
- Dawei Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Zhongwang Liang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yi Cheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Dong-Feng Chai
- Chemical and Biological Processing Group, Pacific Northwest National Laboratory, Richland, Washington, 99354, United States
| | - Meijia Li
- College of Energy Engineering, Huanghuai University, Zhumadian, 463000, China
| |
Collapse
|
5
|
Zi S, Zhu J, Zhai Y, Hu Y, Zhang N, Li S, Liu L, An L, Xi P, Yan CH. Surface Cladding Engineering via Oxygen Sulfur Distribution for Stable Electrocatalytic Oxygen Production. Angew Chem Int Ed Engl 2024:e202413348. [PMID: 39185626 DOI: 10.1002/anie.202413348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Inevitable leaching and corrosion under anodic oxidative environment greatly restrict the lifespan of most catalysts with excellent primitive activity for oxygen production. Here, based on Fick' s Law, we present a surface cladding strategy to mitigate Ni dissolution and stabilize lattice oxygen triggering by directional flow of interfacial electrons and strong electronic interactions via constructing elaborately cladding-type NiO/NiS heterostructure with controlled surface thickness. Multiple in situ characterization technologies indicated that this strategy can effectively prevent the irreversible Ni ions leaching and inhibit lattice oxygen from participating in anodic reaction. Combined with density functional theory calculations, we reveal that the stable interfacial O-Ni-S arrangement can facilitate the accumulation of electrons on surficial NiO side and weaken its Ni-O covalency. This would suppress the overoxidation of Ni and simultaneously fixing the lattice oxygen, thus enabling catalysts with boosted corrosion resistance without sacrificing its activity. Consequently, this cladding-type NiO/NiS heterostructure exhibits excellent performance with a low overpotential of 256 mV after 500 h. Based on Fick's law, this work demonstrates the positive effect of surface modification through precisely adjusting of the oxygen-sulfur exchange process, which has paved an innovative and effective way to solve the instability problem of anodic oxidation.
Collapse
Affiliation(s)
- Shengjie Zi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Jiamin Zhu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Yue Zhai
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Yang Hu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, 730000, Lanzhou, China
| | - Nan Zhang
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Shuhui Li
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Luohua Liu
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes Lanzhou University, 730000, Lanzhou, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| |
Collapse
|
6
|
Chen Y, Wang Y, Liu B, Zhang C, Sun D, Liu H, Zhou W. Room-temperature sulfur doped NiMoO 4 with enhanced conductivity and catalytic activity for efficient hydrogen evolution reaction in alkaline media. J Colloid Interface Sci 2024; 664:469-477. [PMID: 38484515 DOI: 10.1016/j.jcis.2024.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Transition metal oxides have been acknowledged for their exceptional water splitting capabilities in alkaline electrolytes, however, their catalytic activity is limited by low conductivity. The introduction of sulfur (S) into nickel molybdate (NiMoO4) at room temperature leads to the formation of sulfur-doped NiMoO4 (S-NiMoO4), thereby significantly enhancing the conductivity and facilitating electron transfer in NiMoO4. Furthermore, the introduction of S effectively modulates the electron density state of NiMoO4 and facilitates the formation of highly active catalytic sites characterized by a significantly reduced hydrogen absorption Gibbs free energy (ΔGH*) value of -0.09 eV. The electrocatalyst S-NiMoO4 exhibits remarkable catalytic performance in promoting the hydrogen evolution reaction (HER), displaying a significantly reduced overpotential of 84 mV at a current density of 10 mA cm-2 and maintaining excellent durability at 68 mA cm-2 for 10 h (h). Furthermore, by utilizing the anodic sulfide oxidation reaction (SOR) instead of the sluggish oxygen evolution reaction (OER), the assembled electrolyzer employing S-NiMoO4 as both the cathode and anode need merely 0.8 V to achieve 105 mA cm-2, while simultaneously producing hydrogen gas (H2) and S monomer. This work paves the way for improving electron transfer and activating active sites of metal oxides, thereby enhancing their HER activity.
Collapse
Affiliation(s)
- Yuke Chen
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yijie Wang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Baishan Liu
- Zhejiang Viersin Advanced Materials Co., Ltd, 6 Donggang Road, Haiyan Economic Development Zone, PR China
| | - Congcong Zhang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Dehui Sun
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China; State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China.
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
7
|
Long Y, Shen Y, Jiang P, Su H, Xian J, Sun Y, Yang J, Song H, Liu Q, Li G. Ultrafine Ru nanoparticles stabilized by V 8C 7/C for enhanced hydrogen evolution reaction at all pH. Sci Bull (Beijing) 2024; 69:763-771. [PMID: 38246797 DOI: 10.1016/j.scib.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
The development of cost-effective electrocatalysts with high efficiency and long durability for hydrogen evolution reaction (HER) remains a great challenge in the field of water splitting. Herein, we design an ultrafine and highly dispersed Ru nanoparticles stabilized on porous V8C7/C matrix via pyrolysis of the metal-organic frameworks V-BDC (BDC: 1,4-benzenedicarboxylate). The obtained Ru-V8C7/C composite exhibits excellent HER performance in all pH ranges. At the overpotential of 40 mV, its mass activity is about 1.9, 4.1 and 9.4 times higher than that of commercial Pt/C in acidic, neutral and alkaline media, respectively. Meanwhile, Ru-V8C7/C shows the remarkably high stability in all pH ranges which, in particular, can maintain the current density of 10 mA cm-2 for over 150 h in 1.0 mol L-1 phosphate buffer saline (PBS). This outstanding HER performance can be attributed to the high intrinsic activity of Ru species and their strong interface interactions to the V8C7/C substrate. The synergistic effect of abundant active sites on the surface and the formed Ru-C-V units at the interface promotes the adsorption of reaction intermediates and the release of active sites, contributing the fast HER kinetics. This work provides a reference for developing versatile and robust HER catalysts by surface and interface regulation for pH tolerance.
Collapse
Affiliation(s)
- Yanju Long
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Shen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Pingping Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Su
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiahui Xian
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yamei Sun
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun Yang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Haili Song
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Guangqin Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Lehn Institute of Functional Materials, Guangdong Provincial Key Laboratory for High Performance Polymeric Composites, Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Liang S, Dong C, Zhou C, Wang R, Huang F. Ion-Sieve-Confined Synthesis of Size-Tunable Ru for Electrochemical Hydrogen Evolution. NANO LETTERS 2024; 24:757-763. [PMID: 38166149 DOI: 10.1021/acs.nanolett.3c04419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The controllable and low-cost synthesis of nanometal particles is highly desired in scientific and industrial research. Herein, size-tunable Ru nanoparticles were synthesized by using a novel ion-sieve-confined reduction method. The H2TiO3 ion-sieve was used to adsorb Ru3+ into the hydroxyl-enriched porous [TiO3]2- layers. The confined environment of the interlayer space facilitates Ru-Ru collision and bonding during annealing, achieving a precise reduction from Ru3+ to Ru0 without additional reductants. Owing to the confinement effect, Ru0 nanoparticles are uniformly embedded in the pores on the surface of the postannealed TiO2 matrix (Ru@TiO2). Ru@TiO2 exhibited a lower overpotential than Pt/C (57 vs 87 mV at 10 mA cm-2) for the HER in 0.1 M KOH solution. The confinement-induced reduction of metal ions was also preliminarily proved in ion-exchanged zeolites, which provides facile and abundant approaches for the size-controllable synthesis of nanometal catalysts with high catalytic activity.
