1
|
Epanchintseva AV, Baranova SV, Poletaeva JE, Bakhno IA, Ryabchikova EI, Dovydenko IS. Study of Hard Protein Corona on Lipid Surface of Composite Nanoconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1767. [PMID: 39513847 DOI: 10.3390/nano14211767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
The composition of the protein corona covering any nanoparticle (NP) when it enters a biological fluid determines the parameters of the NP's interaction with the body. To "control" these parameters, it is important to know the composition of the protein corona, the determination of which is a complex task associated with the two-layer organization of the corona (hard and soft coronas). In a previous publication, we reported obtaining lipid-coated NPs with a full protein corona, isolating them, and proving the presence of the corona on the surface of the NPs. This work reports on the preparation, isolation, and purification of lipid-coated NPs bearing a hard corona. The protein corona composition was determined by using the LC-MS/MS method. Thirty-seven serum proteins were identified with a high degree of reliability. The hard corona contained various apolipoproteins, including apolipoprotein E, which can potentially affect the penetration of NPs into the cell.
Collapse
Affiliation(s)
- Anna V Epanchintseva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Svetlana V Baranova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Julia E Poletaeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Irina A Bakhno
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Elena I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| | - Ilya S Dovydenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Salvati A. The biomolecular corona of nanomedicines: effects on nanomedicine outcomes and emerging opportunities. Curr Opin Biotechnol 2024; 87:103101. [PMID: 38461749 DOI: 10.1016/j.copbio.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Upon administration, nanomedicines adsorb a corona of endogenous biomolecules on their surface, which can affect nanomedicine interactions with cells, targeting, and efficacy. While strategies to reduce protein binding are available, the high selectivity of the adsorbed corona is enabling novel applications, such as for biomarker discovery and rare protein identification. Additionally, the adsorbed molecules can promote interactions with specific cell receptors, thus conferring the nanomedicine new endogenous targeting capabilities. This has been reported for Onpattro, a lipid nanoparticle targeting the hepatocytes via apolipoproteins in its corona. Recently, selective organ-targeting (SORT) nanoparticles have been proposed, which exploit corona-mediated interactions to deliver nanoparticles outside the liver. Strategies for corona seeding and corona engineering are emerging to increase the selectivity of similar endogenous targeting mechanisms.
Collapse
Affiliation(s)
- Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Simonsen JB. Lipid nanoparticle-based strategies for extrahepatic delivery of nucleic acid therapies - challenges and opportunities. J Control Release 2024; 370:763-772. [PMID: 38621638 DOI: 10.1016/j.jconrel.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
The advent of lipid nanoparticles (LNPs) containing ionizable cationic lipids has enabled the encapsulation, stabilization, and intracellular delivery of nucleic acid payloads, leading to FDA-approved siRNA-based therapy and mRNA-based vaccines. Other nucleic acid-based therapeutic modalities, including protein replacement and CRISPR-mediated gene knockout and editing, are being tested in clinical trials, in many cases, for the treatment of liver-related diseases. However, to fully exploit these therapies beyond the liver, improvements in their delivery to extrahepatic targets are needed. Towards this end, both active targeting strategies based on targeting ligands grafted onto LNPs and passive targeting relying on physicochemical LNP parameters such as surface composition, charge, and size are being evaluated. Often, the latter strategy depends on the interaction of LNPs with blood components, forming what is known as the biomolecular corona. Here, I discuss potential challenges related to current LNP-based targeting strategies and the studies of the biomolecular corona on LNPs. I propose potential solutions to overcome some of these obstacles and present approaches currently being tested in preclinical and clinical studies, which face fewer biological barriers than traditional organ-targeting approaches.
Collapse
|
4
|
Simonsen JB. Technical challenges of studying the impact of plasma components on the efficacy of lipid nanoparticles for vaccine and therapeutic applications. Nat Commun 2024; 15:3852. [PMID: 38724528 PMCID: PMC11082148 DOI: 10.1038/s41467-024-47724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
|
5
|
Xia X, Li H, Xu X, Wu C, Wang Z, Zhao G, Du M. Improvement of physicochemical properties of lycopene by the self-assembly encapsulation of recombinant ferritin GF1 from oyster (Crassostrea gigas). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2783-2791. [PMID: 38009805 DOI: 10.1002/jsfa.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Lycopene (LYC), a carotenoid found in abundance in ripe red fruits, exhibits higher singlet oxygen quenching activity than other carotenoids. However, the stability of LYC is extremely poor due to its high double-bond content. In this paper, a nano-encapsulation strategy based on highly stable marine-derived ferritin GF1 nanocages was used to improve the thermal stability and oxidation resistance of LYC, thereby boosting its functional effectiveness and industrial applicability. RESULTS The preparation of GF1-LYC nanoparticles benefited from the pH-responsive reversible self-assembly of GF1 to capture LYC molecules into GF1 cavities with a LYC-to-protein ratio of 51 to 1. After the encapsulation of the LYC, the reassembled GF1 nanocages maintained intact morphology and good monodispersity. The GF1-LYC nanoparticles incorporated the characteristic LYC peaks in spectrograms, and their powder form contained the crystalline form of LYC. Molecular docking revealed that LYC bound with the inner triple-axis channel areas of GF1, interacting with VAL139, LYS72, LYS65, TYR69, PHE129, HIS133, HIS62, and TYR134 amino acids through hydrophobic bonds. Fourier transform infrared spectroscopy also demonstrated the bonding of GF1 and LYC. In comparison with free LYC, GF1 reduced the thermal degradation of encapsulated LYC at 37 °C significantly and maintained the 2,2-Diphenyl-1-picrylhydrazyl (DPPH)-scavenging ability of LYC. CONCLUSION As expected, the water solubility, thermal stability, and antioxidant capacity of encapsulated LYC from GF1-LYC nanoparticles was notably improved in comparison with free LYC, indicating that the shell-like marine ferritin nanoplatform might enhance the stable delivery of LYC and promote its utilization in the field of food nutrition and in other industries. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyu Xia
