1
|
Li X, Zhao W, Jin Y, Huang J, Chen D. Phase Behaviors and Photoresponsive Thin Films of Syndiotactic Side-Chain Liquid Crystalline Polymers with High Densely Substituted Azobenzene Mesogens. Chemphyschem 2024; 25:e202400421. [PMID: 38825850 DOI: 10.1002/cphc.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Azobenzene-containing polymers (azopolymers) are a kind of fascinating stimuli-responsive materials with broad and versatile applications. In this work, a series of syndiotactic C1 type azopolymers of Pm-Azo-Cn with side-chain azobenzene mesogens of varied length alkoxy tails (n=1, 4, 8, 10) and different length alkyl spacers (m=6, 10) have been prepared via Rh-catalyzed carbene polymerization. The thermal properties and ordered assembly structures of thus synthesized side chain liquid crystalline polymers (SCLCPs) have been systematically investigated with differential scanning calorimetry (DSC), polarized optical microscopy (POM) and variable-temperature small/wide-angle X-ray scattering (SAXS/WAXS) analyses. P10-Azo-C1 and P10-Azo-C4 with shorter alkoxy tails exhibited hierarchical structures SmB/Colob and transformed into SmA/Colob at a higher temperature, while P10-Azo-C8 and P10-Azo-C10 with longer alkoxy tails only displayed side group dominated layered SmB phase and transformed into SmA phase at higher temperatures. For P6-Azo-C4 with a shorter spacer only showed a less ordered SmA phase owing to interference by partly coupling between the side chain azobenzene mesogens and the helical backbone. More importantly, the series high densely substituted syndiotactic C1 azopolymer thin films, exhibited evidently and smoothly reversible photoresponsive properties, which demonstrated promising photoresponsive device applications.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- School of Information Technology, Suzhou Institute of Trade & Commerce, 215009, Suzhou, China
| | - Weiguang Zhao
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Ye Jin
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Jianjia Huang
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Dongzhong Chen
- Key Laboratory of High Performance Polymer Materials and Technology (Ministry of Education), Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
2
|
Liang S, Yuan C, Nie C, Liu Y, Zhang D, Xu WC, Liu C, Xu G, Wu S. Photocontrolled Reversible Solid-Fluid Transitions of Azopolymer Nanocomposites for Intelligent Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408159. [PMID: 39082060 DOI: 10.1002/adma.202408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/08/2024] [Indexed: 10/04/2024]
Abstract
Intelligent polymer nanocomposites are multicomponent and multifunctional materials that show immense potential across diverse applications. However, to exhibit intelligent traits such as adaptability, reconfigurability and dynamic properties, these materials often require a solvent or heating environment to facilitate the mobility of polymer chains and nanoparticles, rendering their applications in everyday settings impractical. Here intelligent azopolymer nanocomposites that function effectively in a solvent-free, room-temperature environment based on photocontrolled reversible solid-fluid transitions via switching flow temperatures (Tfs) are shown. A range of nanocomposites is synthesized through the grafting of Au nanoparticles, Au nanorods, quantum dots, or superparamagnetic nanoparticles with photoresponsive azopolymers. Leveraging the reversible cis-trans photoisomerization of azo groups, the azopolymer nanocomposites transition between solid (Tf above room temperature) and fluid (Tf below room temperature) states. Such photocontrolled reversible solid-fluid transitions empower the rewriting of nanopatterns, correction of nanoscale defects, reconfiguration of complex multiscale structures, and design of intelligent optical devices. These findings highlight Tf-switchable polymer nanocomposites as promising candidates for the development of intelligent nanomaterials operative in solvent-free, room-temperature conditions.
Collapse
Affiliation(s)
- Shuofeng Liang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chenrui Yuan
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yazhi Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Dachuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chengwei Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Guofeng Xu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Si Wu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Ji Y, Song T, Yu H. Assembly-Induced Dynamic Structural Color in a Host-Guest System for Time-Dependent Anticounterfeiting and Double-Lock Encryption. Angew Chem Int Ed Engl 2024; 63:e202401208. [PMID: 38597254 DOI: 10.1002/anie.202401208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Manipulation of periodic micro/nanostructures in polymer film is of great importance for academics and industrial applications in anticounterfeiting. However, with the increasing demand on information security, materials with time-dependent features are urgently required, especially the material where the same information can appear more than once on the time scale. Here, one concise strategy to realize time-dependent anticounterfeiting and "double-lock" information encryption based on a host-guest system is proposed, with one photoresponsive azopolymer as the host and one liquid-crystalline molecule as the guest. The system exhibits a tunable mass transport in pre-designed periodic micro/nanostructures by tailoring the process of cis-to-trans recovery of azo groups and assembly of mesogenic trans-isomers, resulting in a dynamic structural color in film. Taking advantage of this extraordinary feature, time-dependent dynamic anticounterfeiting has been achieved. More importantly, the time of each state's appearance in the whole process can be modulated by changing the host-guest ratio. Combining the manipulatable process of mass transport with the unique decoding method, the stored information in film can be decrypted correctly. This work provides an unprecedented dynamic approach for advanced anticounterfeiting technology with a higher level of security and high-end applications in information encryption.