Collapse
Affiliation(s)
- Song Liang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chenlong Dong
- Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ce Zhou
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ruiqi Wang
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, P. R. China
| | - Fuqiang Huang
- Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Zhang X, Liu F, Ji X, Cui L, Li C, Liu J. Facile generation of CeO 2 nanoparticles on multiphased NiS x nanoplatelet arrays as a free-standing electrode for efficient overall water splitting. J Colloid Interface Sci 2024; 653:308-315. [PMID: 37717431 DOI: 10.1016/j.jcis.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
Constructing nanostructured electrocatalysts with heterointerface and finetuning their electronic properties are essential for high-efficient overall water splitting. Here, we prepared a well-designed nano-flower-like multiphase and hybrid material of NiS/NiS2/CeO2/NF (NiSx/CeO2/NF) with rich heterointerfaces and abundant active sites through solvothermal reaction and post-annealing treatment. The as-fabricated NiSx/CeO2/NF exhibits exceptional catalytic performance for OER and HER. Specifically, in 1 M KOH solution, it requires the low overpotentials of 326 and 92 mV to achieve the current density of 200 and 10 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. More satisfactorily, when NiSx/CeO2/NF is used as the bifunctional catalyst, a low voltage of only 1.53 V is required to achieve a current density of 10 mA cm-2 for overall water splitting. The excellent catalytic performance should be attributed to its special heterogeneous structure and the synergy effect between NiSx and CeO2. This work emphasizes the important significance of constructing efficient bifunctional electrocatalysts by reasonably designing heterostructures and multiphase components for overall water splitting.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China; College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
| | - Fuguang Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
| | - Xuqiang Ji
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China
| | - Chuanming Li
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China.
| | - Jingquan Liu
- College of Materials Science and Engineering, Linyi University, Linyi, Shandong 276000, China; College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, State Key Laboratory of Bio-Fibers and Eco-textiles, Qingdao University, Qingdao 266071, Shandong, China.
| |
Collapse
|
10
|
Zhao B, Yan Z, Li D, Zhou X, Du Y, Wu Y, Yang L, Zhang J, Zhang DW, Che R. Hierarchical Flower-like Sulfides with Increased Entropy for Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59618-59629. [PMID: 38085920 DOI: 10.1021/acsami.3c15017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The concept of high entropy is considered promising to enhance electromagnetic wave absorption properties. However, preparing high-entropy sulfides with unique structures for high-performance electromagnetic absorption remains a challenge. In this study, hierarchical porous flower-like dual-phase sulfides were designed with increased entropy and fabricated using a versatile approach. The porous flower configuration enhanced the scattering of electromagnetic waves and the impedance-matching characteristics. Additionally, the effect of high entropy induced diverse defects that were favorable for electromagnetic wave dissipation in dual-phase sulfides. The design of the dual-phase structure generated strong interface polarization, and the composition and content of the phases exhibited clear changes with the increase in the number of metal elements. Interestingly, apparent lattice distortions, defects, and shear strains were directly observed near the dual-phase interface of millerite (102) and pyrite (220) planes, facilitating the occurrence of dipole polarization. Consequently, the developed dual-phase high-entropy sulfide exhibited outstanding microwave absorption properties. The minimum reflection loss value of (FeCoNiCuZn)S was -45.8 dB at a thickness of 1.5 mm, and the optimal effective absorption bandwidth was 3.8 GHz at a thickness of 1.4 mm thickness. Thus, the design of high-entropy sulfides brings meaningful guidance for tuning the wave absorption properties in sulfides.
Collapse
Affiliation(s)
- Biao Zhao
- School of Microelectronics, Fudan University, Shanghai 200433, China
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China
| | - Zhikai Yan
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China
| | - Depeng Li
- Henan Key Laboratory of Aeronautical Materials and Application Technology, School of Material Science and Engineering, Zhengzhou University of Aeronautics, Zhengzhou, Henan 450046, China
| | - Xiaodi Zhou
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
| | - Yiqian Du
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
| | - Yuyang Wu
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
| | - Liting Yang
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
| | | | - David Wei Zhang
- School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Renchao Che
- Laboratory of Advanced Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChem), Fudan University, Shanghai 200438, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
11
|
Jiang L, Gu M, Wang H, Huang X, Gao A, Sun P, Liu X, Zhang X. Synergistically Regulating the Electronic Structure of CoS by Cation and Anion Dual-Doping for Efficient Overall Water Splitting. CHEMSUSCHEM 2023; 16:e202300592. [PMID: 37313584 DOI: 10.1002/cssc.202300592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023]
Abstract
Precisely regulating the electronic construction of the reactive center is an essential method to improve the electrocatalysis, but achieving efficient multifunctional characteristics remains a challenge. Herein, CoS sample dual-doped by Cu and F atoms, as bifunctional electrocatalyst, is designed and synthesized for water electrolysis. According to the experimental results, Cu atom doping can perform primary electronic adjustment and obtain bifunctional properties, and then the electronic structure is adjusted for the second time to achieve an optimal state by introducing F atom. Meanwhile, this dual-doping strategy will result in lattice distortion and expose more active sites. As expected, dual-doped Cu-F-CoS show the brilliant electrocatalytic activity, revealing ultralow overpotentials (59 mV for HER, 213 mV for OER) at 10 mA cm-2 in alkaline electrolyte. Besides, it also exhibits distinguished water electrolysis activity with cell voltage as low as 1.52 V at 10 mA cm-2 . Our work can provide an atomic-level perception for adjusting the electronic construction of reactive sites by means of dual-doping engineering and put forward a contributing path for the electrocatalysts with multifunctional designing.
Collapse
Affiliation(s)
- Ling Jiang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Mingzheng Gu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hao Wang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaomin Huang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - An Gao
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Ping Sun
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xudong Liu
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiaojun Zhang
- Key Laboratory for Functional Molecular Solids of the Education Ministry of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Anhui Province International Research Center on Advanced Building Materials, Anhui Jianzhu University, Hefei, 230601, China
| |
Collapse
|
12
|
Lv G, Dai X, Qiao Y, Ren G, Tan Q, Guo SW, Liu YN, Chen Y. Anti-Shedding Nickel-Protection-Layer Boosting an Ultrahigh Loading Carbon Fiber@Co-NiS x Electrode to Deliver Superior Areal/Volumetric/Gravimetric Capacitance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43778-43789. [PMID: 37672756 DOI: 10.1021/acsami.3c08982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Challenges remain to show good capacitive performance while achieving high loadings of active materials for supercapacitors. Trying to realize this version, a nickel-protecting carbon fiber paper@Co-doped NiSx (Ni-CP@Co-NiSx) electrode with high specific gravimetric, areal, and volumetric capacitance is reported in this work. This free-standing electrode is prepared by an electroplating-hydrothermal-electroplating (EHE) three-step method to achieve a high loading of almost 26.7 mg cm-2. The cobalt-doping and nickel-protection strategies effectively decrease the impedance and inhibit the active material dropping from the electrode resulting from the expansion stress, which endows the Ni-CP@Co-NiSx electrode with a high rate and good cycling performance, especially with an ultrahigh specific areal/volumetric/gravimetric capacitance of 53.3 F cm-2/2807 F cm-3/1997 F g-1 at 5 mA cm-2, respectively. Employing activated carbon functionalized with riboflavin (AC/VB2) as a negative electrode, the asymmetric supercapacitor device delivers a very high energy density of up to 60.4 W h kg-1. This work demonstrates that electrodes with a high loading density and excellent performance can be obtained by the combination of the EHE method to adjust the internal conductivity and external structural stability.