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian, China
- National Engineering Research Centre of Seafood, Dalian, China
| | - Han Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian, China
- National Engineering Research Centre of Seafood, Dalian, China
| | - Xianbing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian, China
- National Engineering Research Centre of Seafood, Dalian, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian, China
- National Engineering Research Centre of Seafood, Dalian, China
| | - Zhenyu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian, China
- National Engineering Research Centre of Seafood, Dalian, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Collaborative Innovation Centre of Provincial and Ministerial Co-construction for Seafood Deep Processing, Dalian, China
- National Engineering Research Centre of Seafood, Dalian, China
| |
Collapse
|
6
|
Francia V, Zhang Y, Cheng MHY, Schiffelers RM, Witzigmann D, Cullis PR. A magnetic separation method for isolating and characterizing the biomolecular corona of lipid nanoparticles. Proc Natl Acad Sci U S A 2024; 121:e2307803120. [PMID: 38437542 PMCID: PMC10945860 DOI: 10.1073/pnas.2307803120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 03/06/2024] Open
Abstract
Lipid nanoparticle (LNP) formulations are a proven method for the delivery of nucleic acids for gene therapy as exemplified by the worldwide rollout of LNP-based RNAi therapeutics and mRNA vaccines. However, targeting specific tissues or cells is still a major challenge. After LNP administration, LNPs interact with biological fluids (i.e., blood), components of which adsorb onto the LNP surface forming a layer of biomolecules termed the "biomolecular corona (BMC)" which affects LNP stability, biodistribution, and tissue tropism. The mechanisms by which the BMC influences tissue- and cell-specific targeting remains largely unknown, due to the technical challenges in isolating LNPs and their corona from complex biological media. In this study, we present a new technique that utilizes magnetic LNPs to isolate LNP-corona complexes from unbound proteins present in human serum. First, we developed a magnetic LNP formulation, containing >40 superparamagnetic iron oxide nanoparticles (IONPs)/LNP, the resulting LNPs containing iron oxide nanoparticles (IOLNPs) displayed a similar particle size and morphology as LNPs loaded with nucleic acids. We further demonstrated the isolation of the IOLNPs and their corresponding BMC from unbound proteins using a magnetic separation (MS) system. The BMC profile of LNP from the MS system was compared to size exclusion column chromatography and further analyzed via mass spectrometry, revealing differences in protein abundances. This new approach enabled a mild and versatile isolation of LNPs and its corona, while maintaining its structural integrity. The identification of the BMC associated with an intact LNP provides further insight into LNP interactions with biological fluids.
Collapse
Affiliation(s)
- Valentina Francia
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht3584, Netherlands
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Miffy Hok Yan Cheng
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht3584, Netherlands
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- NanoVation Therapeutics, Vancouver, BCV6T 1Z3, Canada
| | - Pieter R. Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BCV6T 1Z3, Canada
- NanoVation Therapeutics, Vancouver, BCV6T 1Z3, Canada
| |
Collapse
|
7
|
Sun N, Jia Y, Bai S, Yang Y, Dai L, Li J. Spatial mapping and quantitative evaluation of protein corona on PEGylated mesoporous silica particles by super-resolution fluorescence microscopy. J Colloid Interface Sci 2024; 653:351-358. [PMID: 37717435 DOI: 10.1016/j.jcis.2023.09.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Nanoparticles (NPs) adsorb serum proteins when exposed to biological fluids, forming a dynamic protein corona that has a profound impact on their overall biological profile and fate. Polyethylene glycol (PEG) modification is the most widely used strategy to mitigate and inhibit protein corona formation. Nevertheless, the accurate mapping and quantification of PEG inhibition effects on protein corona formation have scarcely been reported. Herein, we demonstrate the direct observation and quantification of protein corona adsorbed onto PEGylated mesoporous silica particles by direct stochastic optical reconstruction microscopy (dSTORM). The variation tendency of protein penetration depth in terms of PEG molecular weights and incubated time is investigated for the first time. The maximum penetration depths present slight increase with the prolonged incubation time, while they tend to remarkably decrease with increased chain length of modified PEG. Moreover, the co-localization of preformed protein corona with lysosomes and the destination of adsorbed protein are demonstrated. Our method provides important technical characterization information and in-depth understanding of protein corona adsorbed onto PEGylated mesoporous silica particles. This shines new light on the behaviors of silica materials in cells and may promote their practical applications in biomedicine.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Tretiakova D, Kobanenko M, Alekseeva A, Boldyrev I, Khaidukov S, Zgoda V, Tikhonova O, Vodovozova E, Onishchenko N. Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells. MEMBRANES 2023; 13:681. [PMID: 37505047 PMCID: PMC10384875 DOI: 10.3390/membranes13070681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
Despite the undisputable role of the protein corona in the biointeractions of liposome drug carriers, the field suffers from a lack of knowledge regarding the patterns of protein deposition on lipid surfaces with different compositions. Here, we investigated the protein coronas formed on liposomes of basic compositions containing combinations of egg phosphatidylcholine (PC), palmitoyloleoyl phosphatidylglycerol (POPG), and cholesterol. Liposome-protein complexes isolated by size-exclusion chromatography were delipidated and analyzed using label-free LC-MS/MS. The addition of the anionic lipid and cholesterol both affected the relative protein abundances (and not the total bound proteins) in the coronas. Highly anionic liposomes, namely those containing 40% POPG, carried corona enriched with cationic proteins (apolipoprotein C1, beta-2-glycoprotein 1, and cathelicidins) and were the least stable in the calcein release assay. Cholesterol improved the liposome stability in the plasma. However, the differences in the corona compositions had little effect on the liposome uptake by endothelial (EA.hy926) and phagocytic cells in the culture (U937) or ex vivo (blood-derived monocytes and neutrophils). The findings emphasize that the effect of protein corona on the performance of the liposomes as drug carriers occurs through compromising particle stability rather than interfering with cellular uptake.