Collapse
Affiliation(s)
- Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianfu Song
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Pan F, Feng Y, Qian Y, Qin L, Yu Y. Dual-Mode Patterns Enabled by Photofluidization of an Azobenzene-Containing Linear Liquid Crystal Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11766-11774. [PMID: 38762782 DOI: 10.1021/acs.langmuir.4c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Creating dual-mode patterns in the same area of the material is an advanced method to increase the dimension of information storage, improve the level of encryption security, and promote the development of encoding technology. However, in situ, different patterns may lead to serious mutual interference in the process of manufacturing and usage. New materials and patterning techniques are essential for the advancement of noninterfering dual-mode patterns. Herein, noninterfering dual-mode patterns are demonstrated by combining the structural color and chromatic polarization, which is designed with an azobenzene-containing linear liquid crystal copolymer featuring a photofluidization effect. On the one hand, structural color patterns are imprinted via silicon templates with periodic microstructures after a UV-light-induced local transition of the polymer surface from a glassy to rubbery state. On the other hand, different polarization patterns based on the local photoinduced orientation of mesogens are created within the photofluidized region by the Weigert effect. Especially, the secondary imprinting is used to eliminate the partial damage to the structural color patterns during writing of the polarization patterns, thus obtaining dual-mode patterns without interference. This study provides a blueprint for the creation of advanced materials and sophisticated photopatterning techniques with potential cross-industry applications.
Collapse
Affiliation(s)
- Feng Pan
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yaoqing Feng
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yuyao Qian
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Lang Qin
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
5
|
Ji Y, Yang B, Cai F, Song T, Yu H. Steerable mass transport in a photoresponsive system for advanced anticounterfeiting. iScience 2024; 27:108790. [PMID: 38292421 PMCID: PMC10826315 DOI: 10.1016/j.isci.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Numerous anticounterfeiting platforms using photoresponsive materials have been designed to improve information security, enabling applications in anticounterfeiting technology. However, fabricating sophisticated micro/nanostructures using bidirectional mass transport to achieve advanced anticounterfeiting remains challenging. Here, we propose one strategy to achieve steerable mass transport in a photoresponsive system with the assistance of solvent vapor at room temperature. Upon optimizing the host-guest ratio and the width of photoisomerized areas, wettability gradient is acquired just photo-patterning once, then bidirectional mass transport is realized due to the competition of mass transport induced by surface energy gradient of the material itself and flow of the solvent on the film surface with wettability gradient. Taking advantage of the interaction between solvent and film surface with wettability gradient, this bidirectional polymer flow has been successfully applied in multi-mode anticounterfeiting. This work paves a promising avenue toward high-level information storage in soft materials, demonstrating the potential applications in anticounterfeiting.
Collapse
Affiliation(s)
- Yufan Ji
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Bowen Yang
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Feng Cai
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Tianfu Song
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Hu YX, Hao X, Wang D, Zhang ZC, Sun H, Xu XD, Xie X, Shi X, Peng H, Yang HB, Xu L. Light-Responsive Supramolecular Liquid-Crystalline Metallacycle for Orthogonal Multimode Photopatterning. Angew Chem Int Ed Engl 2024; 63:e202315061. [PMID: 37966368 DOI: 10.1002/anie.202315061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xingtian Hao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dan Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Cheng Zhang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaolin Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haiyan Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
7
|
Wang Q, Vockenhuber M, Cui H, Wang X, Tao P, Hu Z, Zhao J, Wang J, Ekinci Y, Xu H, He X. Theoretical Insights into the Solubility Polarity Switch of Metal-Organic Nanoclusters for Nanoscale Patterning. SMALL METHODS 2023; 7:e2300309. [PMID: 37337380 DOI: 10.1002/smtd.202300309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Metal-organic nanoclusters(MOCs) are being increasingly used as prospective photoresist candidates for advanced nanoscale lithography technologies. However, insight into the irradiation-induced solubility switching process remains unclear. Hereby, the theoretical study employing density functional theory (DFT) calculations of the alkene-containing zirconium oxide MOC photoresists is reported, which is rationally synthesized accordingly, to disclose the mechanism of the nanoscale patterning driven by the switch of solubility from the acid-catalyzed or electron-triggered ligand dissociation. By evaluating the dependence of MOCs' imaging process on photoacid, lithographies of photoresists with and without photoacid generators after exposure to ultraviolet (UV), electron beam, and soft X-ray, it is revealed that photoacid is essential in UV lithography, but it demonstrates little effect on exposure dose in high-energy lithography. Furthermore, theoretical studies using DFT simulations to investigate the plausible photoacid-catalyzed, electron-triggered dissociation, and accompanying radical reaction are performed, and a mechanism is demonstrated that the nanoscale patterning of this type of MOCs is driven by the solubility switch resulting from dissociation-induced strong electrostatic interaction and low-energy barrier radical polymerization with other species. This study can give insights into the chemical mechanisms of patterning, and guide the rational design of photoresists to realize high resolution and high sensitivity.