Collapse
Affiliation(s)
- Guangjun Lv
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xin Dai
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yide Qiao
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Guopan Ren
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Qiang Tan
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sheng-Wu Guo
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yong-Ning Liu
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuanzhen Chen
- The State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
13
|
Yan W, Ma H, Zhao X, Zhang Y, Vishniakov P, Wang X, Zhong X, Hong Z, Maximov MY, Song L, Peng S, Li L. P and Se Binary Vacancies and Heterostructures Modulated MoP/MoSe 2 Electrocatalysts for Improving Hydrogen Evolution and Coupling Electricity Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208270. [PMID: 37026657 DOI: 10.1002/smll.202208270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Indexed: 06/19/2023]
Abstract
It is not enough to develop an ideal hydrogen evolution reaction (HER) electrocatalysts by single strategy. Here, the HER performances are significantly improved by the combined strategies of P and Se binary vacancies and heterostructure engineering, which is rarely explored and remain unclear. As a result, the overpotentials of MoP/MoSe2 -H heterostructures rich in P and Se binary vacancies are 47 and 110 mV at 10 mA cm-2 in 1 m KOH and 0.5 m H2 SO4 electrolytes, respectively. Especially, in 1 m KOH, the overpotential of MoP/MoSe2 -H is very close to commercial Pt/C at the beginning and even better than Pt/C when current density is over 70 mA cm-2 . The strong interactions between MoSe2 and MoP facilitate electrons transfer from P to Se. Thus, MoP/MoSe2 -H possesses more electrochemically active sites and faster charge transfer capability, which are all in favor of high HER activities. Additionally, Zn-H2 O battery with MoP/MoSe2 -H as cathode is fabricated for simultaneous generation of hydrogen and electricity, which displays the maximum power density of up to 28.1 mW cm-2 and stable discharging performance for 125 h. Overall, this work validates a vigorous strategy and provides guidance for the development of efficient HER electrocatalysts.
Collapse
Affiliation(s)
- Wensi Yan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hui Ma
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - You Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Paul Vishniakov
- Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Xin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiaohong Zhong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zhe Hong
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Maxim Yu Maximov
- Peter the Great Saint-Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
| | - Li Song
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Shengjie Peng
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| |
Collapse
|
14
|
Yan Y, Zhang C, Deng X, Zhang J, Xue Y, Zhang J, Luo Y, Yang F, Wang G, Wang R, Chen J. Designing Superhydrophilic Hydrogels as Binder-Free Catalysts for Enhanced Oxygen Evolution Performance. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Affiliation(s)
- Yong Yan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chenyang Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yali Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yingjian Luo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Fuwen Yang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
15
|
Zhang H, Xiao X, Xu H, Wang L, Li Y, Ouyang C, Zhong S. Two-dimensional metal-phase layered molybdenum disulfide for electrocatalytic hydrogen evolution reaction. NANOSCALE 2023; 15:4429-4437. [PMID: 36751735 DOI: 10.1039/d2nr06184h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The two-dimensional (2D) basal plane of metal-phase molybdenum disulphide (1T-MoS2) provides a large area of active sites to significantly reduce the overpotential of the hydrogen evolution reaction (HER), but the long preparation period limits its industrial application. Here, 1T-MoS2 catalysts derived from molybdenum blue solution (MBS) were prepared in one step using a rapid high-pressure microwave (MW-MoS2) strategy. This method eliminated the thermodynamic process with a long time required for Mo-O trioxide bond breakage and reduction (MoVI → MoIV) of the conventional hydrothermal method. Additionally, the introduction of heteroatomic oxygen atoms effectively reduced the build-up of MW-MoS2 and improved the monolayer/few-layer state and stability. Impressively, MW-MoS2 has outstanding electrocatalytic performance, with a low overpotential (62 mV) at 10 mA cm-2 and a small Tafel slope (42 mV dec-1). This provides a simple strategy for the rapid preparation of a 2D sulphide HER catalyst with performance close to that of commercial Pt/C.
Collapse
Affiliation(s)
- Hang Zhang
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Xuejian Xiao
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Hualan Xu
- Analytical and Testing Center, Jiangxi Normal University, Nanchang, 330022, P.R. China
| | - Lei Wang
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Yuan Li
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Chuying Ouyang
- Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| | - Shengliang Zhong
- Research Center for Ultrafine Powder Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China.
| |
Collapse
|
16
|
Wang Y, Guo X, Wang X, Huang J, Yin L, Zhu W, Zhuang Z. Construction of steady-active self-supported porous Ir-based electrocatalysts for the oxygen evolution reaction. Chem Commun (Camb) 2023; 59:1813-1816. [PMID: 36722877 DOI: 10.1039/d2cc06231c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Developing highly active and stable oxygen evolution reaction (OER) catalysts for water electrolysis remains a great challenge. A self-supported Ir nanocatalyst was prepared via a self-assembly method. Its porous structure and residual metal incorporation contributed to its high activity and stability for the OER in acid.
Collapse
Affiliation(s)
- Yongsheng Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China. .,State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoxuan Guo
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinyu Wang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China. .,International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
| | - Junling Huang
- International Clean Energy Research Office, China Three Gorges Corporation, Beijing 100038, China
| | - Likun Yin
- Institute of Science and Technology, China Three Gorges Corporation, Beijing 100038, China.
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. .,Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Ding X, Zhang M, Chang X, Zhou X. In situ growth of Prussian blue analogue-derived Fe-doped NiS on Ni(OH) 2 for efficient hydrogen evolution reaction. Dalton Trans 2023; 52:1680-1686. [PMID: 36648764 DOI: 10.1039/d2dt03332a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The energy industry is placing more and more emphasis on the need for effective and affordable electrocatalysts for hydrogen evolution reactions (HER). In this work, an iron-doped NiS/Ni(OH)2/CC composite material was synthesized by simple hydrothermal sulfurization processes of bimetallic Prussian blue analogue (PBAs) precursors grown in situ on three-dimensional (3D) Ni(OH)2 nanosheets. The overpotential can be 103 mV to attain current densities of 10 mA cm-2. The excellent catalytic activity of Fe-NiS/Ni(OH)2/CC is because of the unique 3D structure and the uniform doping of iron caused by the in situ growth of PBA, as well as the high conductivity of the self-supported electrode carbon cloth.
Collapse
Affiliation(s)
- Xinyao Ding
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Xin Chang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| | - Xuejiao Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China.
| |
Collapse
|
18
|
Su H, Jiang J, Song S, An B, Li N, Gao Y, Ge L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64149-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Tian L, Chen Z, Wang T, Cao M, Lu X, Cheng W, He C, Wang J, Li Z. Mo doping and Se vacancy engineering for boosting electrocatalytic water oxidation by regulating the electronic structure of self-supported Co 9Se 8@NiSe. NANOSCALE 2022; 15:259-265. [PMID: 36477799 DOI: 10.1039/d2nr05410h] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxygen evolution reactions (OERs) are regarded as the rate-determining step of electrocatalytic overall water splitting, which endow OER electrocatalysts with the advantages of high activity, low cost, good conductivity, and excellent stability. Herein, a facile H2O2-assisted etching method is proposed for the fabrication of Mo-doped ultrathin Co9Se8@NiSe/NF-X heterojunctions with rich Se vacancies to boost electrocatalytic water oxidation. After step-by-step electronic structure modulation by Mo doping and Se vacancy engineering, the self-standing Mo-Co9Se8@NiSe/NF-60 heterojunctions deliver a current density of 50 mA cm-2 with an overpotential of 343 mV and a cell voltage of only 1.87 V at 50 mA cm-2 for overall water splitting in 1.0 M KOH. Our study opens up the possibility of realizing step-by-step electronic structure modulation of nonprecious OER electrocatalysts via heteroatom doping and vacancy engineering.
