1
|
Peng S, Li J, Hu Y, Cao J, Zhou M, Lu L, Su Y. Fully Stretchable Microbial Fuel Cell with 75% Stretchability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407614. [PMID: 39466984 DOI: 10.1002/smll.202407614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 10/30/2024]
Abstract
A decent stretchability is of paramount significance to operate microbial fuel cell (MFC) under mechanically dynamic conditions. However, it remains a grand challenge to fabricate fully stretchable MFC without compromising its power output. Here, using Shewanella oneidensis MR-1 (S. oneidensis) as the model electrogenic bacteria, the study demonstrates a fully stretchable MFC device that can operate with a stretchability of 75%. The design takes advantage of a stretchable and ion-conductive polyurethane membrane, which encapsulates the biohybrids composed of S. oneidensis and reduced graphene oxide (rGO) on the polydimethylsiloxane (PDMS) current collector for synchronous stretching. It is discovered that the "stretchable" living biohybrids can sustain an adaptive bio-current output under stretching/releasing stimulation. The design also employs a stretchable air cathode. The stabilized peak power density of the stretchable MFC follows an increasing trend with the applied strain, and reaches 5.0 ± 0.7, 5.9 ± 0.9, 6.2 ± 1.1, 6.6 ± 1.4 µW cm-2 at strains of 0%, 25%, 50%, and 75%, respectively (n = 3). At 75% strain, the stretchable MFC yields a maximum current output of 104 ± 27 µA cm-2 and an open-circuit voltage of 283 ± 30 mV (n = 3). The results provide insights to design stretchable MFCs to power the next-generation on-skin devices, soft robotics, and sustainable electronics.
Collapse
Affiliation(s)
- Shizhe Peng
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Jia Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yihan Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinwei Cao
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhongguan Road, Ningbo, 315201, China
| | - Ming Zhou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nano-biosensing and Nano-bioanalysis at Universities of Jilin Province, Analysis and Testing Center, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Yude Su
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
Valluvar Oli A, Ivaturi A. Indoor Light Harvesting Perovskite Solar Cells on Conducting Oxide-Free Ultrathin Deformable Substrates. ACS APPLIED ENERGY MATERIALS 2024; 7:6096-6104. [PMID: 39148697 PMCID: PMC11322909 DOI: 10.1021/acsaem.3c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 08/17/2024]
Abstract
Perovskite solar cells (PSCs) are receiving renewed interest since they have reached high power conversion efficiency (PCE) and show potential for application not only on rigid and flexible substrates but also on mechanically deformable substrates for integration on nonplanar curvilinear surfaces. Here we demonstrate PSCs fabricated on transparent conducting oxide-free ultrathin polyethylene terephthalate substrates capable of efficiently harvesting indoor light even under compressive strain. Interface engineering with poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) improved the shunt resistance and band alignment at the perovskite-hole transport layer interface, which resulted in enhanced charge extraction, leading to 114% improvement in PCE from 5.57 to 11.91% under 500 lx indoor white LED (4000 K) illumination. The champion device exhibited a PCE of 18.37% under 250 lx cool white LED (4000 K) light. The maximum power output (P max) of the devices varied from 13.78 to 25.38 μW/cm2 by changing the indoor light illumination from 250 to 1000 lx, respectively. Moreover, the devices showed impressive performance even after mechanical deformation and retained 83 and 76% for 1 sun and indoor light, respectively, under 30% compressive strain. Our approach paves the way for fabrication of efficient indoor light harvesting PSCs on mechanically deformable substrates for integration on nonplanar surfaces prone to compressive strain.
Collapse
Affiliation(s)
- Arivazhagan Valluvar Oli
- Smart Materials Research
and Device Technology Group, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Aruna Ivaturi
- Smart Materials Research
and Device Technology Group, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
3
|
Kim SK, Cho EM, Seok HJ, Kim YY, Choi DH, Lee SJ, Jeon NJ, Kim HK. Highly flexible and transparent colorless polyimide substrate sandwiched between plasma polymerized fluorocarbon and InGaTiO for high performance flexible perovskite solar cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2373041. [PMID: 39169917 PMCID: PMC11338216 DOI: 10.1080/14686996.2024.2373041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 08/23/2024]
Abstract
We integrated transparent antireflective coatings and transparent electrodes onto flexible colorless polyimide (CPI) substrates to fabricate high-performance flexible perovskite solar cells. Multifunctional PPFC/CPI/IGTO substrates were fabricated by sputtering the optimal plasma-polymerized fluorocarbon (PPFC) antireflective coating and InGaTiO (IGTO) electrode films on both sides of the CPI substrate. By applying PPFC with a low refractive index (1.38) as an antireflective coating, the transparency of the PPFC/CPI/IGTO substrate increased by an additional 1.2%. In addition, owing to the amorphous characteristics of the PPFC and IGTO layers, the PPFC/CPI/IGTO substrate showed constant sheet resistance and transmittance change even after 10,000 cycles during the bending tests. The flexible perovskite solar cells, fabricated on the PPFC/CPI/IGTO substrate, exhibited an increase in current density of 1.48 mA/cm2 after the deposition of the PPFC antireflective coating. These results confirmed that the PPFC/CPI/IGTO substrate was durable against high-temperature treatment, flexible, and exhibited excellent electrical characteristics. This enhanced the efficiency and durability of the flexible perovskite solar cells. Moreover, the hydrophobic PPFC layer allowed the self-cleaning of inflexible perovskite solar cells. Given these attributes, the PPFC/CPI/IGTO structure has been recognized as a good choice for multifunctional substrates of flexible perovskite solar cells, presenting the potential for enhancing performance.
Collapse
Affiliation(s)
- Su-Kyung Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Eun-Mi Cho
- Chemical Materials Solution Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hae-Jun Seok
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Young-Yun Kim
- Chemical Materials Solution Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Dong-Hyeok Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Sang-Jin Lee
- Chemical Materials Solution Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Nam Joong Jeon
- Chemical Materials Solution Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Han-Ki Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Yang Z, Jiang Y, Wang Y, Li G, You Q, Wang Z, Gao X, Lu X, Shi X, Zhou G, Liu JM, Gao J. Supramolecular Polyurethane "Ligaments" Enabling Room-Temperature Self-Healing Flexible Perovskite Solar Cells and Mini-Modules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307186. [PMID: 37857583 DOI: 10.1002/smll.202307186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Flexible perovskite solar cells (F-PSCs) have emerged as promising alternatives to conventional silicon solar cells for applications in portable and wearable electronics. However, the mechanical stability of inherently brittle perovskite, due to residual lattice stress and ductile fracture formation, poses significant challenges to the long-term photovoltaic performance and device lifetime. In this paper, to address this issue, a dynamic "ligament" composed of supramolecular poly(dimethylsiloxane) polyurethane (DSSP-PPU) is introduced into the grain boundaries of the PSCs, facilitating the release of residual stress and softening of the grain boundaries. Remarkably, this dynamic "ligament" exhibits excellent self-healing properties and enables the healing of cracks in perovskite films at room temperature. The obtained PSCs have achieved power conversion efficiencies of 23.73% and 22.24% for rigid substrates and flexible substrates, respectively, also 17.32% for flexible mini-modules. Notably, the F-PSCs retain nearly 80% of their initial efficiency even after subjecting the F-PSCs to 8000 bending cycles (r = 2 mm), which can further recover to almost 90% of the initial efficiency through the self-healing process. This remarkable improvement in device stability and longevity holds great promise for extending the overall lifetime of F-PSCs.
