1
|
Wu J, Hua Z, Liu G. Supramolecular adhesives inspired from adhesive proteins and nucleic acids: molecular design, properties, and applications. SOFT MATTER 2025; 21:324-341. [PMID: 39688920 DOI: 10.1039/d4sm01220h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Bioinspired supramolecular adhesives have been recently emerging as novel functional materials, which have shown a wide range of applications in wearable sensors and tissue engineering such as tissue adhesives and wound dressings. In this review, we summarize and discuss two main types of biologically inspired supramolecular adhesives from adhesive proteins and nucleic acids. The widely studied catechol-based adhesives, that originated from adhesive proteins of marine organisms such as mussels, and recently emerging nucleobase-containing supramolecular adhesives are both introduced and discussed. Both bioinspired adhesives from nucleic acids and adhesive proteins involve multiple supramolecular interactions such as hydrogen bonding, hydrophobic interactions, π-π stacking, and so on. Several major types of these bioinspired adhesives are summarized, respectively, including polymer-based, hydrogel-based, and other types of adhesives. The novel molecular design and adhesion properties are focused on and highlighted for each type of bioinspired adhesive. In addition, the potential applications of these bioinspired supramolecular adhesives in different realms including tissue engineering and biomedical devices are discussed. This review concludes with issues and challenges in the area of the bioinspired adhesives, hopefully promoting further developments and broader applications of novel supramolecular adhesives.
Collapse
Affiliation(s)
- Jiang Wu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Guangming Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
2
|
Tang Y, Si M, Wang Y, Zhou J, Deng Y, Xia K, Jiang Z, Zhang D, Zheng SY, Yang J. Endocytosis-Inspired Zwitterionic Gel Tape for High-Efficient and Sustainable Underoil Adhesion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407501. [PMID: 39248332 PMCID: PMC11558084 DOI: 10.1002/advs.202407501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Marine oil exploration is important yet greatly increases the risk of oil leakage, which will result in severe environment pollution and economic losses. It is an urgent need to develop effective underoil adhesives. However, realizing underoil adhesion is even harder than those underwater, due to the stubborn attachment of a highly viscous oil layer on target surface. Here, inspired by endocytosis, a tough gel tape composed of zwitterionic polymer network and zwitterionic surfactants is developed. The amphiphilic surfactants can form micelle to capture the oil droplets and transport them from the interface to gel via electrostatic attraction of polymer backbone, mimicking the endocytosis and achieving robust underoil adhesion. Benefiting from the oil-resistance of polymer backbone, the gel further realizes a combination of i) long-term adhesion with high durability, ii) repeated adhesion in oil, and iii) renewable adhesion efficiency after exhausted use. The tape exhibits an ultra-high adhesive toughness of 2446.86 J m-2 to stainless steel in silicone oil after 30 days' oil-exposure; such value of adhesive toughness surpasses many of those achieved in underwater adhesion and is greater than underoil adhesion performance of commercial tape. The strategy illustrated here will motivate the design of sustainable and efficient adhesives for wet environments.
Collapse
Affiliation(s)
- Yueman Tang
- College of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Mengjie Si
- College of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yan‐jie Wang
- School of Materials Science and EngineeringTiangong UniversityTianjin300387P. R. China
| | - Jiahui Zhou
- College of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yuming Deng
- College of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009P. R. China
| | - Zhen Jiang
- School of Mechanical MaterialsMechatronic and Biomedical EngineeringUniversity of WollongongWollongongNSW2522Australia
| | - Dong Zhang
- Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Si Yu Zheng
- College of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Jintao Yang
- College of Materials Science & EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| |
Collapse
|
3
|
Neubert TJ, Walter K, Schröter C, Guglielmotti V, Hinrichs K, Reinicke S, Taden A, Balasubramanian K, Börner HG. Redox-Triggered Debonding of Mussel-Inspired Pressure Sensitive Adhesives: Improving Efficiency Through Functional Design. Angew Chem Int Ed Engl 2024; 63:e202408441. [PMID: 39072978 DOI: 10.1002/anie.202408441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/12/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Debondable pressure-sensitive adhesives (PSAs) promise access to recyclability in microelectronics in the transition toward a circular economy. Two PSAs were synthesized from a tetravalent thiol star-polyester forming thiol-catechol-connectivities (TCC) with either the biorelated DiDopa-bisquinone (BY*Q) or the fossil-based bisquinone A (BQA). The PSAs enable debonding by oxidation of TCC-catechols to quinones. The extent of debonding efficiency depends on the interaction modes, which are determined by the chemical structure differences of both TCC-motifs. BY*Q-TCC-PSA debonds with exceptional loss of 99 % of its approx. 2 MPa shear strength in glass-on-glass junctions. For BQA-TCC-PSA, a debonding efficiency of only approx. 60 % was found, irrespective of its initial shear strength, which could be tuned up to approx. 7 MPa. The efficiency of debonding for BY*Q-TCC-PSA after TCC-oxidation is linked to the loss of synergistic interactions without strongly affecting the bulk glue properties, outperforming the purely catechol-based BQA-analogue.