Collapse
Affiliation(s)
- Lin Tian
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
| | - Zhenyang Chen
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Tingjian Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Ming Cao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Chemistry and Environmental Science, Yili Normal University, Yili 835000, China
| | - Changchun He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Ju Wang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
20
|
Ruthenium-modified porous NiCo2O4 nanosheets boost overall water splitting in alkaline solution. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Chen R, Zhang Z, Wang Z, Wu W, Du S, Zhu W, Lv H, Cheng N. Constructing Air-Stable and Reconstruction-Inhibited Transition Metal Sulfide Catalysts via Tailoring Electron-Deficient Distribution for Water Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Zeyi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Shaowu Du
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou350108, P. R. China
| | - Wangbin Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Haifeng Lv
- PEM Fuel Cell Catalyst Research and Development Center, Shenzhen Academy of Aerospace Technology, Shenzhen518057, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| |
Collapse
|
22
|
Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat Commun 2022; 13:5227. [PMID: 36064713 PMCID: PMC9445080 DOI: 10.1038/s41467-022-32937-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The realization of the efficient hydrogen conversion with large current densities at low overpotentials represents the development trend of this field. Here we report the atomic active sites tailoring through a facile synthetic method to yield well-defined Rhodium nanocrystals in aqueous solution using formic acid as the reducing agent and graphdiyne as the stabilizing support. High-resolution high-angle annular dark-field scanning-transmission electron microscopy images show the high-density atomic steps on the faces of hexahedral Rh nanocrystals. Experimental results reveal the formation of stable sp-C~Rh bonds can stabilize Rh nanocrystals and further improve charge transfer ability in the system. Experimental and density functional theory calculation results solidly demonstrate the exposed high active stepped surfaces and various metal atomic sites affect the electronic structure of the catalyst to reduce the overpotential resulting in the large-current hydrogen production from saline water. This exciting result demonstrates unmatched electrocatalytic performance and highly stable saline water electrolysis.
Collapse
|
23
|
Wu T, Xu S, Zhang Z, Luo M, Wang R, Tang Y, Wang J, Huang F. Bimetal Modulation Stabilizing a Metallic Heterostructure for Efficient Overall Water Splitting at Large Current Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202750. [PMID: 35818696 PMCID: PMC9443435 DOI: 10.1002/advs.202202750] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Large current-driven alkaline water splitting for large-scale hydrogen production generally suffers from the sluggish charge transfer kinetics. Commercial noble-metal catalysts are unstable in large-current operation, while most non-noble metal catalysts can only achieve high activity at low current densities <200 mA cm-2 , far lower than industrially-required current densities (>500 mA cm-2 ). Herein, a sulfide-based metallic heterostructure is designed to meet the industrial demand by regulating the electronic structure of phase transition coupling with interfacial defects from Mo and Ni incorporation. The modulation of metallic Mo2 S3 and in situ epitaxial growth of bifunctional Ni-based catalyst to construct metallic heterostructure can facilitate the charge transfer for fast Volmer H and Heyrovsky H2 generation. The Mo2 S3 @NiMo3 S4 electrolyzer requires an ultralow voltage of 1.672 V at a large current density of 1000 mA cm-2 , with ≈100% retention over 100 h, outperforming the commercial RuO2 ||Pt/C, owing to the synergistic effect of the phase and interface electronic modulation. This work sheds light on the design of metallic heterostructure with an optimized interfacial electronic structure and abundant active sites for industrial water splitting.
Collapse
Affiliation(s)
- Tong Wu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Shumao Xu
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
| | - Zhuang Zhang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Mengjia Luo
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ruiqi Wang
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Yufeng Tang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiacheng Wang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Fuqiang Huang
- State Key Lab of High Performance Ceramics and Superfine MicrostructureShanghai Institute of CeramicsChinese Academy of SciencesShanghai200050China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
- State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
24
|
Cao N, Chen S, Di Y, Li C, Qi H, Shao Q, Zhao W, Qin Y, Zang X. High efficiency in overall water-splitting via Co-doping heterointerface-rich NiS2/MoS2 nanosheets electrocatalysts. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zheng Y, Hu H, Zhu Y, Rong J, Zhang T, Yang D, Wen Q, Qiu F. ZIF-67-Derived (NiCo)S 2@NC Nanosheet Arrays Hybrid for Efficient Overall Water Splitting. Inorg Chem 2022; 61:14436-14446. [PMID: 36038523 DOI: 10.1021/acs.inorgchem.2c02375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic water splitting is considered a promising approach to obtain clean and sustainable hydrogen energy. The integration of optimal nanoarchitecture and multicomponent synergy has been a significant factor for designing a bifunctional electrocatalyst to promote the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In particular, the charge migration, mass transfer, and gas release rate in the catalyzing process are closely correlated with the architecture of the catalyst. Here, ZIF-67-derived N-doped carbon nanofiber-supported (NiCo)S2 nanosheet [(NiCo)S2/NCNF] as a bifunctional electrocatalyst was synthesized using electrospinning, template etching, and subsequent gas sulfidation method. The hierarchical hybrid nanofiber with inner hollow cubes and outer nanosheets provides easy electron penetration, high charge/mass transportation efficiency, and robust structure stability. Furthermore, the MOF-derived carbon-encapsuled bimetal-sulfide and the synergistic effect of double active centers are conducive to an exceptional performance, showing low overpotentials of 177 and 203 mV to drive a current density of 10 mA cm-2 and robust stability for the HER and OER, respectively. Meanwhile, the (NiCo)S2/NCNF electrodes exhibit a small voltage of 1.61 V for overall water splitting activity with an electrolyzer cell at current densities of 10 mA cm-2 over 12 h. This work presents novel insights into the bifunctional catalyst for promoting the overall water splitting via a MOF-derived nanoarchitecture and multicomponent synergy.
Collapse
Affiliation(s)
- Yunhua Zheng
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Huiting Hu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jian Rong
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Qi Wen
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
26
|
Bai X, Duan Z, Nan B, Wang L, Tang T, Guan J. Unveiling the active sites of ultrathin Co-Fe layered double hydroxides for the oxygen evolution reaction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64033-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Xu J, Wang S, Feng Y, Wu P, Tian S, Fang Z, Liu Q, Kong X. Fe Engineering on Ru Nanosheets for Enhanced Hydrogen Evolution in pH-Universal Media. Inorg Chem 2022; 61:11519-11523. [PMID: 35849848 DOI: 10.1021/acs.inorgchem.2c01922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Fe-modified Ru nanosheets are achieved via preintercalated Al species serving as the self-sacrificial template. Benefiting from the amphoteric feature of Al and strong corrosion of Fe3+ ions, Fe is effectively incorporated into pristine Ru nanosheets. Correspondingly, the surface oxophilicity is improved, promoting the Volmer step. The charge density redistribution weakens hydrogen combination on Ru and thus accelerates the desorption kinetics (Heyrovsky step). Meanwhile, more defective sites are exposed, leading to an enhanced hydrogen production in pH-universal electrolytes.