Collapse
Affiliation(s)
- Daria Tretiakova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Maria Kobanenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna Alekseeva
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Ivan Boldyrev
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Sergey Khaidukov
- Laboratory of Carbohydrates, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Elena Vodovozova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Natalia Onishchenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
9
|
Liu K, Nilsson R, Lázaro-Ibáñez E, Duàn H, Miliotis T, Strimfors M, Lerche M, Salgado Ribeiro AR, Ulander J, Lindén D, Salvati A, Sabirsh A. Multiomics analysis of naturally efficacious lipid nanoparticle coronas reveals high-density lipoprotein is necessary for their function. Nat Commun 2023; 14:4007. [PMID: 37414857 PMCID: PMC10325984 DOI: 10.1038/s41467-023-39768-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
In terms of lipid nanoparticle (LNP) engineering, the relationship between particle composition, delivery efficacy, and the composition of the biocoronas that form around LNPs, is poorly understood. To explore this we analyze naturally efficacious biocorona compositions using an unbiased screening workflow. First, LNPs are complexed with plasma samples, from individual lean or obese male rats, and then functionally evaluated in vitro. Then, a fast, automated, and miniaturized method retrieves the LNPs with intact biocoronas, and multiomics analysis of the LNP-corona complexes reveals the particle corona content arising from each individual plasma sample. We find that the most efficacious LNP-corona complexes were enriched with high-density lipoprotein (HDL) and, compared to the commonly used corona-biomarker Apolipoprotein E, corona HDL content was a superior predictor of in-vivo activity. Using technically challenging and clinically relevant lipid nanoparticles, these methods reveal a previously unreported role for HDL as a source of ApoE and, form a framework for improving LNP therapeutic efficacy by controlling corona composition.
Collapse
Affiliation(s)
- Kai Liu
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ralf Nilsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elisa Lázaro-Ibáñez
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Hanna Duàn
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Tasso Miliotis
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Marie Strimfors
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Lerche
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Johan Ulander
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, 9713AV, The Netherlands
| | - Alan Sabirsh
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
10
|
Onishchenko NR, Moskovtsev AA, Kobanenko MK, Tretiakova DS, Alekseeva AS, Kolesov DV, Mikryukova AA, Boldyrev IA, Kapkaeva MR, Shcheglovitova ON, Bovin NV, Kubatiev AA, Tikhonova OV, Vodovozova EL. Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions. Pharmaceutics 2023; 15:1754. [PMID: 37376203 DOI: 10.3390/pharmaceutics15061754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.
Collapse
Affiliation(s)
- Natalia R Onishchenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexey A Moskovtsev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Maria K Kobanenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Daria S Tretiakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anna S Alekseeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Dmitry V Kolesov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Anna A Mikryukova
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Ivan A Boldyrev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Marina R Kapkaeva
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Olga N Shcheglovitova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia
| | - Nicolai V Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Aslan A Kubatiev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8, 125315 Moscow, Russia
| | - Olga V Tikhonova
- Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
| | - Elena L Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
11
|
Münter R, Christensen E, Andresen TL, Larsen JB. Studying how administration route and dose regulates antibody generation against LNPs for mRNA delivery with single-particle resolution. Mol Ther Methods Clin Dev 2023; 29:450-459. [PMID: 37251983 PMCID: PMC10220314 DOI: 10.1016/j.omtm.2023.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
Following the recent approval of both siRNA- and mRNA-based therapeutics, nucleic acid therapies are considered a game changer in medicine. Their envisioned widespread use for many therapeutic applications with an array of cellular target sites means that various administration routes will be employed. Concerns exist regarding adverse reactions against the lipid nanoparticles (LNPs) used for mRNA delivery, as PEG coatings on nanoparticles can induce severe antibody-mediated immune reactions, potentially being boosted by the inherently immunogenic nucleic acid cargo. While exhaustive information is available on how physicochemical features of nanoparticles affects immunogenicity, it remains unexplored how the fundamental choice of administration route regulates anti-particle immunity. Here, we directly compared antibody generation against PEGylated mRNA-carrying LNPs administered by the intravenous, intramuscular, or subcutaneous route, using a novel sophisticated assay capable of measuring antibody binding to authentic LNP surfaces with single-particle resolution. Intramuscular injections in mice were found to generate overall low and dose-independent levels of anti-LNP antibodies, while both intravenous and subcutaneous LNP injections generated substantial and highly dose-dependent levels. These findings demonstrate that before LNP-based mRNA medicines can be safely applied to new therapeutic applications, it will be crucial to carefully consider the choice of administration route.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Thomas L. Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Jannik B. Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| |
Collapse
|
12
|
Zhang P, Xiao Y, Sun X, Lin X, Koo S, Yaremenko AV, Qin D, Kong N, Farokhzad OC, Tao W. Cancer nanomedicine toward clinical translation: Obstacles, opportunities, and future prospects. MED 2023; 4:147-167. [PMID: 36549297 DOI: 10.1016/j.medj.2022.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/03/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
With the integration of nanotechnology into the medical field at large, great strides have been made in the development of nanomedicines for tackling different diseases, including cancers. To date, various cancer nanomedicines have demonstrated success in preclinical studies, improving therapeutic outcomes, prolonging survival, and/or decreasing side effects. However, the translation from bench to bedside remains challenging. While a number of nanomedicines have entered clinical trials, only a few have been approved for clinical applications. In this review, we highlight the most recent progress in cancer nanomedicine, discuss current clinical advances and challenges for the translation of cancer nanomedicines, and provide our viewpoints on accelerating clinical translation. We expect this review to benefit the future development of cancer nanotherapeutics specifically from the clinical perspective.