Collapse
Affiliation(s)
- Zhengchi Yang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yue Jiang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yuqi Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Gu Li
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Quanwen You
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Zhen Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xingsen Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xubing Lu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Xinbo Shi
- Chain Walking New Material Technology (Guangzhou) Co. LTD., Guangzhou, 511462, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Jun-Ming Liu
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinwei Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Wang C, Qu D, Zhou B, Shang C, Zhang X, Tu Y, Huang W. Self-Healing Behavior of the Metal Halide Perovskites and Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307645. [PMID: 37770384 DOI: 10.1002/smll.202307645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Perovskite solar cells have achieved rapid progress in the new-generation photovoltaic field, but the commercialization lags behind owing to the device stability issue under operational conditions. Ultimately, the instability issue is attributed to the soft lattice of ionic perovskite crystal. In brief, metal halide perovskite materials are susceptible to structural instability processes, including phase segregation, component loss, lattice distortion, and fatigue failure under harsh external stimuli such as high humidity, strong irradiation, wide thermal cycles, and large stress. Developing self-healing perovskites to further improve the unsatisfactory operational stability of their photoelectric devices under harsh stimuli has become a cutting-edge hotspot in this field. This self-healing behavior needs to be studied more comprehensively. Therefore, the self-healing behavior of the metal halide perovskites and photovoltaics is classified and summarized in this review. By discussing recent advances, underlying mechanisms, strategies, and existing challenges, this review provides perspectives on self-healing of perovskite solar cells in the future.
Collapse
Affiliation(s)
- Chenyun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Du Qu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Bin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chuanzhen Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xinyue Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yongguang Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Key Laboratory of Flexible Electronics (KLoFE) and Institution of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, Jiangsu, 211816, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, China
- Key laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
6
|
Liang H, Yang W, Xia J, Gu H, Meng X, Yang G, Fu Y, Wang B, Cai H, Chen Y, Yang S, Liang C. Strain Effects on Flexible Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304733. [PMID: 37828594 PMCID: PMC10724416 DOI: 10.1002/advs.202304733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Indexed: 10/14/2023]
Abstract
Flexible perovskite solar cells (f-PSCs) as a promising power source have grabbed surging attention from academia and industry specialists by integrating with different wearable and portable electronics. With the development of low-temperature solution preparation technology and the application of different engineering strategies, the power conversion efficiency of f-PSCs has approached 24%. Due to the inherent properties and application scenarios of f-PSCs, the study of strain in these devices is recognized as one of the key factors in obtaining ideal devices and promoting commercialization. The strains mainly from the change of bond and lattice volume can promote phase transformation, induce decomposition of perovskite film, decrease mechanical stability, etc. However, the effect of strain on the performance of f-PSCs has not been systematically summarized yet. Herein, the sources of strain, evaluation methods, impacts on f-PSCs, and the engineering strategies to modulate strain are summarized. Furthermore, the problems and future challenges in this regard are raised, and solutions and outlooks are offered. This review is dedicated to summarizing and enhancing the research into the strain of f-PSCs to provide some new insights that can further improve the optoelectronic performance and stability of flexible devices.
Collapse
Affiliation(s)
- Hongbo Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Wenhan Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Junmin Xia
- State Key Laboratory of OrganicElectronics and Information DisplaysNanjing University of Posts and TelecommunicationsNanjing210000China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of EducationInstitute of Applied Physics and Materials EngineeringUniversity of MacauMacau999078P. R. China
| | - Xiangchuan Meng
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330000P. R. China
| | - Gege Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Ying Fu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationJiangxi Normal UniversityNanchang330000P. R. China
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterSchool of PhysicsNational Innovation Platform (Center) for Industry‐Education Integration of Energy Storage TechnologyXi'an Jiaotong UniversityXi'an710000P. R. China
| |
Collapse
|
7
|
Xu P, Liu J, Wang S, Chen J, Han B, Meng Y, Yang S, Xie L, Yang M, Jia R, Ge Z. Dynamic covalent polymer engineering for stable and self-healing perovskite solar cells. MATERIALS HORIZONS 2023; 10:5223-5234. [PMID: 37727103 DOI: 10.1039/d3mh01293j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Perovskite films are susceptible to degradation during their service period due to their weak mechanical properties. Acylhydrazone-bonded waterborne polyurethane (Ab-WPU) was employed as dynamic covalent polymer engineering to develop self-healing perovskite solar cells (SHPSCs). Ab-WPU enhances the crystallinity of the perovskite film, passivates the defects of the perovskite film through functional groups, and demonstrates promising flexibility and mild temperature self-healing properties of SHPSCs. The champion efficiency of SHPSCs on rigid and flexible substrates reaches 24.2% and 21.27% respectively. The moisture and heat stability of devices were improved. After 1000 bending cycles, the Ab-WPU-modified flexible device can be restored to an efficiency of over 95% of its original efficiency by heating to 60 °C. This is because the dynamic acylhydrazone bond can be activated to repair perovskite film defects at a mild temperature of 60 °C as evidenced by in situ AFM studies. This strategy provides an effective pathway for dynamic self-healing materials in PSCs under operational conditions.
Collapse
Affiliation(s)
- Peng Xu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jian Liu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Shuai Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jiujiang Chen
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Bin Han
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuanyuan Meng
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Shuncheng Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Lisha Xie
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Mengjin Yang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Runping Jia
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Ziyi Ge
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Song W, Ye Q, Yang S, Xie L, Meng Y, Chen Z, Gu Q, Yang D, Shi J, Ge Z. Ultra Robust and Highly Efficient Flexible Organic Solar Cells with Over 18 % Efficiency Realized by Incorporating a Linker Dimerized Acceptor. Angew Chem Int Ed Engl 2023; 62:e202310034. [PMID: 37612732 DOI: 10.1002/anie.202310034] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
The wearable application of flexible organic solar cells (f-OSCs) necessitates high power conversion efficiency (PCE) and mechanical robustness. However, photoactive films based on efficient non-fullerene small molecule acceptors (NF-SMAs) are typically brittle, leading to poor mechanical stability in devices. In this study, we achieved a remarkable PCE of 18.06 % in f-OSCs while maintaining ultrahigh mechanical robustness (with a crack-onset strain (COS) of higher than 11 %) by incorporating a linker dimerized acceptor (DOY-TVT). Compared to binary blends, ternary systems exhibit reduced non-radiative recombination, suppressed crystallization and diffusion of NF-SMAs, and improved load distribution across the chain networks, enabling the dissipation of the load energy. Thus, the ternary f-OSCs developed in this study achieved, high PCE and stability, surpassing binary OSCs. Moreover, the developed f-OSCs retained 97 % of the initial PCE even after 3000 bending cycles, indicating excellent mechanical stability (9.1 % higher than binary systems). Furthermore, the rigid device with inverted structure based on the optimal active layer exhibited a substantial increase in efficiency retention, with 89.6 % after 865 h at 85 °C and 93 % after more than 1300 h of shelf storage at 25 °C. These findings highlight the potential of the linker oligomer acceptor for realizing high-performing f-OSCs with ultrahigh mechanical robustness.