Collapse
Affiliation(s)
- Jie Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Sini Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Yingrui Feng
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Peikun Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Siyu Tian
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Zhenguo Fang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Qiangchun Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| | - Xiangkai Kong
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, People's Republic China
| |
Collapse
|
28
|
Mondal S, Sarkar S, Bagchi D, Das T, Das R, Singh AK, Prasanna PK, Vinod CP, Chakraborty S, Peter SC. Morphology-Tuned Pt 3 Ge Accelerates Water Dissociation to Industrial-Standard Hydrogen Production over a wide pH Range. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202294. [PMID: 35609013 DOI: 10.1002/adma.202202294] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
The discovery of novel materials for industrial-standard hydrogen production is the present need considering the global energy infrastructure. A novel electrocatalyst, Pt3 Ge, which is engineered with a desired crystallographic facet (202), accelerates hydrogen production by water electrolysis, and records industrially desired operational stability compared to the commercial catalyst platinum is introduced. Pt3 Ge-(202) exhibits low overpotential of 21.7 mV (24.6 mV for Pt/C) and 92 mV for 10 and 200 mA cm-2 current density, respectively in 0.5 m H2 SO4 . It also exhibits remarkable stability of 15 000 accelerated degradation tests cycles (5000 for Pt/C) and exceptional durability of 500 h (@10 mA cm-2 ) in acidic media. Pt3 Ge-(202) also displays low overpotential of 96 mV for 10 mA cm-2 current density in the alkaline medium, rationalizing its hydrogen production ability over a wide pH range required commercial operations. Long-term durability (>75 h in alkaline media) with the industrial level current density (>500 mA cm-2 ) has been demonstrated by utilizing the electrochemical flow reactor. The driving force behind this stupendous performance of Pt3 Ge-(202) has been envisaged by mapping the reaction mechanism, active sites, and charge-transfer kinetics via controlled electrochemical experiments, ex situ X-ray photoelectron spectroscopy, in situ infrared spectroscopy, and in situ X-ray absorption spectroscopy further corroborated by first principles calculations.
Collapse
Affiliation(s)
- Soumi Mondal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Shreya Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Debabrata Bagchi
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Tisita Das
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - Risov Das
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Ashutosh Kumar Singh
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Ponnappa Kechanda Prasanna
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - C P Vinod
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 410008, India
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, HBNI, Chhatnag Road, Jhunsi, Prayagraj (Allahabad), 211019, India
| | - Sebastian C Peter
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| |
Collapse
|
29
|
Chen Q, An X, Wu X, Zhang J, Yao W, Sun C, Wang Q, Kong Q. Mo‐Doped Sulfur‐Vacancy‐Rich V
1.11
S
2
Nanosheets for Efficient Hydrogen Evolution. ChemistrySelect 2022. [DOI: 10.1002/slct.202201266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiuyue Chen
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Xuguang An
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Xiaoqiang Wu
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Jing Zhang
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Weitang Yao
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology and Center for Translational Atomaterials Swinburne University of Technology Hawthorn VIC 3122 Australia
| | - Qingyuan Wang
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
- College of Architecture and Environment Sichuan University Chengdu 610065 Sichuan PR China
| | - Qingquan Kong
- Department of Mechanical Engineering Chengdu University Chengdu 610106 Sichuan PR China
- College of Architecture and Environment Sichuan University Chengdu 610065 Sichuan PR China
- Catastrophic Mechanics and Engineering Disaster Prevention Key Laboratory of Sichuan Province Sichuan University Chengdu 610065 PR China
| |
Collapse
|
30
|
Li C, Wang Z, Liu M, Wang E, Wang B, Xu L, Jiang K, Fan S, Sun Y, Li J, Liu K. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat Commun 2022; 13:3338. [PMID: 35680929 PMCID: PMC9184596 DOI: 10.1038/s41467-022-31077-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/31/2022] [Indexed: 01/22/2023] Open
Abstract
Designing cost-effective and high-efficiency catalysts to electrolyze water is an effective way of producing hydrogen. Practical applications require highly active and stable hydrogen evolution reaction catalysts working at high current densities (≥1000 mA cm-2). However, it is challenging to simultaneously enhance the catalytic activity and interface stability of these catalysts. Herein, we report a rapid, energy-saving, and self-heating method to synthesize high-efficiency Mo2C/MoC/carbon nanotube hydrogen evolution reaction catalysts by ultrafast heating and cooling. The experiments and density functional theory calculations reveal that numerous Mo2C/MoC hetero-interfaces offer abundant active sites with a moderate hydrogen adsorption free energy ΔGH* (0.02 eV), and strong chemical bonding between the Mo2C/MoC catalysts and carbon nanotube heater/electrode significantly enhances the mechanical stability owing to instantaneous high temperature. As a result, the Mo2C/MoC/carbon nanotube catalyst achieves low overpotentials of 233 and 255 mV at 1000 and 1500 mA cm-2 in 1 M KOH, respectively, and the overpotential shows only a slight change after working at 1000 mA cm-2 for 14 days, suggesting the excellent activity and stability of the high-current-density hydrogen evolution reaction catalyst. The promising activity, excellent stability, and high productivity of our catalyst can fulfil the demands of hydrogen production in various applications.
Collapse
Affiliation(s)
- Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhijie Wang
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Mingda Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Longlong Xu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kaili Jiang
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Shoushan Fan
- Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
| | - Yinghui Sun
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Jia Li
- Shenzhen Geim Graphene Center and Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
31
|
Shen W, Jin J, Hu Y, Hou Y, Yin J, Ma Z, Zhao YQ, Xi P. Surface chlorine doped perovskite-type cobaltate lanthanum for water oxidation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
He W, Zhang R, Zhang J, Wang F, Li Y, Zhao J, Chen C, Liu H, Xin HL. Promoting the water dissociation of nickel sulfide electrocatalyst through introducing cationic vacancies for accelerated hydrogen evolution kinetics in alkaline media. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Feng Y, Guan Y, Zhou E, Zhang X, Wang Y. Nanoscale Double-Heterojunctional Electrocatalyst for Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201339. [PMID: 35466554 PMCID: PMC9218783 DOI: 10.1002/advs.202201339] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The active sites and charge/mass transfer properties in electrocatalysts play vital roles in kinetics and thermodynamics of electrocatalysis, and impose direct impacts on electrocatalytic performance, which cannot be achieved by a simplex structure. As a prototype, the authors propose a double-heterojunctional nanostructure of NiS2 /Ni3 C@C containing NiS2 /Ni3 C and Ni3 C/C heterojunctions as a general model to optimize the above issues and boost electrocatalytic performance. During the thermal reorganization, the in situ reaction between NiS2 nanoparticles and carbon induces the formation of Ni3 C between them and constructs tightly contacted two kinds of interfaces among the three components. The TEM and XPS reveal the intimately contacted three components and the as-constructed interacted dual interfaces, further confirming the formation of a porous double-heterojunctional nanostructure. Theoretical calculations uncover that the electron density redistribution occurs at Ni3 C/C interface by spontaneous electron transfer from defected carbon to Ni3 C and lower ΔGH* achieves at NiS2 /Ni3 C interface by the concentrated interfacial charge density, which favors the simultaneous realization of high catalytic activity and rapid charge/mass transfer. When applied for hydrogen evolution reaction (HER), the porous double-heterojunctional NiS2 /Ni3 C@C exhibits excellent HER activity and durability among all pH values. Profoundly, this special double-heterojunctional structure can provide a new model for high-performance electrocatalysts and beyond.