Collapse
Affiliation(s)
- Pengfei Zhang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510080, China
| | - Yufen Xiao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xue Sun
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Xiaoning Lin
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Seyoung Koo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alexey V Yaremenko
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Duotian Qin
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Omid C Farokhzad
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Seer, Inc., Redwood City, CA 94065, USA
| | - Wei Tao
- Center for Nanomedicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Wang G, Jiang Y, Xu J, Shen J, Lin T, Chen J, Fei W, Qin Y, Zhou Z, Shen Y, Huang P. Unraveling the Plasma Protein Corona by Ultrasonic Cavitation Augments Active-Transporting of Liposome in Solid Tumor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207271. [PMID: 36479742 DOI: 10.1002/adma.202207271] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Ligand/receptor-mediated targeted drug delivery has been widely recognized as a promising strategy for improving the clinical efficacy of nanomedicines but is attenuated by the binding of plasma protein on the surface of nanoparticles to form a protein corona. Here, it is shown that ultrasonic cavitation can be used to unravel surface plasma coronas on liposomal nanoparticles through ultrasound (US)-induced liposomal reassembly. To demonstrate the feasibility and effectiveness of the method, transcytosis-targeting-peptide-decorated reconfigurable liposomes (LPGLs) loaded with gemcitabine (GEM) and perfluoropentane (PFP) are developed for cancer-targeted therapy. In the blood circulation, the targeting peptides are deactivated by the plasma corona and lose their targeting capability. Once they reach tumor blood vessels, US irradiation induces transformation of the LPGLs from nanodrops into microbubbles via liquid-gas phase transition and decorticate the surface corona by reassembly of the lipid membrane. The activated liposomes regain the capability to recognize the receptors on tumor neovascularization, initiate ligand/receptor-mediated transcytosis, achieve efficient tumor accumulation and penetration, and lead to potent antitumor activity in multiple tumor models of patient-derived tumor xenografts. This study presents an effective strategy to tackle the fluid biological barriers of the protein corona and develop transcytosis-targeting liposomes for active tumor transport and efficient cancer therapy.
Collapse
Affiliation(s)
- Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yifan Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Junjun Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiaxin Shen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tao Lin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Weidong Fei
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Yating Qin
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311200, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
14
|
Münter R, Simonsen JB. Comment on "Optimal centrifugal isolating of liposome-protein complexes from human plasma" by L. Digiacomo, F. Giulimondi, A. L. Capriotti, S. Piovesana, C. M. Montone, R. Z. Chiozzi, A. Laganá, M. Mahmoudi, D. Pozzi and G. Caracciolo, Nanoscale Adv., 2021, 3, 3824. NANOSCALE ADVANCES 2022; 5:290-299. [PMID: 36605796 PMCID: PMC9765536 DOI: 10.1039/d2na00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/20/2022] [Indexed: 06/01/2023]
Abstract
In a recent paper in Nanoscale Advances, Digiacomo et al. conclude that centrifugation should be the method of choice for researchers who want to investigate the protein corona of liposomes for drug delivery in human plasma. In this Comment, we however propose the opposite - that centrifugation, in most cases, is unsuitable for isolating liposomes from human plasma. Our conclusion is based on the bulk literature on this and similar topics, and new experimental data based on formulations and protocols like the ones used by Digiacomo et al.
Collapse
Affiliation(s)
- Rasmus Münter
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Jens B Simonsen
- Department of Health Technology, Biotherapeutic Engineering and Drug Targeting, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| |
Collapse
|
15
|
Liu Y, Yang Q, Du Z, Liu J, Zhang Y, Zhang W, Qin W. Synthesis of Surface-Functionalized Molybdenum Disulfide Nanomaterials for Efficient Adsorption and Deep Profiling of the Human Plasma Proteome by Data-Independent Acquisition. Anal Chem 2022; 94:14956-14964. [PMID: 36264706 DOI: 10.1021/acs.analchem.2c02736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blood is one of the most important clinical samples for protein biomarker discovery, as it provides rich physiological and pathological information and is easy to obtain with low invasiveness. However, the discovery of protein biomarkers in the blood by mass spectrometry (MS)-based proteomic strategies has been shown to be highly challenging due to the particularly large concentration range of proteins and the strong interference by the high-abundant proteins in the blood. Therefore, developing sensitive methods for low-abundant biomarker protein identification is a key issue that has received great attention. Here, we report the synthesis and characterization of surface-functionalized magnetic molybdenum disulfide (MoS2) for the large-scale adsorption of low-abundant plasma proteins and deep profiling by MS. MoS2 nanomaterials resulted in the coverage of more than 3400 proteins (including a single-peptide hit) in a single LC-MS analysis without peptide prefractionation using pooled plasma samples, which were five times more than those obtained by the direct analysis of the plasma proteome. A detection limit in the low ng L-1 range was obtained, which is rare compared with previous reports.
Collapse
Affiliation(s)
- Yuanyuan Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China
| | - Qianying Yang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Zhuokun Du
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Jiayu Liu
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Wanjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| | - Weijie Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing 102206, P.R. China.,School of Basic Medical Science, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Wang YF, Zhou Y, Sun J, Wang X, Jia Y, Ge K, Yan Y, Dawson KA, Guo S, Zhang J, Liang XJ. The Yin and Yang of the protein corona on the delivery journey of nanoparticles. NANO RESEARCH 2022; 16:715-734. [PMID: 36156906 PMCID: PMC9483491 DOI: 10.1007/s12274-022-4849-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/12/2023]
Abstract
Nanoparticles-based drug delivery systems have attracted significant attention in biomedical fields because they can deliver loaded cargoes to the target site in a controlled manner. However, tremendous challenges must still be overcome to reach the expected targeting and therapeutic efficacy in vivo. These challenges mainly arise because the interaction between nanoparticles and biological systems is complex and dynamic and is influenced by the physicochemical properties of the nanoparticles and the heterogeneity of biological systems. Importantly, once the nanoparticles are injected into the blood, a protein corona will inevitably form on the surface. The protein corona creates a new biological identity which plays a vital role in mediating the bio-nano interaction and determining the ultimate results. Thus, it is essential to understand how the protein corona affects the delivery journey of nanoparticles in vivo and what we can do to exploit the protein corona for better delivery efficiency. In this review, we first summarize the fundamental impact of the protein corona on the delivery journey of nanoparticles. Next, we emphasize the strategies that have been developed for tailoring and exploiting the protein corona to improve the transportation behavior of nanoparticles in vivo. Finally, we highlight what we need to do as a next step towards better understanding and exploitation of the protein corona. We hope these insights into the "Yin and Yang" effect of the protein corona will have profound implications for understanding the role of the protein corona in a wide range of nanoparticles.