Collapse
Affiliation(s)
- Wei Song
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Qinrui Ye
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Shuncheng Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Lin Xie
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Yuanyuan Meng
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Zhenyu Chen
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Qun Gu
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Daobin Yang
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Jingyu Shi
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| | - Ziyi Ge
- Zhejiang Engineering Research Center for Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 West Zhong Guan Road, ZhenhaiDistrict, Ningbo, 315201, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, P. R. China
| |
Collapse
|
9
|
Liu J, Ye T, Yu D, Liu SF, Yang D. Recoverable Flexible Perovskite Solar Cells for Next-Generation Portable Power Sources. Angew Chem Int Ed Engl 2023; 62:e202307225. [PMID: 37345965 DOI: 10.1002/anie.202307225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
Flexible perovskite solar cells (FPSCs) with excellent recoverability show a wide range of potential applications in portable power sources. The recoverability of FPSCs requires outstanding bendability of each functional layer, including the flexible substrates, electrodes, perovskite light absorbers, and charge transport materials. This review highlights the recent progress and practical applications of high-recoverability FPSCs, and illustrates the routes toward improvement of the recoverability and environmental stability through the choice of flexible substrates and the preparation of high-quality perovskite films, as well as the optimization of charge-selective contacts. In addition, we explore the intrinsic properties of each functional layer from the physical perspective and analyze how to select suitable functional layers. Additionally, some effective strategies are summarized, including material modification engineering of selective contacts, additives and interface engineering of interlayers, which can release mechanical stress and increase the power-conversion efficiency (PCE) and recoverability of the FPSCs. The challenges of making high-performance FPSCs with long-term stability and high recoverability are discussed. Finally, future applications and perspectives for FPSCs are discussed, aiming to promote more extensive commercialization processes for lightweight and durable FPSCs.
Collapse
Affiliation(s)
- Jieqiong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Ye
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dongqu Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- School of Physics and Electronic Technology, Liaoning Normal University, Dalian, 116029, China
| | - Shengzhong Frank Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| | - Dong Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Guo Y, Huang L, Wang C, Liu S, Huang J, Liu X, Zhang J, Hu Z, Zhu Y. Advances on the Application of Wide Band-Gap Insulating Materials in Perovskite Solar Cells. SMALL METHODS 2023; 7:e2300377. [PMID: 37254269 DOI: 10.1002/smtd.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the development of perovskite solar cells (PSCs) is advancing rapidly with their recorded photoelectric conversion efficiency reaching 25.8%. However, for the commercialization of PSCs, it is also necessary to solve their stability issue. In order to improve the device performance, various additives and interface modification strategies have been proposed. While, in many cases, they can guarantee a significant increase in efficiency, but not ensure improved stability. Therefore, materials that improve the device efficiency and stability simultaneously are urgently needed. Some wide band-gap insulating materials with stable physical and chemical properties are promising alternative materials. In this review, the application of wide band-gap insulating materials in PSCs, including their preparation methods, working roles, and mechanisms are described, which will promote the commercial application of PSCs.
Collapse
Affiliation(s)
- Yi Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chaofeng Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shuang Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yuejin Zhu
- School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| |
Collapse
|
11
|
Li X, Yu H, Liu Z, Huang J, Ma X, Liu Y, Sun Q, Dai L, Ahmad S, Shen Y, Wang M. Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:206. [PMID: 37651002 PMCID: PMC10471566 DOI: 10.1007/s40820-023-01165-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 09/01/2023]
Abstract
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs.
Collapse
Affiliation(s)
- Xiongjie Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Haixuan Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Zhirong Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Junyi Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiaoting Ma
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Yuping Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Qiang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Letian Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Shahzada Ahmad
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, University of Basque Country Science Park, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Chen Z, Cheng Q, Chen H, Wu Y, Ding J, Wu X, Yang H, Liu H, Chen W, Tang X, Lu X, Li Y, Li Y. Perovskite Grain-Boundary Manipulation Using Room-Temperature Dynamic Self-Healing "Ligaments" for Developing Highly Stable Flexible Perovskite Solar Cells with 23.8% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300513. [PMID: 36796414 DOI: 10.1002/adma.202300513] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Indexed: 05/05/2023]
Abstract
Flexible perovskite solar cells (pero-SCs) are the best candidates to complement traditional silicon SCs in portable power applications. However, their mechanical, operational, and ambient stabilities are still unable to meet the practical demands because of the natural brittleness, residual tensile strain, and high defect density along the perovskite grain boundaries. To overcome these issues, a cross-linkable monomer TA-NI with dynamic covalent disulfide bonds, H-bonds, and ammonium is carefully developed. The cross-linking acts as "ligaments" attached on the perovskite grain boundaries. These "ligaments" consisting of elastomers and 1D perovskites can not only passivate the grain boundaries and enhance moisture resistance but also release the residual tensile strain and mechanical stress in 3D perovskite films. More importantly, the elastomer can repair bending-induced mechanical cracks in the perovskite film because of dynamic self-healing characteristics. The resultant flexible pero-SCs exhibit promising improvements in efficiency, and record values (23.84% and 21.66%) are obtained for 0.062 and 1.004 cm2 devices; the flexible devices also show overall improved stabilities with T90 >20 000 bending cycles, operational stability with T90 >1248 h, and ambient stability (relative humidity = 30%) with T90 >3000 h. This strategy paves a new way for the industrial-scale development of high-performance flexible pero-SCs.
Collapse
Affiliation(s)
- Ziyuan Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qinrong Cheng
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haiyang Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yeyong Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Junyuan Ding
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaoxiao Wu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Heyi Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Heng Liu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Weijie Chen
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaohua Tang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yaowen Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yongfang Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Gao D, Li B, Li Z, Wu X, Zhang S, Zhao D, Jiang X, Zhang C, Wang Y, Li Z, Li N, Xiao S, Choy WCH, Jen AKY, Yang S, Zhu Z. Highly Efficient Flexible Perovskite Solar Cells through Pentylammonium Acetate Modification with Certified Efficiency of 23.35. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206387. [PMID: 36349808 DOI: 10.1002/adma.202206387] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Among the emerging photovoltaic technologies, rigid perovskite solar cells (PSCs) have made tremendous development owing to their exceptional power conversion efficiency (PCE) of up to 25.7%. However, the record PCE of flexible PSCs (≈22.4%) still lags far behind their rigid counterparts and their mechanical stabilities are also not satisfactory. Herein, through modifying the interface between perovskite and hole transport layer via pentylammonium acetate (PenAAc) molecule a highly efficient and stable flexible inverted PSC is reported. Through synthetic manipulation of anion and cation, it is shown that the PenA+ and Ac- have strong chemical binding with both acceptor and donor defects of surface-terminating ends on perovskite films. The PenAAc-modified flexible PSCs achieve a record PCE of 23.68% (0.08 cm2 , certified: 23.35%) with a high open-circuit voltage (VOC ) of 1.17 V. Large-area devices (1.0 cm2 ) also realized an exceptional PCE of 21.52%. Moreover, the fabricated devices show excellent stability under mechanical bending, with PCE remaining above 91% of the original PCE even after 5000 bends.
Collapse
Affiliation(s)
- Danpeng Gao
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Bo Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zhen Li
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xin Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Shoufeng Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dan Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Xiaofen Jiang
- CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chunlei Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Yan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Zhenjiang Li
- Department of Computer Science, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Nan Li
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, 999077, Hong Kong
| | - Shuang Xiao
- Guangdong Provincial Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Center for Advanced Material Diagnostic Technology and College of Engineering Physics, Shenzhen Technology University, Shenzhen, 518118, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road, Kowloon, 999077, Hong Kong
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Shangfeng Yang
- CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zonglong Zhu
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
14
|
Luo C, Liu L, Huang Y, Lou X, Xia F, Song Y. Recent Advances in Printable Flexible Optical Devices: From Printing Technology and Optimization Strategies to Perspectives. J Phys Chem Lett 2022; 13:12061-12075. [PMID: 36542750 DOI: 10.1021/acs.jpclett.2c03153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, flexible optical devices have triggered booming developments in various research fields, including display equipment, sensors, energy conversion, and so on, due to their high compatibility, portability, and wearability. With the advantages of strong design ability, high precision, and high integration, printing technologies have been recognized as promising methods to realize flexible optical devices. In this Perspective, recent progress on printing strategies for fabricating flexible optical devices are introduced systematically. First, through adjusting the composition of inks, selecting flexible substrates, and controlling external stimulation, fabrication of flexible optical devices based on inkjet printing is illustrated. Then, flexible optical devices fabricated by template-induced printing, 3D printing, slot-die printing, and screen printing are summarized. Finally, prospects and future development directions based on printing technology for flexible optical devices are proposed.