Collapse
Affiliation(s)
- Yangyang Feng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Yongxin Guan
- Chongqing Industry Polytechnic CollegeChongqing401120P. R. China
| | - Enbo Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructuresand Fujian Provincial Key Laboratory of NanomaterialsState Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhouFujian350108P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
34
|
Zhang H, Geng S, Ouyang M, Yadegari H, Xie F, Riley DJ. A Self-Reconstructed Bifunctional Electrocatalyst of Pseudo-Amorphous Nickel Carbide @ Iron Oxide Network for Seawater Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200146. [PMID: 35338616 PMCID: PMC9131433 DOI: 10.1002/advs.202200146] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/02/2022] [Indexed: 05/19/2023]
Abstract
Here, a sol-gel method is used to prepare a Prussian blue analogue (NiFe-PBA) precursor with a 2D network, which is further annealed to an Fe3 O4 /NiCx composite (NiFe-PBA-gel-cal), inheriting the ultrahigh specific surface area of the parent structure. When the composite is used as both anode and cathode catalyst for overall water splitting, it requires low voltages of 1.57 and 1.66 V to provide a current density of 100 mA cm-2 in alkaline freshwater and simulated seawater, respectively, exhibiting no obvious attenuation over a 50 h test. Operando Raman spectroscopy and X-ray photoelectron spectroscopy indicate that NiOOH2-x active species containing high-valence Ni3+ /Ni4+ are in situ generated from NiCx during the water oxidation. Density functional theory calculations combined with ligand field theory reveal that the role of high valence states of Ni is to trigger the production of localized O 2p electron holes, acting as electrophilic centers for the activation of redox reactions for oxygen evolution reaction. After hydrogen evolution reaction, a series of ex situ and in situ investigations indicate the reduction from Fe3+ to Fe2+ and the evolution of Ni(OH)2 are the origin of the high activity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Songyuan Geng
- Department of ChemistryImperial College LondonLondonSW7 2AZUK
| | - Mengzheng Ouyang
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
| | - Hossein Yadegari
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - Fang Xie
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| | - D. Jason Riley
- Department of Materials and London Center for NanotechnologyImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
35
|
Huang S, Zhang Q, Xin P, Zhang J, Chen Q, Fu J, Jin Z, Wang Q, Hu Z. Construction of Fe-doped NiS-NiS 2 Heterostructured Microspheres Via Etching Prussian Blue Analogues for Efficient Water-Urea Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106841. [PMID: 35182017 DOI: 10.1002/smll.202106841] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Developing efficient and robust non-precious-metal-based catalysts to accelerate electrocatalytic reaction kinetics is crucial for electrochemical water-urea splitting. Herein, Fe-doped NiS-NiS2 heterostructured microspheres, an electrocatalyst, are synthesized via etching Prussian blue analogues following a controlled annealing treatment. The resulting microspheres are constructed by mesoporous nanoplates, granting the virtues of large surface areas, high structural void porosity, and accessible inner surface. These advantages not only provide more redox reaction centers but also strengthen structural robustness and effectively facilitate the mass diffusion and charge transport. Density functional theory simulations validate that the Fe-doping improves the conductivity of nickel sulfides, whereas the NiS-NiS2 heterojunctions induce interface charge rearrangement for optimizing the adsorption free energy of intermediates, resulting in a low overpotential and high electrocatalytic activity. Specifically, an ultralow overpotential of 270 mV at 50 mA cm-2 for the oxygen evolution reaction (OER) is achieved. After adding 0.33 M urea into 1 M KOH, Fe-doped NiS-NiS2 obtains a strikingly reduced urea oxidation reaction potential of 1.36 V to reach 50 mA cm-2 , around 140 mV less than OER. This work provides insights into the synergistic modulation of electrocatalytic activity of non-noble catalysts for applications in energy conversion systems.
Collapse
Affiliation(s)
- Shoushuang Huang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qian Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Peijun Xin
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jie Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qiaochuan Chen
- School of Computer Engineering and Science, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Jie Fu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Zhiqiang Jin
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qing Wang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Zhangjun Hu
- School of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
- Division of Molecular Surface Physics & Nanoscience, Department of Physics, Chemistry and Biology, Linköping University, Linköping, 58183, Sweden
| |
Collapse
|
36
|
Shi Y, Zhang D, Huang H, Miao H, Wu X, Zhao H, Zhan T, Chen X, Lai J, Wang L. Mixture Phases Engineering of PtFe Nanofoams for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106947. [PMID: 35001511 DOI: 10.1002/smll.202106947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Phase engineering is a promising but challenging approach to construct PtFe-based catalysts with efficient hydrogen evolution reaction (HER) performance. Herein, the authors successfully synthesize PtFe nanofoams with face center cubic (fcc) phase, with simple cubic crystalline (scc) phase and with the mixture phases of fcc and scc phases (PtFe-mix) by hydrogen-assisted calcination for the first time. By benchmarking the HER activity, PtFe-mix exhibits excellent activity in 1.0 m KOH, requiring an overpotential of 28 mV to achieve 10 mA cm-2 , which is better than the commercial Pt/C (34 mV). PtFe-mix also possesses remarkable stability up to 24 h. Density functional theory calculations further verify that PtFe-mix shows a more suitable d-band center and lower energy barrier for the initial water dissociation, facilitating the HER process. This work provides a meaningful strategy to design PtFe-based catalysts with efficient activity for hydrogen evolution.
Collapse
Affiliation(s)
- Yue Shi
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hao Huang
- School of Sustainable Energy Materials and Science, Jinhua Advanced Research Institute, Jinhua, 321000, P. R. China
| | - Hongfu Miao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xueke Wu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Huan Zhao
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Tianrong Zhan
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xilei Chen
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
37
|
Tong X, Li Y, Ruan Q, Pang N, Zhou Y, Wu D, Xiong D, Xu S, Wang L, Chu PK. Plasma Engineering of Basal Sulfur Sites on MoS 2 @Ni 3 S 2 Nanorods for the Alkaline Hydrogen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104774. [PMID: 34939374 PMCID: PMC8867165 DOI: 10.1002/advs.202104774] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Indexed: 05/22/2023]
Abstract
Inexpensive and efficient catalysts are crucial to industrial adoption of the electrochemical hydrogen evolution reaction (HER) to produce hydrogen. Although two-dimensional (2D) MoS2 materials have large specific surface areas, the catalytic efficiency is normally low. In this work, Ag and other dopants are plasma-implanted into MoS2 to tailor the surface and interface to enhance the HER activity. The HER activty increases initially and then decreases with increasing dopant concentrations and implantation of Ag is observed to produce better results than Ti, Zr, Cr, N, and C. At a current density of 400 mA cm-2 , the overpotential of Ag500-MoS2 @Ni3 S2 /NF is 150 mV and the Tafel slope is 41.7 mV dec-1 . First-principles calculation and experimental results reveal that Ag has higher hydrogen adsorption activity than the other dopants and the recovered S sites on the basal plane caused by plasma doping facilitate water splitting. In the two-electrode overall water splitting system with Ag500-MoS2 @Ni3 S2 /NF, a small cell voltage of 1.47 V yields 10 mA cm-2 and very little degradation is observed after operation for 70 hours. The results reveal a flexible and controllable strategy to optimize the surface and interface of MoS2 boding well for hydrogen production by commercial water splitting.
Collapse
Affiliation(s)
- Xin Tong
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- Jiangsu Laboratory of Advanced Functional MaterialsSchool of Electronic and Information EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Yun Li
- School of Physics and Electronic EngineeringHanshan Normal UniversityChaozhou521041P. R. China
| | - Qingdong Ruan
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| | - Ning Pang
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Yang Zhou
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Dajun Wu
- Jiangsu Laboratory of Advanced Functional MaterialsSchool of Electronic and Information EngineeringChangshu Institute of TechnologyChangshu215500P. R. China
| | - Dayuan Xiong
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Shaohui Xu
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Lianwei Wang
- Key Laboratory of Polar Materials and Devices (MOE)Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Paul K. Chu
- Department of PhysicsDepartment of Materials Science and Engineeringand Department of Biomedical EngineeringCity University of Hong KongTat Chee AvenueKowloonHong KongChina
| |
Collapse
|
38
|
Zhao X, Bao J, Zhou Y, Zhang Y, Sheng X, Wu B, Wang Y, Zuo C, Bu X. Heterostructural MoS 2/NiS nanoflowers via precise interface modification for enhancing electrocatalytic hydrogen evolution. NEW J CHEM 2022. [DOI: 10.1039/d1nj05873h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MoS2/NiS flower-like heterostructures are prepared via precise interface modification for enhancing the intrinsic catalytic activity toward the HER.