Collapse
Affiliation(s)
- Yi-Feng Wang
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - JiaBei Sun
- China National Institute of Food and Drug Control, Beijing, 100061 China
| | - Xiaotong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Yaru Jia
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Kun Ge
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Yan Yan
- Centre for BioNano Interactions, School of Chemistry, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04V1W8 Ireland
| | - Kenneth A. Dawson
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
- Centre for BioNano Interactions, School of Chemistry, School of Biomolecular and Biomedical Science, University College Dublin, Dublin, D04V1W8 Ireland
| | - Shutao Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Xing-Jie Liang
- Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| |
Collapse
|
17
|
Trinh DN, Radlinskaite M, Cheeseman J, Kuhnle G, Osborn HMI, Meleady P, Spencer DIR, Monopoli MP. Biomolecular Corona Stability in Association with Plasma Cholesterol Level. NANOMATERIALS 2022; 12:nano12152661. [PMID: 35957093 PMCID: PMC9370777 DOI: 10.3390/nano12152661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
Biomolecular corona is spontaneously formed on the surface of nanoparticles (NPs) when they are in contact with biological fluids. It plays an important role in the colloidal stability of NPs, which is of importance for most of their medical applications and toxicity assessment. While typical studies use either blood plasma or serum from a pooled biobank, it is unclear whether differences in the media, such as cholesterol level or protein concentration, might affect the NP colloidal stability and corona composition. In this study, the silica corona was prepared at particularly low plasma concentrations (3%, v/v–1.98 mg/mL) to identify the critical roles of the protein mass/NP surface ratio and the level of plasma cholesterol on the corona protein pattern and particle stability. While depending on the plasma dilution factor, the corona protein composition could be controlled by keeping the protein/NP constant. The NP colloidal stability was found to strongly correlate with the level of cholesterol in human plasma, particularly due to the high enrichment of high-density lipoprotein (HDL) and low-density lipoprotein (LDL) in the corona. A cohort study on plasma samples from individuals with known cholesterol levels was performed to highlight that association, which could be relevant for all corona systems enriched with the LDL.
Collapse
Affiliation(s)
- Duong N. Trinh
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (D.N.T.); (M.R.)
| | - Meda Radlinskaite
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (D.N.T.); (M.R.)
- School of Physics & Clinical & Optometric Sciences, Technological University Dublin, D07 EWV4 Dublin, Ireland
| | - Jack Cheeseman
- Ludger Ltd., Culham Science Centre, Abingdon OX14 3EB, UK; (J.C.); (D.I.R.S.)
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
| | - Gunter Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AH, UK;
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK;
| | - Paula Meleady
- School of Biotechnology, Dublin City University, D09 W6Y4 Dublin, Ireland;
| | | | - Marco P. Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland, RCSI University of Medicine and Health Sciences, D02 YN77 Dublin, Ireland; (D.N.T.); (M.R.)
- Correspondence:
| |
Collapse
|
18
|
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188:114416. [PMID: 35787388 PMCID: PMC9250827 DOI: 10.1016/j.addr.2022.114416] [Citation(s) in RCA: 288] [Impact Index Per Article: 144.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 12/21/2022]
Abstract
Lipid nanoparticles (LNPs) play an important role in mRNA vaccines against COVID-19. In addition, many preclinical and clinical studies, including the siRNA-LNP product, Onpattro®, highlight that LNPs unlock the potential of nucleic acid-based therapies and vaccines. To understand what is key to the success of LNPs, we need to understand the role of the building blocks that constitute them. In this Review, we discuss what each lipid component adds to the LNP delivery platform in terms of size, structure, stability, apparent pKa, nucleic acid encapsulation efficiency, cellular uptake, and endosomal escape. To explore this, we present findings from the liposome field as well as from landmark and recent articles in the LNP literature. We also discuss challenges and strategies related to in vitro/in vivo studies of LNPs based on fluorescence readouts, immunogenicity/reactogenicity, and LNP delivery beyond the liver. How these fundamental challenges are pursued, including what lipid components are added and combined, will likely determine the scope of LNP-based gene therapies and vaccines for treating various diseases.
Collapse
Affiliation(s)
- Camilla Hald Albertsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Jayesh A Kulkarni
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall, 4th Floor, Vancouver BC V6T 1Z3, Canada
| | - Dominik Witzigmann
- NanoVation Therapeutics Inc., 2405 Wesbrook Mall, 4th Floor, Vancouver BC V6T 1Z3, Canada
| | - Marianne Lind
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Karsten Petersson
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark
| | - Jens B Simonsen
- Explorative Formulation & Technologies, CMC Design and Development, LEO Pharma A/S, Industriparken 55, 2750 Ballerup, Denmark.
| |
Collapse
|
19
|
Münter R, Stavnsbjerg C, Christensen E, Thomsen ME, Stensballe A, Hansen AE, Parhamifar L, Kristensen K, Simonsen JB, Larsen JB, Andresen TL. Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106529. [PMID: 35187804 DOI: 10.1002/smll.202106529] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Coating nanoparticles with poly(ethylene glycol) (PEG) is widely used to achieve long-circulating properties after infusion. While PEG reduces binding of opsonins to the particle surface, immunogenic anti-PEG side-effects show that PEGylated nanoparticles are not truly "stealth" to surface active proteins. A major obstacle for understanding the complex interplay between opsonins and nanoparticles is the averaging effects of the bulk assays that are typically applied to study protein adsorption to nanoparticles. Here, a microscopy-based method for directly quantifying opsonization at the single nanoparticle level is presented. Various surface coatings are investigated on liposomes, including PEG, and show that opsonization by both antibodies and complement C3b is highly dependent on the surface chemistry. It is further demonstrated that this opsonization is heterogeneous, with opsonized and non-opsonized liposomes co-existing in the same ensemble. Surface coatings modify the percentage of opsonized liposomes and/or opsonin surface density on the liposomes, with strikingly different patterns for antibodies and complement. Thus, this assay provides mechanistic details about opsonization at the single nanoparticle level previously inaccessible to established bulk assays.