Collapse
Affiliation(s)
- Cihui Luo
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Lingxiao Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
15
|
Galle MHJJ, Li J, Frantsuzov PA, Basché T, Scheblykin IG. Self-Healing Ability of Perovskites Observed via Photoluminescence Response on Nanoscale Local Forces and Mechanical Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2204393. [PMID: 36453591 PMCID: PMC9811431 DOI: 10.1002/advs.202204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/18/2022] [Indexed: 06/17/2023]
Abstract
The photoluminescence (PL) of metal halide perovskites can recover after light or current-induced degradation. This self-healing ability is tested by acting mechanically on MAPbI3 polycrystalline microcrystals by an atomic force microscope tip (applying force, scratching, and cutting) while monitoring the PL. Although strain and crystal damage induce strong PL quenching, the initial balance between radiative and nonradiative processes in the microcrystals is restored within a few minutes. The stepwise quenching-recovery cycles induced by the mechanical action is interpreted as a modulation of the PL blinking behavior. This study proposes that the dynamic equilibrium between active and inactive states of the metastable nonradiative recombination centers causing blinking is perturbed by strain. Reversible stochastic transformation of several nonradiative centers per microcrystal under application/release of the local stress can lead to the observed PL quenching and recovery. Fitting the experimental PL trajectories by a phenomenological model based on viscoelasticity provides a characteristic time of strain relaxation in MAPbI3 on the order of 10-100 s. The key role of metastable defect states in nonradiative losses and in the self-healing properties of perovskites is suggested.
Collapse
Affiliation(s)
- Marco H. J. J. Galle
- Department of ChemistryJohannes Gutenberg‐UniversityDuesbergweg 10‐1455128MainzGermany
| | - Jun Li
- Chemical Physics and NanoLundLund UniversityBox 124Lund22100Sweden
| | - Pavel A. Frantsuzov
- Voevodsky Institute of Chemical Kinetics and CombustionSiberian Branch of the Russian Academy of ScienceInstitutskaya 3Novosibirsk630090Russia
| | - Thomas Basché
- Department of ChemistryJohannes Gutenberg‐UniversityDuesbergweg 10‐1455128MainzGermany
| | | |
Collapse
|
16
|
Bao R, Pan C. Efficient perovskite solar cells with body temperature self-repairing. Sci Bull (Beijing) 2022; 67:2263-2264. [PMID: 36546212 DOI: 10.1016/j.scib.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rongrong Bao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China; School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Qian X, Shen Y, Zhang LJ, Guo M, Cai XY, Lu Y, Liu H, Zhang YF, Tang Y, Chen L, Tang Y, Wang J, Zhou W, Gao X, Mao H, Li Y, Tang JX, Lee ST. Bio-Inspired Pangolin Design for Self-Healable Flexible Perovskite Light-Emitting Diodes. ACS NANO 2022; 16:17973-17981. [PMID: 36190790 DOI: 10.1021/acsnano.2c06118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite tremendous developments in the luminescene performance of perovskite light-emitting diodes (PeLEDs), the brittle nature of perovskite crystals and their poor crystallinity on flexible substrates inevitably lead to inferior performance. Inspired by pangolins' combination of rigid scales and soft flesh, we propose a bionic structure design for self-healing flexible PeLEDs by employing a polymer-assisted crystal regulation method with a soft elastomer of diphenylmethane diisocyanate polyurethane (MDI-PU). The crystallinity and flexural strain resistance of such perovskite films on plastics with silver-nanowire-based flexible transparent electrodes are highly enhanced. The detrimental cracks induced during repeated deformation can be effectively self-healed under heat treatment via intramolecular/intermolecular hydrogen bonds with MDI-PU. Upon collective optimization of the perovskite films and device architecture, the blue-emitting flexible PeLEDs can achieve a record external quantum efficiency of 13.5% and high resistance to flexural strain, which retain 87.8 and 80.7% of their initial efficiency after repeated bending and twisting operations of 2000 cycles, respectively.
Collapse
Affiliation(s)
- Xiaoyan Qian
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Yang Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Liu-Jiang Zhang
- Shanghai Institute of Applied Physics, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai201204, China
| | - Minglei Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Xiao-Yi Cai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Yu Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Huimin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Ye-Fan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Yanqing Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Li Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Yingyi Tang
- School of Physics and Electronic Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai200062, China
| | - Jingkun Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Wei Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
| | - Xingyu Gao
- Shanghai Institute of Applied Physics, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Chinese Academy of Sciences, Shanghai201204, China
| | - HongYing Mao
- School of Physics, Hangzhou Normal University, Hangzhou311121, China
| | - Yanqing Li
- School of Physics and Electronic Science, Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai200062, China
| | - Jian-Xin Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa999078, Macao, China
| | - Shuit-Tong Lee
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa999078, Macao, China
| |
Collapse
|
18
|
Peng M, Zhang F, Tian L, You L, Wu J, Wen N, Zhang Y, Wu Y, Gan F, Yu H, Zhao J, Feng Q, Deng F, Zheng L, Wu Y, Yi N. Modified Fabrication of Perovskite-Based Composites and Its Exploration in Printable Humidity Sensors. Polymers (Basel) 2022; 14:4354. [PMID: 36297932 PMCID: PMC9606918 DOI: 10.3390/polym14204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Organic perovskites are promising optoelectronic semiconductor materials with photoelectric applications. It is known that the luminescence of perovskites is highly sensitive to hydron molecules due to its low moisture resistance of crystal structure, indicating its potential application on humidity-sensing. Herein, a novel perovskite-based compound (PBC) with minimal defects was developed to promote the photoluminescence performance via optimization of the drying method and precursor constitutions. Perovskite materials with good structural integrity and enhanced fluorescence performance up to four times were obtained from supercritical drying. Moreover, the hydrophilic polymer matrix, polyethylene oxide (PEO), was added to obtain a composite of perovskite/PEO (PPC), introducing enhanced humidity sensitivity and solution processibility. These perovskite/PEO composites also exhibited long-term stability and manifold cycles of sensitivity to humidity owing to perovskite encapsulation by PEO. In addition, this precursor solution of perovskite-based composites could be fancily processed by multiple methods, including printing and handwriting, which demonstrates the potential and broaden the applications in architecture decoration, logos, trademarks, and double encryption of anti-fake combined with humidity.