Collapse
Affiliation(s)
- Qianqian Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | | | - Hao Cui
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaolin Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Peipei Tao
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Ziyu Hu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jun Zhao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jianlong Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yasin Ekinci
- Paul Scherrer Institute, Villigen, 5232, Switzerland
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Liu C, Steppert AK, Liu Y, Weis P, Hu J, Nie C, Xu WC, Kuehne AJC, Wu S. A Photopatternable Conjugated Polymer with Thermal-Annealing-Promoted Interchain Stacking for Highly Stable Anti-Counterfeiting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303120. [PMID: 37257837 DOI: 10.1002/adma.202303120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Photoresponsive polymers can be conveniently used to fabricate anti-counterfeiting materials through photopatterning. However, an unsolved problem is that ambient light and heat can damage anti-counterfeiting patterns on photoresponsive polymers. Herein, photo- and thermostable anti-counterfeiting materials are developed by photopatterning and thermal annealing of a photoresponsive conjugated polymer (MC-Azo). MC-Azo contains alternating azobenzene and fluorene units in the polymer backbone. To prepare an anti-counterfeiting material, an MC-Azo film is irradiated with polarized blue light through a photomask, and then thermally annealed under the pressure of a photonic stamp. This strategy generates a highly secure anti-counterfeiting material with dual patterns, which is stable to sunlight and heat over 200 °C. A key for the stability is that thermal annealing promotes interchain stacking, which converts photoresponsive MC-Azo to a photostable material. Another key for the stability is that the conjugated structure endows MC-Azo with desirable thermal properties. This study shows that the design of photopatternable conjugated polymers with thermal-annealing-promoted interchain stacking provides a new strategy for the development of highly stable and secure anti-counterfeiting materials.
Collapse
Affiliation(s)
- Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ann-Kathrin Steppert
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Philipp Weis
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jianyu Hu
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Nie
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Alexander J C Kuehne
- Institute of Organic and Macromolecular Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Jeon HI, Jo S, Jeon S, Jun T, Moon J, Cho JH, Ahn H, Lee S, Ryu DY, Russell TP. Repairable Macroscopic Monodomain Arrays from Block Copolymers Enabled by Photoplastic and Photodielectric Effects. ACS NANO 2023; 17:8367-8375. [PMID: 37067380 DOI: 10.1021/acsnano.2c12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Upon exposure to UV light (120 mW/cm2, λ = 365 nm), a trans-cis isomerization occurs in a cylinder-forming, azobenzene-containing block copolymer of polydimethylsiloxane-b-poly((4(phenyldiazenyl)phenoxy)hexyl acrylate) (PDMS-b-PPHA) that enables the generation of monodomains of healable, long-range ordered arrays of nanoscopic domains over macroscopic distances. The trans-cis isomerization gives rise to a significant increase in the dielectric constant (from 6.52 to 19.8 at 100 Hz, photodielectric behavior) and a dramatic decrease in the Tg (from 54 to 1 °C, photoplastic behavior) of the PPHA block. By combining these characteristics with an in-plane electric field, macroscopic monodomains of near-perfectly aligned cylindrical microdomains are achieved at low temperatures, and a damage repair is clearly uncovered, where the 300 nm wide scratches can be completely healed at 40 °C, leaving a smooth, uniformly thick film where the continuity and orientation of the aligned microdomains are restored. Subsequent exposure to visible light causes a cis-trans isomerization, increasing the matrix Tg to 54 °C, producing highly oriented and aligned PDMS cylindrical microdomains in a PPHA matrix.
Collapse
Affiliation(s)
- Hui Il Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seungyun Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seungbae Jeon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Taesuk Jun
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jungwoo Moon
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyungju Ahn
- Industry Technology Convergence Center, Pohang Accelerator Laboratory, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Department of Integrative Energy Engineering, Department of Biomicrosystem Technology, and KU Photonics Center, Korea University, Seoul 02841, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Yang B, Ji Y, Cai F, Yu H. Surface Morphing of Azopolymers toward Advanced Anticounterfeiting Enabled by a Two-Step Method: Light Writing and Then Reading in Liquid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23804-23812. [PMID: 37145983 DOI: 10.1021/acsami.3c03807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Surface morphing of organic materials is necessary for advances in semiconductor processing, optical gratings, anticounterfeiting etc., but it is still challenging, especially for its fundamental explanation and further applications like advanced anticounterfeiting. Here, we report one strategy to acquire surface deformation of the liquid-crystalline azopolymer film using a two-step method: selective photoisomerization of azopolymers and then solvent development. In the first step, surface tension of the polymer film can be patterned by the selective photoisomerization of azopolymers, and then in the second step, the flowing solvent drags the underlying polymer to transport, leading to the formation of surface deformation. Interestingly, the direction of mass transport is opposite to the traditional Marangoni flow, and the principle of solvents' choice is the matching of surface tensions between the azopolymer and the solvent. The two-step method shows characteristics of efficient surface morphing, which could be applied in advanced anticounterfeiting by the way of photomask-assistant information writing or microscale direct writing, and then reading in a specific liquid environment. This paves a new way for understanding the mechanism of mass transport toward numerous unprecedented applications using various photoresponsive materials.