Collapse
Affiliation(s)
- Rasmus Münter
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Camilla Stavnsbjerg
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Esben Christensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Mikkel E Thomsen
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, 9220, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg Ø, 9220, Denmark
| | - Anders E Hansen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Ladan Parhamifar
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Kasper Kristensen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Jens B Simonsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Jannik B Larsen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| | - Thomas L Andresen
- Biotherapeutic Engineering and Drug Targeting, Department of Health Technology, Technical University of Denmark (DTU), Kgs. Lyngby, 2800, Denmark
| |
Collapse
|
20
|
Kamaly N, Farokhzad OC, Corbo C. Nanoparticle protein corona evolution: from biological impact to biomarker discovery. NANOSCALE 2022; 14:1606-1620. [PMID: 35076049 DOI: 10.1039/d1nr06580g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.
Collapse
Affiliation(s)
- Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, UK.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Claudia Corbo
- Department of Medicine and Surgery, Center for Nanomedicine NANOMIB, University of Milan Bicocca, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
21
|
Correll VL, Otto JJ, Risi CM, Main BP, Boutros PC, Kislinger T, Galkin VE, Nyalwidhe JO, Semmes OJ, Yang L. Optimization of small extracellular vesicle isolation from expressed prostatic secretions in urine for in-depth proteomic analysis. J Extracell Vesicles 2022; 11:e12184. [PMID: 35119778 PMCID: PMC8815402 DOI: 10.1002/jev2.12184] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 01/23/2023] Open
Abstract
The isolation and subsequent molecular analysis of extracellular vesicles (EVs) derived from patient samples is a widely used strategy to understand vesicle biology and to facilitate biomarker discovery. Expressed prostatic secretions in urine are a tumor proximal fluid that has received significant attention as a source of potential prostate cancer (PCa) biomarkers for use in liquid biopsy protocols. Standard EV isolation methods like differential ultracentrifugation (dUC) co-isolate protein contaminants that mask lower-abundance proteins in typical mass spectrometry (MS) protocols. Further complicating the analysis of expressed prostatic secretions, uromodulin, also known as Tamm-Horsfall protein (THP), is present at high concentrations in urine. THP can form polymers that entrap EVs during purification, reducing yield. Disruption of THP polymer networks with dithiothreitol (DTT) can release trapped EVs, but smaller THP fibres co-isolate with EVs during subsequent ultracentrifugation. To resolve these challenges, we describe here a dUC method that incorporates THP polymer reduction and alkaline washing to improve EV isolation and deplete both THP and other common protein contaminants. When applied to human expressed prostatic secretions in urine, we achieved relative enrichment of known prostate and prostate cancer-associated EV-resident proteins. Our approach provides a promising strategy for global proteomic analyses of urinary EVs.
Collapse
Affiliation(s)
- Vanessa L. Correll
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Joseph J. Otto
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Cristina M. Risi
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Brian P. Main
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Paul C. Boutros
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoCanada
- Department of Human GeneticsUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of UrologyUniversity of CaliforniaLos AngelesCaliforniaUSA
- Institute for Precision HealthUniversity of CaliforniaLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer CenterUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Thomas Kislinger
- Department of Medical BiophysicsUniversity of TorontoTorontoCanada
- Princess Margaret Cancer CentreUniversity Health NetworkTorontoCanada
| | - Vitold E. Galkin
- Department of Physiological SciencesEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Julius O. Nyalwidhe
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - O. John Semmes
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Lifang Yang
- Leroy T. Canoles Jr. Cancer Research CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| |
Collapse
|
22
|
Liposomal Formulation of a PLA2-Sensitive Phospholipid-Allocolchicinoid Conjugate: Stability and Activity Studies In Vitro. Int J Mol Sci 2022; 23:ijms23031034. [PMID: 35162957 PMCID: PMC8835198 DOI: 10.3390/ijms23031034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/15/2023] Open
Abstract
To assess the stability and efficiency of liposomes carrying a phospholipase A2-sensitive phospholipid-allocolchicinoid conjugate (aC-PC) in the bilayer, egg phosphatidylcholine and 1-palmitoyl-2-oleoylphosphatidylglycerol-based formulations were tested in plasma protein binding, tubulin polymerization inhibition, and cytotoxicity assays. Liposomes L-aC-PC10 containing 10 mol. % aC-PC in the bilayer bound less plasma proteins and were more stable in 50% plasma within 4 h incubation, according to calcein release and FRET-based assays. Liposomes with 25 mol. % of the prodrug (L-aC-PC25) were characterized by higher storage stability judged by their hydrodynamic radius evolution yet enhanced deposition of blood plasma opsonins on their surface according to SDS-PAGE and immunoblotting. Notably, inhibition of tubulin polymerization was found to require that the prodrug should be hydrolyzed to the parent allocolchicinoid. The L-aC-PC10 and L-aC-PC25 formulations demonstrated similar tubulin polymerization inhibition and cytotoxic activities. The L-aC-PC10 formulation should be beneficial for applications requiring liposome accumulation at tumor or inflammation sites.
Collapse
|
23
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
24
|
Poupardin R, Wolf M, Strunk D. Adherence to minimal experimental requirements for defining extracellular vesicles and their functions. Adv Drug Deliv Rev 2021; 176:113872. [PMID: 34284058 DOI: 10.1016/j.addr.2021.113872] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Rigorous measures are required to cope with the advance of extracellular vesicle (EV) research, from 183 studies published in 2012 to 2,309 studies published in 2020. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (MISEV) guidelines in 2014, updated in 2018, for assuring and improving EV research quality. We performed a systematic review using a text mining approach to assess adherence to MISEV criteria. A keyword search was conducted in 5,093 accessible publications over the period 2012-2020 and analyzed the methodology used for EV isolation and characterization. We found a significant improvement over the years particularly regarding EV characterization where recent papers used a higher number of methods and EV markers to check for quantity and purity. Interestingly, we also found that EV papers using more methods and EV markers were cited more frequently. Papers citing MISEV criteria were more prone to use a higher number of characterization methods. We therefore established a concise checklist summarizing MISEV criteria to support EV researchers towards reaching the highest standards in the field.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI - TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI - TReCS), Paracelsus Medical University (PMU), Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI - TReCS), Paracelsus Medical University (PMU), Salzburg, Austria.