Collapse
Affiliation(s)
- Meiting Peng
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Fan Zhang
- Advanced Energy Storage Technology Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liyong Tian
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longbin You
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiayi Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Nanhua Wen
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangfan Zhang
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yancheng Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Jing Zhao
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, China
| | - Fuqin Deng
- Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Longhui Zheng
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingzhu Wu
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
19
|
Zhang K, Shi X, Wu G, Huang Y. Surface Chelation Enabled by Polymer-Doping for Self-Healable Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3125. [PMID: 36144913 PMCID: PMC9501477 DOI: 10.3390/nano12183125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Polymer doping is an efficient approach to achieve self-healing perovskite solar cells. However, achieving high self-healing efficiency under moderate conditions remains challenging. Herein, an innovative self-healable polysiloxane (PAT) containing plenty of thiourea hydrogen bonds was designed and introduced into perovskite films. Abundant thiourea hydrogen bonds in PAT facilitated the self-healing of cracks at grain boundaries for damaged SPSCs. Importantly, the doped SPSCs demonstrated a champion efficiency of 19.58% with little hysteresis, almost rivalling those achieved in control atmosphere. Additionally, owing to the effective chelation by PAT and good level of thiourea hydrogen bonds, after 800 cycles of stretching, releasing and self-healing, the doped SPSCs retained 85% of their original IPCE. The self-healing characteristics were demonstrated in situ after stretching at 20% strain for 200 cycles. This strategy of pyridine-based supramolecular doping in SPSCs paves a promising way for achieving efficient and self-healable crystalline semiconductors.
Collapse
Affiliation(s)
- Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Petrochemical Engineering, Changzhou University, Changzhou 213000, China
| | - Xiangrong Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Guangyu Wu
- College of Biology and the Environment, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
20
|
Fan B, Xiong J, Zhang Y, Gong C, Li F, Meng X, Hu X, Yuan Z, Wang F, Chen Y. A Bionic Interface to Suppress the Coffee-Ring Effect for Reliable and Flexible Perovskite Modules with a Near-90% Yield Rate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201840. [PMID: 35584299 DOI: 10.1002/adma.202201840] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The inhomogeneity, poor interfacial contact, and pinholes caused by the coffee-ring effect severely affect the printing reliability of flexible perovskite solar cells (PSCs). Herein, inspired by the bio-glue of barnacles, a bionic interface layer (Bio-IL) of NiOx /levodopa is introduced to suppress the coffee-ring effect during printing perovskite modules. The coordination effect of the sticky functional groups in Bio-IL can pin the three-phase contact line and restrain the transport of perovskite colloidal particles during the printing and evaporation process. Moreover, the sedimentation rate of perovskite precursor is accelerated due to the electrostatic attraction and rapid volatilization from an extraordinary wettability. The superhydrophilic Bio-IL affords an even spread over a large-area substrate, which boosts a complete and uniform liquid film for heterogeneous nucleation as well as crystallization. Perovskite films on different large-area substrates with negligible coffee-ring effect are printed. Consequently, inverted flexible PSCs and perovskite solar modules achieve a high efficiency of 21.08% and 16.87%, respectively. This strategy ensures a highly reliable reproducibility of printing PSCs with a near 90% yield rate.
Collapse
Affiliation(s)
- Baojin Fan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jian Xiong
- Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, PR China
| | - Yanyan Zhang
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Chenxiang Gong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Feng Li
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiangchuan Meng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Zhongyi Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Fuyi Wang
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing, 100190, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
21
|
Zhang J, Li X, Zhong M, Zhang Z, Jia M, Li J, Gao X, Chen L, Li Q, Zhang W, Xu D. Near 90% Transparent ITO-Based Flexible Electrode with Double-Sided Antireflection Layers for Highly Efficient Flexible Optoelectronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201716. [PMID: 35419940 DOI: 10.1002/smll.202201716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 06/14/2023]
Abstract
As a widely used substrate for flexible electronics, indium-tin oxide-based polymer electrodes (polymer-ITO electrodes) exhibit poorly visible light transmittance of less than 80%. The inferior transmittance for polymer-ITO electrodes severely limits the performance improvement of polymer-ITO based electronics. Here, a conceptually different approach of the double-sided antireflection coatings (DARCs) strategy is proposed to modulate both the air-polymer substrate interface and ITO-air interface refractive index gradient, to synergistically improve the transmittance of polymer-ITO electrodes. On the basis of SiO2 nanoparticles antireflection layer on polymer substrate, a polymer-metal oxide composite antireflection film is fabricated on the ITO side. Resultantly, the transmittance of ITO-based flexible electrodes is successfully improved from 76.8% to 89.8%, which is the highest transmittance among the reported ITO-based flexible electrodes. Furthermore, the photoluminescence emission intensity of luminescent materials enveloped with the DARCs electrodes increases by 74% over that with reference electrodes, demonstrating the DARCs antireflection strategy can efficiently improve the performance of flexible optoelectronic devices. With DARCs electrode, the flexible perovskite solar cells exhibit an enhanced efficiency from 18.80% to 20.85%.
Collapse
Affiliation(s)
- Jinxia Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Xiaoxuan Li
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Meiyan Zhong
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhenzhen Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mingdi Jia
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jin Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaowen Gao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Langxing Chen
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qi Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenhua Zhang
- Sichuan Research Center of New Materials, Institute of Chemical Materials, China Academy of Engineering Physics, Chengdu, 610200, China
| | - Dongsheng Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
22
|
Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Sci Bull (Beijing) 2022; 67:794-802. [PMID: 36546232 DOI: 10.1016/j.scib.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
Due to their great potential in wearable and portable electronics, flexible perovskite solar cells (FPSCs) have been extensively studied. The major challenges in the practical applications of FPSCs are efficiency, operational stability, and mechanical stability. Herein, we developed a facile approach by incorporating a cross-linking oligomer of trimethylolpropane ethoxylate triacrylate (TET) into perovskite films to simultaneously enhance the power conversion efficiency (PCE) and stability of FPSCs. A PCE of 20.32% was achieved, which are among the best results for the inverted FPSCs. Both mechanical and environmental stabilities were improved for the TET-incorporated FPSCs. In particular, the PCE retained approximately 87% of its initial value after 20,000 bending cycles at a radius of 4 mm. The inverted FPSCs retained 85% of the initial PCE after 500 h storage at 85 °C and 90% after 900 h continuous one-sun illumination. A joint experiment-theory analysis ascribed the underlying mechanism to the reduced defect densities, improved crystallinity, and stability of the perovskite absorbers on flexible substrates caused by TET incorporation.
Collapse
|
23
|
Xu Y, Lin Z, Wei W, Hao Y, Liu S, Ouyang J, Chang J. Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. NANO-MICRO LETTERS 2022; 14:117. [PMID: 35488940 PMCID: PMC9056588 DOI: 10.1007/s40820-022-00859-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 05/21/2023]
Abstract
Flexible perovskite solar cells (FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.
Collapse
Affiliation(s)
- Yumeng Xu
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| | - Wei Wei
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Jingjing Chang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| |
Collapse
|
24
|
Recent Advances in Electronic Skins with Multiple-Stimuli-Responsive and Self-Healing Abilities. MATERIALS 2022; 15:ma15051661. [PMID: 35268894 PMCID: PMC8911295 DOI: 10.3390/ma15051661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023]
Abstract
Wearable electronic skin (e-skin) has provided a revolutionized way to intelligently sense environmental stimuli, which shows prospective applications in health monitoring, artificial intelligence and prosthetics fields. Drawn inspiration from biological skins, developing e-skin with multiple stimuli perception and self-healing abilities not only enrich their bionic multifunctionality, but also greatly improve their sensory performance and functional stability. In this review, we highlight recent important developments in the material structure design strategy to imitate the fascinating functionalities of biological skins, including molecular synthesis, physical structure design, and special biomimicry engineering. Moreover, their specific structure-property relationships, multifunctional application, and existing challenges are also critically analyzed with representative examples. Furthermore, a summary and perspective on future directions and challenges of biomimetic electronic skins regarding function construction will be briefly discussed. We believe that this review will provide valuable guidance for readers to fabricate superior e-skin materials or devices with skin-like multifunctionalities and disparate characteristics.