Collapse
Affiliation(s)
- Bowen Yang
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Yufan Ji
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Feng Cai
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Haifeng Yu
- School of Material Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Liang S, Li S, Yuan C, Zhang D, Chen J, Wu S. Polyacrylate Backbone Promotes Photoinduced Reversible Solid-To-Liquid Transitions of Azobenzene-Containing Polymers. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Shuxiu Li
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Chenrui Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Jiahui Chen
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
12
|
Meteling HJ, Bosse F, Schlichter L, Tyler BJ, Arlinghaus HF, Ravoo BJ. Versatile Surface Patterning with Low Molecular Weight Photoswitches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203245. [PMID: 35971144 DOI: 10.1002/smll.202203245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Surface patterning of functional materials is a key technology in various fields such as microelectronics, optics, and photonics. In micro- and nanofabrication, polymers are frequently employed either as photoreactive or thermoresponsive resists that enable further fabrication steps, or as functional adlayers in electronic and optical devices. In this article, a method is presented for imprint lithography using low molecular weight arylazoisoxazoles photoswitches instead of polymer resists. These photoswitches exhibit a rapid and reversible solid-to-liquid phase transition upon photo-isomerization at room temperature, making them highly suitable for reversible surface functionalization at ambient conditions. Beyond photo-induced imprint lithography with multiple write-and-erase cycles, prospective applications as patterned matrix for nanoparticles and etch resist on gold surfaces are demonstrated.
Collapse
Affiliation(s)
- Henning J Meteling
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Florian Bosse
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Lisa Schlichter
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bonnie J Tyler
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Heinrich F Arlinghaus
- Center for Soft Nanoscience and Physics Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, Westfälische Wilhelms-Universität Münster, Busso-Peus-Str. 10, 48149, Münster, Germany
| |
Collapse
|
13
|
Cai F, Yang B, Lv X, Feng W, Yu H. Mechanically mutable polymer enabled by light. SCIENCE ADVANCES 2022; 8:eabo1626. [PMID: 36001666 PMCID: PMC9401616 DOI: 10.1126/sciadv.abo1626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/13/2022] [Indexed: 05/25/2023]
Abstract
Human skin is a remarkable example of a biological material that displays unique mechanical characters of both soft elasticity and stretchability. However, mimicking these features has been absent in photoresponsive soft matters. Here, we present one synthetic ABA-type triblock copolymer consisting of polystyrene as end blocks and one photoresponsive azopolymer as the middle block, which is stiffness at room temperature and shows a phototunable transition to soft elastics athermally. We have synthesized an elastics we term "photoinduced soft elastomer," where the photo-evocable soft midblock of azopolymer and the glassy polystyrene domains act as elastic matrix and physical cross-linking junctions, respectively. On the basis of the photoswitchable transformation between stiffness and elasticity at room temperature, we demonstrated precise control over nanopatterns on nonplanar substrates especially adaptable in the human skin and fabrication of packaged perovskite solar cells, enabling the simple, human-friendly, and controllable approach to be promising for mechanically adaptable soft photonic and electronic packaging applications.
Collapse
Affiliation(s)
- Feng Cai
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| | - Bowen Yang
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| | - Xuande Lv
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
14
|
Xu WC, Liu C, Liang S, Zhang D, Liu Y, Wu S. Designing Rewritable Dual-Mode Patterns using a Stretchable Photoresponsive Polymer via Orthogonal Photopatterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202150. [PMID: 35642603 DOI: 10.1002/adma.202202150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The fabrication of dual-mode patterns in the same region of a material is a promising approach for high-density information storage, new anti-counterfeiting technologies, and highly secure encryption. However, dual-mode patterns are difficult to achieve because the two patterns in one material may interfere with each other during fabrication and usage. The development of noninterfering dual-mode patterns requires new materials and patterning techniques. Herein, a novel orthogonal photopatterning technique is reported for the fabrication of noninterfering dual-mode patterns on an azopolymer P1. P1 is a unique material that exhibits both photoinduced reversible solid-to-liquid transitions and good stretchability. In the first step of orthogonal photopatterning, patterned photonic structures are fabricated on a P1 film via masked nanoimprinting controlled by photoinduced reversible solid-to-liquid transitions. In the second step, the P1 film is stretched and irradiated with polarized light through a photomask, which generates a chromatic polarization pattern. In particular, the photonic structures and chromatic polarization in the dual-mode pattern are noninterfering. Another feature of dual-mode patterns is that they are rewritable via photo-, thermal, or solution reprocessing, which are useful for recycling and reprogramming. This study opens an avenue for the development of novel materials and techniques for photopatterning.
Collapse
Affiliation(s)
- Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Dachuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Wang H, Feng Y, Gao J, Fang W, Ge J, Yang X, Zhai F, Yu Y, Feng W. Metallic-Ion Controlled Dynamic Bonds to Co-Harvest Isomerization Energy and Bond Enthalpy for High-Energy Output of Flexible Self-Heated Textile. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201657. [PMID: 35491498 PMCID: PMC9284279 DOI: 10.1002/advs.202201657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/12/2022] [Indexed: 06/11/2023]
Abstract
Molecular light-harvesting capabilities and the production of low-temperature heat output are essential for flexible self-heated textiles. An effective strategy to achieve these characteristics is to introduce photoresponsive molecular interactions (photodynamic bonds) to increase the energy storage capacity and optimize the low-temperature photochromic kinetics. In this study, a series of sulfonic-grafted azobenzene-based polymers interacted with different metal ions (PAzo-M, M = Mg, Ca, Ni, Zn, Cu, and Fe) to optimize the energy level and isomerization kinetics of these polymers is designed and prepared. Photoinduced formation and dissociation of MO dynamic bonds enlarge the energy gap (∆E) between trans and cis isomers for high-energy storage and favor a high rate of isomerization for low-temperature heat release. The suitable binding energy and high ∆E enable PAzo-M to store and release isomerization energy and bond enthalpy even in a low-temperature (-5 °C) environment. PAzo-Mg possesses the highest energy storage density of 408.6 J g-1 (113.5 Wh kg-1 ). A flexible textile coated with PAzo-Mg can provide a high rise in temperature of 7.7-12.5 °C in a low-temperature (-5.0 to 5.0 °C) environment by selectively self-releasing heat indoors and outdoors. The flexible textile provides a new pathway for wearable thermal management devices.