Collapse
Affiliation(s)
- Xiwang Zhao
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jiehua Bao
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China
| | - Yuming Zhou
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yiwei Zhang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaoli Sheng
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Bo Wu
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, P. R. China
| | - Yanyun Wang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Changjiang Zuo
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xiaohai Bu
- School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, P. R. China
| |
Collapse
|
39
|
Fu B, McCue AJ, Liu Y, Weng S, Song Y, He Y, Feng J, Li D. Highly Selective and Stable Isolated Non-Noble Metal Atom Catalysts for Selective Hydrogenation of Acetylene. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Baoai Fu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Alan J. McCue
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | - Yanan Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Shaoxia Weng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Yuanfei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Yufei He
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, Box 98, 15 Bei San Huan East Road, Beijing 100029, China
| |
Collapse
|
40
|
Yao Y, Hu E, Zheng H, Chen Y, Wang Z, Cui Y, Qian G. Scalable Synthesis of NiFe‐LDH/Ni
9
S
8
/NF Nanosheets by Two‐Step Corrosion for Efficient Oxygen Electrocatalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Yao
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Enlai Hu
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Heqi Zheng
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Yi Chen
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Zhiyu Wang
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| |
Collapse
|
41
|
Lu XF, Zhang SL, Sim WL, Gao S, Lou XW(D. Phosphorized CoNi
2
S
4
Yolk‐Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xue Feng Lu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Song Lin Zhang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Wei Lok Sim
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shuyan Gao
- School of Materials Science and Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
42
|
Chen G, Chen D, Huang J, Zhang C, Chen W, Li T, Huang B, Shao T, Li J, Ostrikov KK. Focused Plasma- and Pure Water-Enabled, Electrode-Emerged Nanointerfaced NiCo Hydroxide-Oxide for Robust Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45566-45577. [PMID: 34519473 DOI: 10.1021/acsami.1c13480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bimetallic, bifunctional electrocatalysts capable of driving both oxygen (OER) and hydrogen (HER) evolution half-reactions on both electrodes in commercial water electrolysis cells are among the most promising materials systems for clean hydrogen energy generation. However, insufficient hydrogen and oxygen production activity at industry-relevant current densities and long-term catalyst stability on the electrode surface prevent this approach from industrial translation. This work resolves these challenges by advancing the promising, yet far-from-successful attempts to sprout bimetallic electrocatalytic nanostructures directly from electrode frames. For the first time, we utilize magnetic-field-focused, atmospheric-pressure plasma jets in oxygen-argon gas mixtures to successfully induce the nanointerfaced bimetallic NiCo hydroxide and oxide catalyst phases. After a simple hydrothermal treatment in pure water, NiCo bimetallic hydroxide nanosheets are densely covered with strongly bonded bimetallic NiCo oxide nanoparticles which ensure high catalytic activity evidenced by the low overpotentials for both HER and OER for delivering a current density of 100 mA cm-2 (j100) of only 306 and 484 mV, respectively. The electrode-emerged nanointerfaced NiCo hydroxide-oxide bimetallic system (NiCo2O4-NiCo(OH)x) shows an ultrastable electrocatalytic performance under a high current density of j200, which only decays 5.8% and 6.3% for HER and OER processes within 100 h. The competitive H2 and O2 production rates are about 1.27 and 0.69 mmol h-1 cm-2 (near to 2:1, under j10 conditions), meeting a nearly 100% Faradaic efficiency. Furthermore, the theory calculation indicates that the Ni and Co sites of NiCo2O4-NiCo(OH)x are the catalytic centers for the HER process. Our new plasma-enabled approach for the controlled production of bimetallic hydroxide-oxide active nanointerfaced systems is generic and is potentially suitable for diverse materials systems and applications well beyond electrocatalysis.
Collapse
Affiliation(s)
- Guangliang Chen
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Dongliang Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jun Huang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Cheng Zhang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wei Chen
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Tongtong Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Bangdou Huang
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tao Shao
- Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jian Li
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, P. R. China
| | | |
Collapse
|
43
|
Nie N, Zhang D, Wang Z, Qin Y, Zhai X, Yang B, Lai J, Wang L. Superfast Synthesis of Densely Packed and Ultrafine Pt-Lanthanide@KB via Solvent-Free Microwave as Efficient Hydrogen Evolution Electrocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102879. [PMID: 34337859 DOI: 10.1002/smll.202102879] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/07/2021] [Indexed: 06/13/2023]
Abstract
At present, it is still a great challenge to synthesize refractory Pt-based electrocatalysts with excellent active specific surface area, specific activity, and stability by a simple method. Here, a superfast and solvent-free microwave strategy is reported to synthesize refractory ultrafine (≈3 nm) Pt-lanthanide@Ketjen Black (PtM@KB, M = La, Gd, Tb, Er, Tm, and Yb) alloy with densely packed as efficient hydrogen evolution electrocatalysts in a domestic microwave oven for the first time. The optimized Pt61 La39 @KB delivers excellent hydrogen evolution reaction (HER) activity with a low overpotential of 38 mV (10 mA cm-2 ) and a high TOF value of 44.13 s-1 (100 mV) in 0.5 m H2 SO4 , and performs well in 1.0 m KOH. This method can also be used to grow catalysts on carbon cloth (CC) directly. PtLa@CC shows an overpotential of 99 mV (1000 mA cm-2 ) in 0.5 m H2 SO4 and can maintain activity after 500 h. Theoretical calculations reveal the enhanced stability and activity owing to the higher vacancy formation energy of Pt atoms and the optimized value of ΔGH* . Solvent-free microwave strategy constitutes a significant insight into the development of refractory electrocatalyst with ultrafine size and highly dense, which can also work well at high current densities.
Collapse
Affiliation(s)
- Nanzhu Nie
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zuochao Wang
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yingnan Qin
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuejun Zhai
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bo Yang
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Ecochemical Engineering, Ministry of Education, Taishan Scholar Advantage and Characteristic Discipline Team of Ecochemical Process and Technology, Laboratory of Inorganic Synthesis and Applied Chemistry, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
44
|
Lou XWD. Phosphorized CoNi2S4 Yolk-Shell Spheres for Highly Efficient Hydrogen Production via Water and Urea Electrolysis. Angew Chem Int Ed Engl 2021; 60:22885-22891. [PMID: 34351663 DOI: 10.1002/anie.202108563] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Indexed: 11/09/2022]
Abstract
Exploring earth-abundant electrocatalysts with excellent activity, robust stability, and multiple functions is crucial for electrolytic hydrogen generation. Herein, porous phosphorized CoNi 2 S 4 yolk-shell spheres (P-CoNi 2 S 4 YSSs) are rationally designed and synthesized by a combined hydrothermal sulfidation and gas-phase phosphorization strategy. Benefiting from the strengthened Ni 3+ /Ni 2+ couple, enhanced electric conductivity, and hollow structure, the P-CoNi 2 S 4 YSSs exhibit excellent activity and durability towards hydrogen/oxygen evolution and urea oxidation reactions in alkaline solution, affording low potentials of -0.135 V, 1.512 V, and 1.306 V (versus reversible hydrogen electrode) at 10 mA cm -2 , respectively. Remarkably, when used as the anode and cathode simultaneously, the P-CoNi 2 S 4 catalyst merely requires a cell voltage of 1.544 V in water splitting and 1.402 V in urea electrolysis to attain 10 mA cm -2 with excellent durability for 100 h, outperforming most of the reported nickel-based sulfides and even noble-metal-based electrocatalysts. This work therefore not only promotes the application of sulfides in electrochemical hydrogen production but also provides a feasible approach for urea-rich wastewater treatment.