Collapse
|
25
|
Zhang K, Deng Y, Shi X, Li X, Qi D, Jiang B, Huang Y. Interface Chelation Induced by Pyridine‐Based Polymer for Efficient and Durable Air‐Processed Perovskite Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kuiyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yaxin Deng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xiangrong Shi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
26
|
Zhang Q, Duan J, Guo Q, Zhang J, Zheng D, Yi F, Yang X, Duan Y, Tang Q. Thermal‐Triggered Dynamic Disulfide Bond Self‐Heals Inorganic Perovskite Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiaoyu Zhang
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Jialong Duan
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Qiyao Guo
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Junshuai Zhang
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Dengduan Zheng
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Fangxuan Yi
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Xiya Yang
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| | - Yanyan Duan
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Material (SCICDLCEM) School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 PR China
| | - Qunwei Tang
- College of Information Science and Technology Jinan University Guangzhou 510632 PR China
| |
Collapse
|
27
|
Mashkoor F, Lee SJ, Yi H, Noh SM, Jeong C. Self-Healing Materials for Electronics Applications. Int J Mol Sci 2022; 23:622. [PMID: 35054803 PMCID: PMC8775691 DOI: 10.3390/ijms23020622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Self-healing materials have been attracting the attention of the scientists over the past few decades because of their effectiveness in detecting damage and their autonomic healing response. Self-healing materials are an evolving and intriguing field of study that could lead to a substantial increase in the lifespan of materials, improve the reliability of materials, increase product safety, and lower product replacement costs. Within the past few years, various autonomic and non-autonomic self-healing systems have been developed using various approaches for a variety of applications. The inclusion of appropriate functionalities into these materials by various chemistries has enhanced their repair mechanisms activated by crack formation. This review article summarizes various self-healing techniques that are currently being explored and the associated chemistries that are involved in the preparation of self-healing composite materials. This paper further surveys the electronic applications of self-healing materials in the fields of energy harvesting devices, energy storage devices, and sensors. We expect this article to provide the reader with a far deeper understanding of self-healing materials and their healing mechanisms in various electronics applications.
Collapse
Affiliation(s)
- Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Sun Jin Lee
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Hoon Yi
- Mechanical Technology Group, Global Manufacturing Center, Samsung Electro-Mechanics, 150 Maeyeong-ro, Yeongtong-gu, Suwon 16674, Korea;
| | - Seung Man Noh
- Research Center for Green Fine Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Korea;
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| |
Collapse
|
28
|
Liu W, Yang S, Huang L, Xu J, Zhao N. Dynamic covalent polymers enabled by reversible isocyanate chemistry. Chem Commun (Camb) 2022; 58:12399-12417. [DOI: 10.1039/d2cc04747k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible isocyanate chemistry containing urethane, thiourethane, and urea bonds is valuable for designing dynamic covalent polymers to achieve promising applications in recycling, self-healing, shape morphing, 3D printing, and composites.
Collapse
Affiliation(s)
- Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
29
|
Ge C, Liu X, Yang Z, Li H, Dong Q. Thermal Dynamic Self‐healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202116602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chengda Ge
- Jilin University State Key Laboratory of Supramolecular Structure and Materials CHINA
| | - Xiaoting Liu
- Jilin University State Key Laboratory of Supramolecular Structure and Materials CHINA
| | - Ziqi Yang
- Jilin University State Key Laboratory of Supramolecular Structure and Materials CHINA
| | - Hanming Li
- Jilin University State Key Laboratory of Supramolecular Structure and Materials CHINA
| | - Qingfeng Dong
- Jilin University State Key Laboratory of Supramolecular Structure and Materials 2699 Qianjin Street 130012 Changchun CHINA
| |
Collapse
|
30
|
Ge C, Liu X, Yang Z, Li H, Dong Q. Thermal Dynamic Self-healing Supramolecular Dopant Towards Efficient and Stable Flexible Perovskite Solar Cells. Angew Chem Int Ed Engl 2021; 61:e202116602. [PMID: 34964219 DOI: 10.1002/anie.202116602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/11/2022]
Abstract
Flexible perovskite solar cells draw great attention due to their likeable traits like low cost, portability, light-weight, et al. However, mechanical stability is still the weak point in their practical application. Herein, we prepared efficient FPSC with remarkable mechanical stability by dynamic thermal self-healing effect, which can be realized by the usage of supramolecular adhesive. The colloidal adhesive was obtained by random copolymerization of acrylamide and n-butyl acrylate, which is amphiphilic, has a proper glass transition temperature and high density of hydrogen bond donors and receptors, providing the possibility of thermal dynamic repair of stress damage in FPSCs. The adhesive also greatly improves the leveling property of the precursor solution on the hydrophobic poly[bis(4-phenyl)(2,4,6-trimethylphenyl)]amine (PTAA) surface. PSCs containing this adhesive achieves more than 20% power conversion efficiency (PCE) on flexible substrates and 21.99% PCE on rigid substrates (certified PCE of 21.27%), with improved electron mobility and reduced defect concentration.
Collapse
Affiliation(s)
- Chengda Ge
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, CHINA
| | - Xiaoting Liu
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, CHINA
| | - Ziqi Yang
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, CHINA
| | - Hanming Li
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, CHINA
| | - Qingfeng Dong
- Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA
| |
Collapse
|
31
|
Zhang Q, Duan J, Guo Q, Zhang J, Zheng D, Yi F, Yang X, Duan Y, Tang Q. Thermal-Triggered Dynamic Disulfide Bond Self-Heals Inorganic Perovskite Solar Cells. Angew Chem Int Ed Engl 2021; 61:e202116632. [PMID: 34935265 DOI: 10.1002/anie.202116632] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 11/08/2022]
Abstract
One great challenge for perovskite solar cells (PSCs) lies in their poor operational stability under harsh stimuli by humidity, heat, light, etc . Herein, a thermal-triggered self-healing polyurethane (PU) is tailored to simultaneously improve the efficiency and stability of inorganic CsPbIBr 2 PSC. The dynamic covalent disulfide bonds between adjacent molecule chains in PU at high temperatures self-heal the in-service formed defects within CsPbIBr 2 perovskite film. Finally, the best device free of encapsulation achieves a champion efficiency up to 10.61% and an excellent long-term stability in air atmosphere over 80 days and persistent heat attack (85 o C) over 35 days. Moreover, the photovoltaic performances are recovered by a simple heat treatment.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Jialong Duan
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Qiyao Guo
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Junshuai Zhang
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Dengduan Zheng
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Fangxuan Yi
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Xiya Yang
- Jinan University, College of Information Science and Technology, Huangpu Road West, No 601, 510632, Guangzhou, CHINA
| | - Yanyan Duan
- Jinan University, School of Materials Science and Engineering, Kexue Road, No 100, 450001, Zhengzhou, CHINA
| | - Qunwei Tang
- Jinan University, Institute of New Energy Technology, 855 Xingye Avenue Panyu District, 510632, Guangzhou, CHINA
| |
Collapse
|
32
|
Mathur A, Fan H, Maheshwari V. Soft Polymer-Organolead Halide Perovskite Films for Highly Stretchable and Durable Photodetectors with Pt-Au Nanochain-Based Electrodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58956-58965. [PMID: 34851102 DOI: 10.1021/acsami.1c18939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rigid and brittle nature of methylammonium lead iodide (MAPbI3) polycrystalline films limits their application in stretchable devices due to rapid deterioration in performance on cycling. By incorporation of polymer chains in the MAPbI3 films, a strategy to alter the mechanical modulus and the viscoelastic nature of the films has been developed. Combining this with flexible nanochain electrodes, highly stretchable and stable perovskite devices have been fabricated. The resultant polymer-MAPbI3 photodetector exhibits ultralow dark currents (∼10-11 A) and high light switching ratios (∼103) and maintains 75% of performance after 30 days. The viscoelastic nature and lower modulus of the polymer improve the energy dissipation in the polymer-MAPbI3 devices; as a result, they maintain 52% of the device performance after 10000 stretching cycles at 50% strain. The difference in the mechanical behavior is clearly observed in the failure mode of the two films. While rapid catastrophic cracking is observed in MAPbI3 films, the intensity and size of such crack formation are highly limited in polymer-MAPbI3 films, which prevent their failure.