Collapse
Affiliation(s)
- Hui Wang
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Yiyu Feng
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
- Key Laboratory of Materials Processing and MoldMinistry of EducationZhengzhou UniversityZhengzhouHenan450002China
| | - Jian Gao
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Wenyu Fang
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Jing Ge
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Xiaoyu Yang
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Fei Zhai
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Yunfei Yu
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| | - Wei Feng
- School of Materials Science and EngineeringTianjin UniversityTianjin300350China
| |
Collapse
|
16
|
Zhao R, Mu J, Bai J, Zhao W, Gong P, Chen L, Zhang N, Shang X, Liu F, Yan S. Smart Responsive Azo-Copolymer with Photoliquefaction for Switchable Adhesive Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16678-16686. [PMID: 35363479 DOI: 10.1021/acsami.2c01556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development and utilization of switchable adhesives are considered to be an essential target to solve the problems of their separation and recycling in some specific service environments, such as the preparation or repair process of electronic devices. Intelligent materials with controllable phase transition are utilized to fabricate switchable adhesives because of the significantly diverse adhesion strengths in different phase states. Photoresponsive azobenzene and its derivatives usually possess different melting temperatures (Tm) or/and glass transition temperatures (Tg) of the cis-trans isomers, which are beneficial to making the photoinduced solid-liquid phase transition for switchable adhesive application possible. Here, a novel three-component azo-copolymer (PNIM-Azo) with fast and reversible photoinduced solid-liquid phase transition has been designed and synthesized. PNIM-Azo possesses reversible bonding/debonding processes, resulting from the different adhesion strengths between trans-configuration PNIM-Azo in the solid state and cis-configuration in the liquid state. Moreover, by incorporating commercialized 2-methoxyethyl acrylate and N-isopropylacrylamide with O and N heteroatoms into the copolymer, the trans-configuration PNIM-Azo possesses the highest adhesion strength (∼11 MPa between two glass substrates) among all of the reported azobenzene-based switchable adhesives, which could be attributed to the increase in the entanglement effect because of the H-bond in the polymer chains formed by introducing heteroatoms. Our synthesized PNIM-Azo copolymer provides an alternative for designing and developing switchable adhesives with high adhesion strength for some electronic production processes.
Collapse
Affiliation(s)
- Ruiyang Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiahui Mu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jiayu Bai
- Department of Laboratory, Central Hospital Affiliated to Shenyang Medical College, Shenyang 110000, P. R. China
| | - Wenpeng Zhao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Piwen Gong
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Longxuan Chen
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Na Zhang
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xili Shang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, P. R. China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao 266042, P.R. China
| |
Collapse
|
17
|
Ji Y, Yang B, Cai F, Yu H. Regulate Surface Topography of Liquid‐Crystalline Polymer by External Stimuli. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yufan Ji
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Bowen Yang
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Feng Cai
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| | - Haifeng Yu
- School of Materials Science and Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Peking University Beijing 100871 P. R. China
| |
Collapse
|
18
|
Sun D, Zheng L, Xu X, Du K, An Z, Zhou X, Chen L, Zhu J, Chen D. Multi-functional stimuli-responsive biomimetic flower assembled from CLCE and MOF-based pedals. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Pujol-Vila F, Escudero P, Güell-Grau P, Pascual-Izarra C, Villa R, Alvarez M. Direct Color Observation of Light-Driven Molecular Conformation-Induced Stress. SMALL METHODS 2022; 6:e2101283. [PMID: 35174993 DOI: 10.1002/smtd.202101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Although usually complex to handle, nanomechanical sensors are exceptional, label-free tools for monitoring molecular conformational changes, which makes them of paramount importance in understanding biomolecular interactions. Herein, a simple and inexpensive mechanical imaging approach based on low-stiffness cantilevers with structural coloration (mechanochromic cantilevers (MMC)) is demonstrated, able to monitor and quantify molecular conformational changes with similar sensitivity to the classical optical beam detection method of cantilever-based sensors (≈4.6 × 10-3 N m-1 ). This high sensitivity is achieved by using a white light and an RGB camera working in the reflection configuration. The sensor performance is demonstrated by monitoring the UV-light induced reversible conformational changes of azobenzene molecules coating. The trans-cis isomerization of the azobenzene molecules induces a deflection of the cantilevers modifying their diffracted color, which returns to the initial state by cis-trans relaxation. Interestingly, the mechanical imaging enables a simultaneous 2D mapping of the response thus enhancing the spatial resolution of the measurements. A tight correlation is found between the color output and the cantilever's deflection and curvature angle (sensitivities of 5 × 10-3 Hue µm-1 and 1.5 × 10-1 Hue (°)-1 ). These findings highlight the suitability of low-stiffness MMC as an enabling technology for monitoring molecular changes with unprecedented simplicity, high-throughput capability, and functionalities.