Collapse
Affiliation(s)
- Xiong-Wen David Lou
- Nanyang Technological University, School of Chemical and Biomedical Eng, 62 Nanyang Drive, #N1.2-B1-09, 637459, Singapore, SINGAPORE
| |
Collapse
|
45
|
Zhang X, Zheng R, Jin M, Shi R, Ai Z, Amini A, Lian Q, Cheng C, Song S. NiCoS x@Cobalt Carbonate Hydroxide Obtained by Surface Sulfurization for Efficient and Stable Hydrogen Evolution at Large Current Densities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35647-35656. [PMID: 34283575 DOI: 10.1021/acsami.1c07504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Developing earth-abundant, active, and stable electrocatalysts for hydrogen evolution reactions (HERs) at large current densities has remained challenging. Herein, heterostructured nickel foam-supported cobalt carbonate hydroxide nanoarrays embellished with NiCoSx nanoflakes (NiCoSx@CoCH NAs/NF) are designed via room-temperature sulfurization, which can drive 10 and 1000 mA cm-2 at low overpotentials of 55 and 438 mV for HER and exhibit impressive long-term stability at the industrial-level current density. Surprisingly, NiCoSx@CoCH NAs/NF after a 500 h stability test at 500 mA cm-2 exhibit better catalytic performance than the initial one at high current densities. Simulations showed that NiCoSx@CoCH NAs have an optimized hydrogen adsorption free energy (ΔGH*) of 0.02 eV, owing to the synergistic effect of CoCH (ΔGH* = 1.36 eV) and NiCoSx (ΔGH* = 0.03 eV). The electric field at the heterostructure interface leads to electron transport from CoCH to NiCoSx, which enhances HER dynamics. The hierarchical nanostructure has a large specific area and a superaerophobic surface, which are beneficial to hydrogen generation/release for efficient and stable HER.
Collapse
Affiliation(s)
- Xian Zhang
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Renji Zheng
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengtian Jin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Run Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhong Ai
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Abbas Amini
- Center for Infrastructure Engineering, Western Sydney University, Kingswood, New South Wales 2751, Australia
| | - Qing Lian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| | - Shaoxian Song
- School of Resources and Environmental Engineering and Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| |
Collapse
|
46
|
Jin C, Zhai P, Wei Y, Chen Q, Wang X, Yang W, Xiao J, He Q, Liu Q, Gong Y. Ni(OH) 2 Templated Synthesis of Ultrathin Ni 3 S 2 Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102097. [PMID: 34228390 DOI: 10.1002/smll.202102097] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 06/13/2023]
Abstract
Ultrathin nickel (Ni)-based sulfide nanosheets have been reported as excellent electrocatalysts for overall water splitting; however, the uncontrollability over thickness due to the nonlayered structure still hampers its practical application. Herein, a simple topochemical conversion strategy is employed to synthesize cobalt-doped Ni3 S2 (Co-Ni3 S2 ) ultrathin nanosheets on Ni foam. The Co-Ni3 S2 nanosheets are controlled synthesized by using Co-Ni(OH)2 ultrathin nanosheets as templates with anneal and sulfurization treatment, showing exceptional electrocatalytic activity. This template-assisted method can also be applied to obtain Ni, NiO, and NiPx nanosheets, providing a universal strategy to synthesize ultrathin nanosheets of nonlayered materials. The overall water splitting of this Co-Ni3 S2 ultrathin nanosheets achieves a low voltage of 1.54 V at a current density of 10 mA cm-2 and high durability in 1 m KOH, comparable to the best performance of electrochemical water splitting ever reported. The detailed structural transformation of Ni-based sulfides in the catalytic process and its mechanism are further explored both experimentally and theoretically.
Collapse
Affiliation(s)
- Chunqiao Jin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
- School of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Pengbo Zhai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yi Wei
- State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qian Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Weiwei Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jing Xiao
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qingyun Liu
- School of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
47
|
Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007100. [PMID: 34117808 DOI: 10.1002/adma.202007100] [Citation(s) in RCA: 335] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen economy has emerged as a very promising alternative to the current hydrocarbon economy, which involves the process of harvesting renewable energy to split water into hydrogen and oxygen and then further utilization of clean hydrogen fuel. The production of hydrogen by water electrolysis is an essential prerequisite of the hydrogen economy with zero carbon emission. Among various water electrolysis technologies, alkaline water splitting has been commercialized for more than 100 years, representing the most mature and economic technology. Here, the historic development of water electrolysis is overviewed, and several critical electrochemical parameters are discussed. After that, advanced nonprecious metal electrocatalysts that emerged recently for negotiating the alkaline oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are discussed, including transition metal oxides, (oxy)hydroxides, chalcogenides, phosphides, and nitrides for the OER, as well as transition metal alloys, chalcogenides, phosphides, and carbides for the HER. In this section, particular attention is paid to the catalyst synthesis, activity and stability challenges, performance improvement, and industry-relevant developments. Some recent works about scaled-up catalyst synthesis, novel electrode designs, and alkaline seawater electrolysis are also spotlighted. Finally, an outlook on future challenges and opportunities for alkaline water splitting is offered, and potential future directions are speculated.
Collapse
Affiliation(s)
- Zi-You Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu Duan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xing-Yu Feng
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xingxing Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
48
|
Xiao L, Yao P, Xue T, Li F. One-step electrodeposition synthesis of Ni/NiS @NF catalyst on nickel foam (NF) for hydrogen evolution reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Guo K, Wang Y, Huang J, Lu M, Li H, Peng Y, Xi P, Zhang H, Huang J, Lu S, Xu C. In Situ Activated Co 3–xNi xO 4 as a Highly Active and Ultrastable Electrocatalyst for Hydrogen Generation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01607] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kailu Guo
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yantao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Junfeng Huang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Min Lu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Hua Li
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Haoli Zhang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee Wisconsin 53201, United States
| | - Siyu Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450000, People’s Republic of China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
50
|
He W, Liu H, Cheng J, Mao J, Chen C, Hao Q, Zhao J, Liu C, Li Y, Liang L. Designing Zn-doped nickel sulfide catalysts with an optimized electronic structure for enhanced hydrogen evolution reaction. NANOSCALE 2021; 13:10127-10132. [PMID: 34060571 DOI: 10.1039/d1nr01726h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing non-noble-metal electrocatalysts with excellent performance and economic benefits toward the hydrogen evolution reaction (HER) is extremely crucial for future energy development. In particular, the rational cationic-doped strategy can effectively tailor the electronic structure of the catalysts and improve the free energy of the adsorbed intermediate, thus enhancing HER performance. Herein we reported Zn-doped Ni3S2 nanosheet arrays supported on Ni foam (Zn-Ni3S2/NF) that were synthesized by a two-step hydrothermal process for improving HER catalysis under alkaline conditions. Remarkably, the obtained Zn-Ni3S2/NF displays excellent HER catalytic performance with an overpotential of 78 mV to reach a current density of 10 mA cm-2 and dramatic long-term stability for 18 h in 1 M KOH. In addition, the results based on the density functional theory calculations reveal that Zn dopants can modulate the electronic structure of Ni3S2 and optimize the hydrogen adsorption free energy (ΔGH*). Thus cationic-doping engineering provides an efficient method to enhance the intrinsic activities of transition-metal sulfides, which may contribute to the development of nonprecious electrocatalysts for HER.
Collapse
Affiliation(s)
- Wenjun He
- School of Materials Science and Engineering, Hebei University of Technology, Dingzigu Road 1, Tianjin 300130, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|