Collapse
Affiliation(s)
- Avi Mathur
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Hua Fan
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Vivek Maheshwari
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
33
|
Zhang K, Deng Y, Shi X, Li X, Qi D, Jiang B, Huang Y. Interface chelation induced by pyridine-based polymer for efficient and durable air-processed perovskite solar cells. Angew Chem Int Ed Engl 2021; 61:e202112673. [PMID: 34787353 DOI: 10.1002/anie.202112673] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/07/2021] [Indexed: 12/11/2022]
Abstract
Polymer doping is a significant approach to precisely control nucleation and crystal growth of perovskites and enhance electronic quality in perovskite solar cells (PSC) prepared in air. Here, a brand-new self-healing polysiloxane (SHP) with dynamic 2,6-pyridinedicarboxamide (PDCA) coordination units and plenty of hydrogen bonds was designed and incorporated into perovskite films. PDCA units, showing strong intermolecular Pb 2+ -N amido , I - -N pyridyl , and Pb 2+ -O amido coordination interactions, were expected to enhance crystallinity and passivate the grain boundary. In addition, abundant hydrogen bonds in SHP afforded the self-healing of cracks at grain boundaries for fatigue PSCs. Significantly, the doped device demonstrated a champion efficiency of 19.50% with inconspicuous hysteresis, almost rivaling those achieved in control atmosphere. This strategy of heterocyclic-based macromolecular doping in PSCs will pave a way for realizing efficient and durable crystalline semiconductors.
Collapse
Affiliation(s)
- Kuiyuan Zhang
- Harbin Institute of Technology, School of Chemical Engineering and Technology, CHINA
| | - Yaxin Deng
- Harbin Institute of Technology, School of Chemical Engineering and Technology, CHINA
| | - Xiangrong Shi
- Harbin Institute of Technology, School of Chemical Engineering and Technology, CHINA
| | - Xin Li
- Harbin Institute of Technology, School of Chemical Engineering and Technology, CHINA
| | - Dianpeng Qi
- Harbin Institute of Technology, School of Chemical Engineering and Technology, CHINA
| | - Bo Jiang
- Harbin Institute of Technology, Polymer Materials and Engineering Department, School of Chemical Engineering and, Harbin Institute of Technology, P.O. Box: 1254, Harbin 150001,, China, 150001, Harbin, CHINA
| | - Yudong Huang
- Harbin Institute of Technology, School of Chemical Engineering and Technology, CHINA
| |
Collapse
|
34
|
Zhang J, Wang L, Jiang C, Cheng B, Chen T, Yu J. CsPbBr 3 Nanocrystal Induced Bilateral Interface Modification for Efficient Planar Perovskite Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102648. [PMID: 34515409 PMCID: PMC8564463 DOI: 10.1002/advs.202102648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Indexed: 05/06/2023]
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have drawn tremendous attention owing to their remarkable photovoltaic performance and simple preparation process. However, conventional wet-chemical synthesis methods inevitably create defects both in the bulk and at the interfaces of perovskites, leading to recombination of charge carriers and reduced stability. Herein, a bilateral interface modification to perovskites by doping room-temperature synthesized CsPbBr3 nanocrystals (CN) is reported. The ultrafast transient absorption measurement reveals that CN effectively suppresses the defect at the SnO2 /perovskite interface and boosts the interfacial electron transport. Meanwhile, the in situ Kelvin probe force microscopy and contact potential difference characterizations verify that the CN within the upper part of the perovskites enhances the built-in electric field, facilitating oriented migration of the carriers within the perovskite. Combining the superiorities of CN modifiers on both sides, the bilaterally modified CH3 NH3 PbI3 -based planar PSCs exhibit optimal power conversion efficiency exceeding 20% and improved device stability.
Collapse
Affiliation(s)
- Jianjun Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Chenhui Jiang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
35
|
Repair Strategies for Perovskite Solar Cells. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1334-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Dauzon E, Sallenave X, Plesse C, Goubard F, Amassian A, Anthopoulos TD. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101469. [PMID: 34297433 DOI: 10.1002/adma.202101469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Indexed: 06/13/2023]
Abstract
Emerging forms of soft, flexible, and stretchable electronics promise to revolutionize the electronics industries of the future offering radically new products that combine multiple functionalities, including power generation, with arbitrary form factor. For example, skin-like electronics promise to transform the human-machine-interface, but the softness of the skin is incompatible with traditional electronic components. To address this issue, new strategies toward soft and wearable electronic systems are currently being pursued, which also include stretchable photovoltaics as self-powering systems for use in autonomous and stretchable electronics of the future. Here recent developments in the field of stretchable photovoltaics are reviewed and their potential for various emerging applications are examined. Emphasis is placed on the different strategies to induce stretchability including extrinsic and intrinsic approaches. In the former case, engineering and patterning of the materials and devices are key elements while intrinsically stretchable systems rely on mechanically compliant materials such as elastomers and organic conjugated polymers. The result is a review article that provides a comprehensive summary of the progress to date in the field of stretchable solar cells from the nanoscale to macroscopic functional devices. The article is concluded by discussing the emerging trends and future developments.
Collapse
Affiliation(s)
- Emilie Dauzon
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| | | | - Cedric Plesse
- LPPI, CY Cergy Paris Université, Cergy, 95000, France
| | | | - Aram Amassian
- Department of Materials Science and Engineering, and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, NC, 27695, USA
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Centre (KSC), Physical Science and Engineering Division, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
37
|
Dynamic Oxime-Urethane Bonds, a Versatile Unit of High Performance Self-healing Polymers for Diverse Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2625-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Affiliation(s)
| | | | - Wolfgang H. Binder
- Martin‐Luther‐Universität Halle‐Wittenberg Makromolekulare Chemie Fakultät Naturwissenschaften II Von‐Danckelmann‐Platz 4 D‐06120 Halle
| |
Collapse
|
39
|
Pendyala NK, Magdassi S, Etgar L. Fabrication of Perovskite Solar Cells with Digital Control of Transparency by Inkjet Printing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30524-30532. [PMID: 34160194 DOI: 10.1021/acsami.1c04407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Semitransparency is an attractive and important property in solar cells since it opens new possibilities in a variety of applications such as tandem cell configuration and building-integrated photovoltaics. Metal halide perovskite has the optimal properties to function as the light harvester in solar cells and can be made as a thin film, while its chemical composition can change its band gap. However, achieving high transparency usually compromises the solar cell's efficiency. Here we report on a unique approach to fabricating semitransparent perovskite solar cells that does not rely on their composition or their thickness. The approach is based on a scalable process, inkjet printing of arrays of transparent pillars, which are composed of inert photopolymerizable liquid compositions and are partly covered by the perovskite. This material can be printed at specific locations and array densities, thus providing a digital control of both the transparency and efficiency of the solar cells. The new semitransparent device structure shows 11.2% efficiency with 24% average transparency without a top metal contact. Further development including deposition of a transparent contact enabled the fabrication of fully semitransparent devices with an efficiency of 10.6% and average transparency of 19%.