Collapse
Affiliation(s)
- Ferran Pujol-Vila
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Pedro Escudero
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Facultad de Ingeniería y Tecnologías de la Información y la Comunicación, Universidad Tecnológica Indoamérica, Ambato, 180103, Ecuador
| | - Pau Güell-Grau
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | | | - Rosa Villa
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018, Madrid, Spain
| | - Mar Alvarez
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), Campus UAB, Bellaterra, Barcelona, 08193, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 50018, Madrid, Spain
| |
Collapse
|
20
|
Dynamic multifunctional devices enabled by ultrathin metal nanocoatings with optical/photothermal and morphological versatility. Proc Natl Acad Sci U S A 2022; 119:2118991119. [PMID: 35042819 PMCID: PMC8794830 DOI: 10.1073/pnas.2118991119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/10/2023] Open
Abstract
Smart devices characterized by micro-/nanotopographies, such as cracks, wrinkles, folds, etc., have been fabricated for widespread application. Here, with the combination of multiscale hierarchical architecture, ultrathin metal nanocoatings with high optical/photothermal tunability and morphological versatility, and surface/interface engineering, a set of multifunctional devices with multistimuli responsiveness was fabricated. These devices can adapt to external stimuli with reversible and instantaneous responses in optical signals, which include strain-regulated light-scattering properties, photothermal-responsive wrinkled surface coupled with moisture-responsive structural color, and mechanically controllable light-shielding properties. The structural designs that rationally overlay micro-/nanostructured ultrathin nanocoatings with other elements are the key to realize this advanced system, which provides avenues for designing versatile, tunable, and adaptable multifunctional devices. Inspired by the intriguing adaptivity of natural life, such as squids and flowers, we propose a series of dynamic and responsive multifunctional devices based on multiscale structural design, which contain metal nanocoating layers overlaid with other micro-/nanoscale soft or rigid layers. Since the optical/photothermal properties of a metal nanocoating are thickness dependent, metal nanocoatings with different thicknesses were chosen to integrate with other structural design elements to achieve dynamic multistimuli responses. The resultant devices demonstrate 1) strain-regulated cracked and/or wrinkled topography with tunable light-scattering properties, 2) moisture/photothermal-responsive structural color coupled with wrinkled surface, and 3) mechanically controllable light-shielding properties attributed to the strain-dependent crack width of the nanocoating. These devices can adapt external stimuli, such as mechanical strain, moisture, light, and/or heat, into corresponding changes of optical signals, such as transparency, reflectance, and/or coloration. Therefore, these devices can be applied as multistimuli-responsive encryption devices, smart windows, moisture/photothermal-responsive dynamic optics, and smartphone app–assisted pressure-mapping sensors. All the devices exhibit high reversibility and rapid responsiveness. Thus, this hybrid system containing ultrathin metal nanocoatings holds a unique design flexibility and adaptivity and is promising for developing next-generation multifunctional devices with widespread application.
Collapse
|
21
|
Sun S, Yuan C, Xie Z, Xu WC, Zhang Q, Wu S. Photoresponsive nanostructures of azobenzene-containing block copolymers at solid surfaces. Polym Chem 2022. [DOI: 10.1039/d1py01452h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An azobenzene-containing block copolymer self-assembled into island-like nanostructures. The island-like nanostructures fused into chain-like nanostructures under UV irradiation based on photoinduced solid-to-liquid transitions at the nanoscale.
Collapse
Affiliation(s)
- Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chenrui Yuan
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhulu Xie
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Cong Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qijin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Usually, the residual layer remains after patterning TiO2 sol. The existence of the TiO2 residual layer in the non-pattern region affects its application in microelectronic devices. Here, a simple method, based on room-temperature imprinting, to fabricate a residual-free TiO2 pattern is proposed. The thermoplastic polymer with Ti4+ salt was fast patterned at room temperature by imprinting, based on the different interfacial force. Then, the patterned thermoplastic polymer with Ti4+ salt was induced into the TiO2 lines without residual layer under the hydrothermal condition. This method provides a new idea to pattern metal oxide without residual layer, which is potentially applied to the gas sensor, the optical detector and the light emitting diode.