| |
Collapse
|
25
|
Kristensen K, Münter R, Kempen PJ, Thomsen ME, Stensballe A, Andresen TL. Isolation methods commonly used to study the liposomal protein corona suffer from contamination issues. Acta Biomater 2021; 130:460-472. [PMID: 34116227 DOI: 10.1016/j.actbio.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/26/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
The liposomal protein corona has been the focus of numerous studies, but there is still no consensus regarding its extent and composition. Rather, the literature is full of conflicting reports on the matter. To elucidate whether there could be a methodological explanation for this, we here scrutinize the efficiency of three commonly used liposome isolation methods at isolating stealth liposomes from human plasma. Firstly, we show that size-exclusion chromatography (SEC) in its standard form is prone to isolating unbound protein material together with the liposomes, but also that the method may be optimized to mitigate this issue. Secondly, we demonstrate that SEC in combination with membrane ultrafiltration is no better at removing the unbound protein material than SEC alone. Thirdly, we show that centrifugation is not able to pellet the liposomes. Overall, our results suggest that previous research on the liposomal protein corona may have suffered from significant methodological problems, in particular related to contaminant proteins interfering with the analysis of the protein corona. We believe that the data presented here may help guide future research around this challenge to reach a converging understanding about the properties of the protein corona on liposomes. STATEMENT OF SIGNIFICANCE: Upon administration into the circulatory system, liposomal drug carriers encounter an environment rich in proteins. These proteins may adsorb to the liposomes to form what is known as the protein corona, potentially governing the interactions of the liposomes with tissues and cells. However, despite decades of intense research efforts, there is currently no clear understanding about the extent and composition of the liposomal protein corona, making it impossible to assess its mechanistic importance. Here we report that the methods commonly used to isolate liposomes from blood plasma or serum to study the protein corona are susceptible to protein contamination. This may be the underlying technical reason for the current confusion about the characteristics of the liposomal protein corona.
Collapse
Affiliation(s)
- Kasper Kristensen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Rasmus Münter
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Paul J Kempen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikkel E Thomsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg Ø, Denmark
| | - Thomas L Andresen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
26
|
Digiacomo L, Giulimondi F, Capriotti AL, Piovesana S, Montone CM, Chiozzi RZ, Laganà A, Mahmoudi M, Pozzi D, Caracciolo G. Optimal centrifugal isolating of liposome-protein complexes from human plasma. NANOSCALE ADVANCES 2021; 3:3824-3834. [PMID: 36133013 PMCID: PMC9418580 DOI: 10.1039/d1na00211b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/15/2021] [Indexed: 05/14/2023]
Abstract
In the past few years, characterization of the protein corona (PC) that forms around liposomal systems has gained increasing interest for the development of novel therapeutic and diagnostic technologies. At the crossroads of fast-moving research fields, the interdisciplinarity of protein corona investigations poses challenges for experimental design and reporting. Isolation of liposome-protein complexes from biological fluids has been identified as a fundamental step of the entire workflow of PC characterization but exact specifications for conditions to optimize pelleting remain elusive. In the present work, key factors affecting precipitation of liposome-protein complexes by centrifugation, including time of centrifugation, total sample volume, lipid : protein ratio and contamination from biological NPs were comprehensively evaluated. Here we show that the total amount of isolated liposome-protein complexes and the extent of contamination from biological NPs may vary with influence factors. Our results provide protein corona researchers with precise indications to separate liposome-protein complexes from protein-rich fluids and include proper controls, thus they are anticipated to catalyze improved consistency of data mining and computational modelling of protein corona composition.
Collapse
Affiliation(s)
- Luca Digiacomo
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Francesca Giulimondi
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences Utrecht University Heidelberglaan 8 3584 CS Utrecht The Netherlands
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Morteza Mahmoudi
- Department of Radiology, Precision Health Program, Michigan State University MI USA
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome Viale Regina Elena 291 00161 Rome Italy
| |
Collapse
|
27
|
Xu F, Dong B, Li X, Gao F, Yang D, Xue W, Wang P. Profiling and Regulating Proteins That Adsorb to DNA Materials in Human Serum. Anal Chem 2021; 93:8671-8679. [PMID: 34107681 DOI: 10.1021/acs.analchem.1c02075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA aptamers and framework DNA nanostructures are emerging DNA materials with many appealing biological applications including biosensing, bioimaging, drug delivery, and so forth. When placed in physiological fluids, they inevitably encounter biomolecules (majorly proteins) and form complexes that largely affect their biological fate. Nevertheless, little is known regarding the quantitative profile of proteins that adsorb to DNA aptamers and DNA nanostructures in biological environments, and there are no potent strategies to regulate protein profiles. Herein, we performed a proteomic analysis to profile proteins that bind to DNA aptamers (Sgc8c and SYLC3) and nanostructures (a tetrahedral DNA nanostructure and a DNA origami rod) in human serum using liquid chromatography-mass spectrometry (LC-MS). Dozens to hundreds of proteins were identified with each DNA material exhibiting highly distinctive profiles. It was also revealed that the origin of serum (from healthy donor vs from prostate cancer patients) causes significant differences in profiles of bound proteins. Furthermore, we demonstrated that the protein profile may be regulated by tethering a layer of single-stranded DNA (polythymine) onto the DNA origami rod to alleviate the adsorption of complement-associated proteins, which significantly reduced its sequestration by macrophages. Taken together, this study has provided qualitative and quantitative proteomic profiles regarding serum proteins that adsorb to various DNA materials and have demonstrated that the composition of interacted proteins may be regulated toward better biological performances.