Collapse
Affiliation(s)
- Naresh Kumar Pendyala
- Institute of Chemistry, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shlomo Magdassi
- Institute of Chemistry, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Lioz Etgar
- Institute of Chemistry, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
40
|
Ervasti H, Järvinen T, Pitkänen O, Bozó É, Hiitola-Keinänen J, Huttunen OH, Hiltunen J, Kordas K. Inkjet-Deposited Single-Wall Carbon Nanotube Micropatterns on Stretchable PDMS-Ag Substrate-Electrode Structures for Piezoresistive Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27284-27294. [PMID: 34075741 PMCID: PMC8289179 DOI: 10.1021/acsami.1c04397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Printed piezoresistive strain sensors based on stretchable roll-to-roll screen-printed silver electrodes on polydimethylsiloxane substrates and inkjet-deposited single-wall carbon nanotube micropatterns are demonstrated in this work. With the optimization of surface wetting and inkjet printing parameters, well-defined microscopic line patterns of the nanotubes with a sheet resistance of <100 Ω/□ could be deposited between stretchable Ag electrodes on the plasma-treated substrate. The developed stretchable devices are highly sensitive to tensile strain with a gauge factor of up to 400 and a pressure sensitivity of ∼0.09 Pa-1, respond to bending down to a radius of 1.5 mm, and are suitable for mounting on the skin to monitor and resolve various movements of the human body such as cardiac cycle, breathing, and finger flexing. This study indicates that inkjet deposition of nanomaterials can complement well other printing technologies to produce flexible and stretchable devices in a versatile manner.
Collapse
Affiliation(s)
- Henri Ervasti
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | - Topias Järvinen
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | - Olli Pitkänen
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | - Éva Bozó
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| | | | | | - Jussi Hiltunen
- VTT
Technical Research Centre of Finland, Kaitoväylä 1, FIN-90590 Oulu, Finland
| | - Krisztian Kordas
- Microelectronics
Research Unit, University of Oulu, Erkki Koiso-Kanttilan Katu 3, FIN-90570 Oulu, Finland
| |
Collapse
|
41
|
Collavini S, Cabrera-Espinoza A, Delgado JL. Organic Polymers as Additives in Perovskite Solar Cells. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Silvia Collavini
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72 & Faculty of Chemistry, P. Manuel Lardizabal 3, 20018 Donostia−San Sebastián, Spain
| | - Andrea Cabrera-Espinoza
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72 & Faculty of Chemistry, P. Manuel Lardizabal 3, 20018 Donostia−San Sebastián, Spain
| | - Juan Luis Delgado
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72 & Faculty of Chemistry, P. Manuel Lardizabal 3, 20018 Donostia−San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
42
|
Rao L, Meng X, Xiao S, Xing Z, Fu Q, Wang H, Gong C, Hu T, Hu X, Guo R, Chen Y. Wearable Tin-Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect. Angew Chem Int Ed Engl 2021; 60:14693-14700. [PMID: 33835645 DOI: 10.1002/anie.202104201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Tin-based perovskite solar cells (PSCs) demonstrate a potential application in wearable electronics due to its hypotoxicity. However, poor crystal quality is still the bottleneck for achieving high-performance flexible devices. In this work, graphite phase-C3 N4 (g-C3 N4 ) is applied into tin-based perovskite as a crystalline template, which delays crystallization via a size-effect and passivates defects simultaneously. The double hydrogen bond between g-C3 N4 and formamidine cation can optimize lattice matching and passivation. Moreover, the two-dimensional network structure of g-C3 N4 can fit on the crystals, resulting an enhanced hydrophobicity and oxidation resistance. Therefore, the flexible tin-based PSCs with g-C3 N4 realize a stabilized power conversion efficiency (PCE) of 8.56 % with negligible hysteresis. In addition, the PSCs can maintain 91 % of the initial PCE after 1000 h under N2 environment and keep 92 % of their original PCE after 600 cycles at a curvature radius of 3 mm.
Collapse
Affiliation(s)
- Li Rao
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiangchuan Meng
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Shuqin Xiao
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi Xing
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qingxia Fu
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Hongyu Wang
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Chenxiang Gong
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaotian Hu
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Rui Guo
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.,Institute of Advanced Scientific Research (iASR)/, Key Laboratory of Functional Organic Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
43
|
Rao L, Meng X, Xiao S, Xing Z, Fu Q, Wang H, Gong C, Hu T, Hu X, Guo R, Chen Y. Wearable Tin‐Based Perovskite Solar Cells Achieved by a Crystallographic Size Effect. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Li Rao
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Xiangchuan Meng
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Shuqin Xiao
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Zhi Xing
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Qingxia Fu
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Hongyu Wang
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Chenxiang Gong
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Ting Hu
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Xiaotian Hu
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Rui Guo
- School of Materials Science and Engineering Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Yiwang Chen
- Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
- Institute of Advanced Scientific Research (iASR)/ Key Laboratory of Functional Organic Small Molecules for Ministry of Education Jiangxi Normal University 99 Ziyang Avenue Nanchang 330022 China
| |
Collapse
|
44
|
Zhang L, Liu Z, Sun L, Xiao L, Guan Q, You Z. Simple Solvent-Free Strategy for Synthesizing Covalent Adaptable Networks from Commodity Vinyl Monomers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Luzhi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Zenghe Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Lijuan Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, P. R. China
| |
Collapse
|
45
|
Wang M, Sun H, Cao F, Tian W, Li L. Moisture-Triggered Self-Healing Flexible Perovskite Photodetectors with Excellent Mechanical Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100625. [PMID: 33734512 DOI: 10.1002/adma.202100625] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Flexible devices are urgently required to meet the demands of next-generation optoelectronic devices and metal halide perovskites are proven to be suitable materials for realizing flexible photovoltaic devices. However, the tolerance to moisture corrosion and repeated mechanical bending remains a critical challenge for flexible perovskite devices. Herein, a self-healing formamidinium lead iodide (FAPbI3 ) film is fabricated to cure mechanical damage by absorbing moisture from the surrounding environment. A poly(vinyl alcohol) microscaffold is designed not only to stabilize the black phase of the FAPbI3 film but also to endow it with self-healing ability in a humid environment. The photodetector based on a self-healing film exhibits a high responsivity of 11.3 A W-1 and recovers to over 90% of the initial responsivity after the self-healing process. This work provides an effective self-healing strategy to stabilize the operation of flexible perovskite devices under normal high-humidity environmental conditions.
Collapse
Affiliation(s)
- Meng Wang
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Haoxuan Sun
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Fengren Cao
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials and Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
46
|
Zheng N, Xu Y, Zhao Q, Xie T. Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chem Rev 2021; 121:1716-1745. [DOI: 10.1021/acs.chemrev.0c00938] [Citation(s) in RCA: 247] [Impact Index Per Article: 82.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ning Zheng
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
- Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
| | - Yang Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
| | - Qian Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People’s Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, People’s Republic of China
| |
Collapse
|