Collapse
|
23
|
Synthesis and characterization of alkylthio-attached azobenzene-based liquid crystal polymers: Roles of the alkylthio bond and polymer chain in phase behavior and liquid crystal formation. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Koike M, Aizawa M, Minamikawa H, Shishido A, Yamamoto T. Photohardenable Pressure-Sensitive Adhesives using Poly(methyl methacrylate) containing Liquid Crystal Plasticizers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39949-39956. [PMID: 34383463 DOI: 10.1021/acsami.1c11634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hardenable pressure-sensitive adhesives, which show pressure-sensitive adhesion state with weak adhesion strength in their initial semisolid state and general adhesion state with strong adhesion strength in their hardened state, are desirable in various industrial fields to improve efficiency of manufacturing and recycling products. Here we developed novel photohardenable pressure-sensitive adhesives triggered by photoplasticization of poly(methyl methacrylate) containing photoresponsive liquid crystal (nematic and smectic E) plasticizers at various ratios. It was found that photoplasticization, which is the photoinduced reduction of glass transition temperature and hardness of polymers, could be repeatedly induced by alternate irradiation with ultraviolet (UV) and visible (Vis) light in all mixtures, regardless of the phase structures of the photoresponsive plasticizers. Upon photoplasticization under UV-light irradiation, all mixtures exhibited glassy-to-rubbery transition to a pressure-sensitive adhesion state under appropriate conditions. Upon irradiation of the photoplasticized samples with Vis light, the samples recovered their initial hardened state, recovering the glassy nature with elastic moduli. The adhesion strength of the samples in the hardened state was significantly influenced by the phase structures of the plasticizers. When a photoresponsive plasticizer exhibited the smectic E phase, which is a highly ordered liquid-crystalline phase, the adhesion strength was remarkably larger than those of the case using the plasticizers showing nematic and crystalline phases. This result was reasonably explained in terms of the suppressed bleed-out of the photoresponsive plasticizers from the polymer and the good mechanical properties of the mixture stemming from the characteristics of the smectic E phase. Furthermore, through the reversibility of a photoplasticization process, we achieved a photoinduced reduction of the adhesion strength by UV irradiation of the samples in the hardened state. Photohardenable pressure-sensitive adhesives with reversibility has been developed using a commodity plastic just by adding the photoresponsive plasticizer showing the smectic E phase.
Collapse
Affiliation(s)
- Mioka Koike
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Miho Aizawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hiroyuki Minamikawa
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Atsushi Shishido
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-12, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Takahiro Yamamoto
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
25
|
Liu J, Wang Y, Wang J, Zhou G, Ikeda T, Jiang L. Inkless Rewritable Photonic Crystals Paper Enabled by a Light-Driven Azobenzene Mesogen Switch. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12383-12392. [PMID: 33656314 DOI: 10.1021/acsami.0c22668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rewritable paper, as an environment-friendly approach of information transmission, has potential possibility to conserve energy and promote a sustainable development of our society. Recently, photonic crystals (PCs) have become a research hotspot in the development of rewritable paper. However, there are still many shortcomings that limit the further application of PC paper, such as slow response sensitivity, short-cycle lifetime, poor storage stability, and so on. Herein, we constructed an optically rewritable azobenzene inverse opals (AZOIOs) with a thin film (ca. 1 μm) plated on an inverse opal structure based on the UV/vis switchable structure color of the sample. The top thin film acts as a protective layer to avoid the large deformation of the pore structure and the bottom inverse opal structure with refractive index/pore structure change that provides reversible structure color. Large, reversible, and rapid bandgap shift (ca. 60 nm, 2 s) of AZOIOs can be repeated more than 100 times under alternating UV/vis irradiation based on isomerization of high content of the azobenzene group. On-demand long-time preservation pattern can be obtained by the appearance of azobenzene's intrinsic color. The proof of concept for rewritable PC paper is demonstrated herein. Such inkless rewritable colorful paper paves a way for developing novel display technology.
Collapse
Affiliation(s)
- Junchao Liu
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Jingxia Wang
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Material Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 101407, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Tomiki Ikeda
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfaces Sciences, Technique Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
26
|
Mitus AC, Saphiannikova M, Radosz W, Toshchevikov V, Pawlik G. Modeling of Nonlinear Optical Phenomena in Host-Guest Systems Using Bond Fluctuation Monte Carlo Model: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1454. [PMID: 33809785 PMCID: PMC8002275 DOI: 10.3390/ma14061454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
We review the results of Monte Carlo studies of chosen nonlinear optical effects in host-guest systems, using methods based on the bond-fluctuation model (BFM) for a polymer matrix. In particular, we simulate the inscription of various types of diffraction gratings in degenerate two wave mixing (DTWM) experiments (surface relief gratings (SRG), gratings in polymers doped with azo-dye molecules and gratings in biopolymers), poling effects (electric field poling of dipolar molecules and all-optical poling) and photomechanical effect. All these processes are characterized in terms of parameters measured in experiments, such as diffraction efficiency, nonlinear susceptibilities, density profiles or loading parameters. Local free volume in the BFM matrix, characterized by probabilistic distributions and correlation functions, displays a complex mosaic-like structure of scale-free clusters, which are thought to be responsible for heterogeneous dynamics of nonlinear optical processes. The photoinduced dynamics of single azopolymer chains, studied in two and three dimensions, displays complex sub-diffusive, diffusive and super-diffusive dynamical regimes. A directly related mathematical model of SRG inscription, based on the continuous time random walk (CTRW) formalism, is formulated and studied. Theoretical part of the review is devoted to the justification of the a priori assumptions made in the BFM modeling of photoinduced motion of the azo-polymer chains.