Collapse
Affiliation(s)
- Fan Xu
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xue Li
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Gao
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Xue
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
28
|
Phan TH, Divakarla SK, Yeo JH, Lei Q, Tharkar P, Pansani TN, Leslie KG, Tong M, Coleman VA, Jämting Å, Du Plessis MD, New EJ, Kalionis B, Demokritou P, Woo HK, Cho YK, Chrzanowski W. New Multiscale Characterization Methodology for Effective Determination of Isolation-Structure-Function Relationship of Extracellular Vesicles. Front Bioeng Biotechnol 2021; 9:669537. [PMID: 34164385 PMCID: PMC8215393 DOI: 10.3389/fbioe.2021.669537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have been lauded as next-generation medicines, but very few EV-based therapeutics have progressed to clinical use. Limited clinical translation is largely due to technical barriers that hamper our ability to mass produce EVs, i.e., to isolate, purify, and characterize them effectively. Technical limitations in comprehensive characterization of EVs lead to unpredicted biological effects of EVs. Here, using a range of optical and non-optical techniques, we showed that the differences in molecular composition of EVs isolated using two isolation methods correlated with the differences in their biological function. Our results demonstrated that the isolation method determines the composition of isolated EVs at single and sub-population levels. Besides the composition, we measured for the first time the dry mass and predicted sedimentation of EVs. These parameters were likely to contribute to the biological and functional effects of EVs on single cell and cell cultures. We anticipate that our new multiscale characterization approach, which goes beyond traditional experimental methodology, will support fundamental understanding of EVs as well as elucidate the functional effects of EVs in in vitro and in vivo studies. Our findings and methodology will be pivotal for developing optimal isolation methods and establishing EVs as mainstream therapeutics and diagnostics. This innovative approach is applicable to a wide range of sectors including biopharma and biotechnology as well as to regulatory agencies.
Collapse
Affiliation(s)
- Thanh Huyen Phan
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Shiva Kamini Divakarla
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Jia Hao Yeo
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Qingyu Lei
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Priyanka Tharkar
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, UNESP-Universidade Estadual Paulista, Araraquara, Brazil
| | - Kathryn G Leslie
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Maggie Tong
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia
| | - Victoria A Coleman
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Åsa Jämting
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Mar-Dean Du Plessis
- Nanometrology Section, National Measurement Institute Australia, Lindfield, NSW, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Camperdown, NSW, Australia.,School of Chemistry, Faculty of Science, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Bill Kalionis
- Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women's Hospital, and Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Hyun-Kyung Woo
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, South Korea.,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Wojciech Chrzanowski
- Sydney School of Pharmacy, Faculty of Medicine and Health, Sydney Nano Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
29
|
Chu Y, Tang W, Zhang Z, Li C, Qian J, Wei X, Ying T, Lu W, Zhan C. Deciphering Protein Corona by scFv-Based Affinity Chromatography. NANO LETTERS 2021; 21:2124-2131. [PMID: 33617264 DOI: 10.1021/acs.nanolett.0c04806] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It remains challenging to precisely decipher the structural and functional characteristics of protein coronas. To overcome the drawbacks frequently occurring in the traditional separation methods, an anti-PEG single-chain variable fragment (PEG-scFv) based affinity chromatography (AfC) was developed to achieve precise and efficient separation of protein coronas on PEGylated liposomes (sLip). His-tagged PEG-scFv could readily capture sLip without affecting protein corona compositions, and separate sLip/protein complex from plasma protein aggregates and endogenous vesicles through the Ni-NTA column. AfC demonstrated 43-fold higher protein corona collecting efficiency than centrifugation, which was extremely crucial for separation of in vivo protein coronas due to the limitation of sample size. AfC evaded contamination by endogenous vesicles and protein aggregates occurring in centrifugation, and reserved the loosely bound proteins, providing an unprecedented approach to deeply decipher protein coronas. The scFv-based AfC also paves new avenues for the separation of protein coronas formed on other nanomedicines.
Collapse
Affiliation(s)
- Yuxiu Chu
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Wenjing Tang
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Cheng Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Jun Qian
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Xiaoli Wei
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, 200032, P.R. China
| | - Weiyue Lu
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, and Center of Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University, Shanghai, 200032, P.R. China
- MOE Key Laboratory of Smart Drug Delivery, School of Pharmacy, and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, P.R. China
| |
Collapse
|
30
|
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021; 93:1889-1911. [PMID: 33434434 PMCID: PMC7941215 DOI: 10.1021/acs.analchem.0c05208] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- H Surangi N Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
31
|
Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Martina H. Stenzel
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
32
|
Stenzel MH. The Trojan Horse Goes Wild: The Effect of Drug Loading on the Behavior of Nanoparticles. Angew Chem Int Ed Engl 2020; 60:2202-2206. [DOI: 10.1002/anie.202010934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Martina H. Stenzel
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
33
|
Palviainen M, Saraswat M, Varga Z, Kitka D, Neuvonen M, Puhka M, Joenväärä S, Renkonen R, Nieuwland R, Takatalo M, Siljander PRM. Extracellular vesicles from human plasma and serum are carriers of extravesicular cargo-Implications for biomarker discovery. PLoS One 2020; 15:e0236439. [PMID: 32813744 PMCID: PMC7446890 DOI: 10.1371/journal.pone.0236439] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs) in human blood are a potential source of biomarkers. To which extent anticoagulation affects their concentration, cellular origin and protein composition is largely unexplored. To study this, blood from 23 healthy subjects was collected in acid citrate dextrose (ACD), citrate or EDTA, or without anticoagulation to obtain serum. EVs were isolated by ultracentrifugation or by size-exclusion chromatography (SEC) for fluorescence-SEC. EVs were analyzed by micro flow cytometry, NTA, TEM, Western blot, and protein mass spectrometry. The plasma EV concentration was unaffected by anticoagulants, but serum contained more platelet EVs. The protein composition of plasma EVs differed between anticoagulants, and between plasma and serum. Comparison to other studies further revealed that the shared EV protein composition resembles the “protein corona” of synthetic nanoparticles incubated in plasma or serum. In conclusion, we have validated a higher concentration of platelet EVs in serum than plasma by contemporary EV methods. Anticoagulation should be carefully described (i) to enable study comparison, (ii) to utilize available sample cohorts, and (iii) when preparing/selecting biobank samples. Further, the similarity of the EV protein corona and that of nanoparticles implicates that EVs carry both intravesicular and extravesicular cargo, which will expand their applicability for biomarker discovery.
Collapse
Affiliation(s)
- Mari Palviainen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
- CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary
| | - Diána Kitka
- Biological Nanochemistry Research Group, Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Budapest, Hungary
| | - Maarit Neuvonen
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
- CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maija Puhka
- EV-core, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Rienk Nieuwland
- Laboratory Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarit Takatalo
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
- CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Pia R. M. Siljander
- EV group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- EV-core, University of Helsinki, Helsinki, Finland
- CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|