Collapse
Affiliation(s)
- Antoni C. Mitus
- Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.C.M.); (W.R.)
| | - Marina Saphiannikova
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany;
| | - Wojciech Radosz
- Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.C.M.); (W.R.)
| | - Vladimir Toshchevikov
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, 199004 Saint Petersburg, Russia;
| | - Grzegorz Pawlik
- Department of Theoretical Physics, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.C.M.); (W.R.)
| |
Collapse
|
27
|
Li K, Li C, Li H, Li M, Song Y. Designable structural coloration by colloidal particle assembly: from nature to artificial manufacturing. iScience 2021; 24:102121. [PMID: 33644719 PMCID: PMC7892991 DOI: 10.1016/j.isci.2021.102121] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Structural color attracts considerable scientific interests and industrial explorations in various fields for the eco-friendly, fade-resistant, and dynamic advantages. After the long-period evolution, nature has achieved the optimized color structures at various length scales, which has inspired people to learn and replicate them to improve the artificial structure color. In this review, we focus on the design of artificial structural colors based on colloidal particle assembly and summarize the functional bioinspired structure colors. We demonstrate the design principles of biomimetic structural colors via the precise structure engineering and typical bottom-up methods. Some main applications are outlined in the following chapter. Finally, we propose the existing challenges and promising prospects. This review is expected to introduce the recent design strategies about the artificial structure colors and provide the insights for its future development.
Collapse
Affiliation(s)
- Kaixuan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chang Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
28
|
Handrea-Dragan M, Botiz I. Multifunctional Structured Platforms: From Patterning of Polymer-Based Films to Their Subsequent Filling with Various Nanomaterials. Polymers (Basel) 2021; 13:445. [PMID: 33573248 PMCID: PMC7866561 DOI: 10.3390/polym13030445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.
Collapse
Affiliation(s)
- Madalina Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
- Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Str. 400084 Cluj-Napoca, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Str. 400271 Cluj-Napoca, Romania;
| |
Collapse
|
29
|
Xu X, Zhang P, Wu B, Xing Y, Shi K, Fang W, Yu H, Wang G. Photochromic Dendrimers for Photoswitched Solid-To-Liquid Transitions and Solar Thermal Fuels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50135-50142. [PMID: 33085470 DOI: 10.1021/acsami.0c14160] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dendrimers are well-defined, highly branched macromolecules that have been widely applied in the fields of catalysis, sensing, and biomedicine. Here, we present a novel multifunctional photochromic dendrimer fabricated through grafting azobenzene units onto dendrimers, which not only enables controlled switching of adhesives and effective repair of coating scratches but also realizes high-performance solar energy storage and on-demand heat release. The switchable adhesives and healable coatings of azobenzene-containing dendrimers are attributed to the reversible solid-to-liquid transitions because trans-isomers and cis-isomers have different glass transition temperatures. The adhesion strengths increase significantly with the increase in dendrimer generations, wherein the adhesion strength of fifth-generation photochromic dendrimers (G5-Azo) can reach up to 1.62 MPa, five times higher than that of pristine azobenzenes. The solar energy storage and heat release of dendrimer solar thermal fuels, the isomers of which possess different chemical energies, can be also enhanced remarkably with the amplification of azobenzene groups on dendrimers. The storage energy density of G5-Azo can reach 59 W h kg-1, which is much higher than that of pristine azobenzenes (36 W h kg-1). The G5-Azo fuels exhibit a 5.2 °C temperature difference between cis-isomers and trans-isomers. These findings provide a new perspective and tremendously attractive avenue for the fabrication of photoswitchable adhesives and coatings and solar thermal fuels with dendrimer structures.
Collapse
Affiliation(s)
- Xingtang Xu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Peng Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Youmei Xing
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Ke Shi
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Weihua Fang
- Hangzhou Greenda Electronic Materials Company Ltd., Hangzhou 310051, China
| | - Haifeng Yu
- Department of Materials Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
30
|
Liang SF, Nie C, Yan J, Zhang QJ, Wu S. Photoinduced Reversible Solid-to-Liquid Transitions and Directional Photofluidization of Azobenzene-containing Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2519-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Zhang Z, Chen M, Schneider I, Liu Y, Liang S, Sun S, Koynov K, Butt HJ, Wu S. Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenlin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Mingsen Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Igor Schneider
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
32
|
Yadav B, Domurath J, Saphiannikova M. Modeling of Stripe Patterns in Photosensitive Azopolymers. Polymers (Basel) 2020; 12:E735. [PMID: 32224848 PMCID: PMC7240688 DOI: 10.3390/polym12040735] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 01/29/2023] Open
Abstract
Placed at interfaces, azobenzene-containing materials show extraordinary phenomena when subjected to external light sources. Here we model the surface changes induced by one-dimensional Gaussian light fields in thin azopolymer films. Such fields can be produced in a quickly moving film irradiated with a strongly focused laser beam or illuminating the sample through a cylindrical lens. To explain the appearance of stripe patterns, we first calculate the unbalanced mechanical stresses induced by one-dimensional Gaussian fields in the interior of the film. In accordance with our orientation approach, the light-induced stress originates from the reorientation of azobenzenes that causes orientation of rigid backbone segments along the light polarization. The resulting volume forces have different signs and amplitude for light polarization directed perpendicular and parallel to the moving direction. Accordingly, the grooves are produced by the stretching forces and elongated protrusions by the compressive forces. Implementation into a viscoplastic model in a finite element software predicts a considerably weaker effect for the light polarized along the moving direction, in accordance with the experimental observations. The maximum value in the distribution of light-induced stresses becomes in this case very close to the yield stress which results in smaller surface deformations of the glassy azopolymer.
Collapse
Affiliation(s)
| | | | - Marina Saphiannikova
- Leibniz-Institut für Polymerforschung, Hohe Straße 6, 01069 Dresden, Germany; (B.Y.); (J.D.)
| |
Collapse
|