Collapse
Affiliation(s)
- Tilmann J Neubert
- Department of chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
- School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Keven Walter
- Department of chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Carolin Schröter
- Department of chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Victoria Guglielmotti
- Department of chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
- Instituto de Nanosistemas, Universidad Nacional de General San Martín, Av. 25 de Mayo 1021, San Martín, Provincia de Buenos Aires, Argentina
| | - Karsten Hinrichs
- Application Labs Berlin, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Schwarzschildstraße 8, 12489, Berlin, Germany
- Nanoscale Solid-Liquid Interfaces, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Schwarzschildstraße 8, 12489, Berlin, Germany
| | - Stefan Reinicke
- Life Science & Bioprocesses, Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstraße 69, 14476, Potsdam-Golm, Germany
| | - Andreas Taden
- Adhesive Research, Henkel AG & Co. KGaA, Henkelstraße 67, 40589, Düsseldorf, Germany
| | - Kannan Balasubramanian
- Department of chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
- School of Analytical Sciences Adlershof (SALSA) & IRIS Adlershof, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| | - Hans G Börner
- Department of chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10117, Berlin, Germany
| |
Collapse
|
4
|
Wu H, Sun Q, Guo C, Wei X, Wei J, Wu X, Zhong Z, Wang H. Tailoring Surface Engineering with Expanded Precursor Libraries via Rapid Mussel-Inspired Chemistry. Chempluschem 2024; 89:e202400101. [PMID: 38822555 DOI: 10.1002/cplu.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
Mussel-inspired coating is a substrate-independent surface modification technology. However, its application is limited by time-consuming, tailoring specific functions require tedious secondary reaction. To overcome those drawbacks, a strategy for the rapid fabrication of diverse coatings by expanding the library of precursors using oxidation coupled with polyamine was proposed. Based on DFT simulations of the reaction pathways, a method was developed to achieve rapid deposition of coatings by coupling oxidation and polyamines, which simultaneously accelerated the oxidation of precursors and polymer chain growth. The feasibility and generalizability of the strategy was validated by the rapid coating of 10 catechol derivatives and polyamines on various substrates. The surface properties of the substrates such as functional group densities, Zeta potential and contact angles can be easily tuned. The tailored surface engineering application of the strategy was demonstrated by the heavy metal adsorbents and superwetting materials prepared through the delicate combination of different building blocks. Our strategy was flexible in terms of diverse surface engineering design which greatly enriched the connotation of mussel-inspired technique.
Collapse
Affiliation(s)
- Hailiang Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Qiang Sun
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Caihong Guo
- School of Chemistry and Material Science, Shanxi Normal University, No. 339, Taiyu Road, Xiaodian District, Taiyuan, Shanxi Province, 041000, P.R. China
| | - Xin Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Junfu Wei
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| | - Xiaoqing Wu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Zhili Zhong
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Textile Science and Engineering, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
| | - Huicai Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- School of Chemical Engineering and Technology, Tiangong University, No.399, Binshui West Road, Xiqing District, Tianjin, 300387, P.R. China
- Cangzhou Institute of Tiangong University, No. 13, Fengtai Industrial Park, High-tech Zone, Cangzhou, 061729, P.R. China
| |
Collapse
|
5
|
Liu J, Yang J, Xue B, Cao Y, Cheng W, Li Y. Understanding the Mechanochemistry of Mechano-Radicals in Self-Growth Materials by Single-Molecule Force Spectroscopy. Chemphyschem 2024; 25:e202300880. [PMID: 38705870 DOI: 10.1002/cphc.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.
Collapse
Affiliation(s)
- Jing Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahui Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Wei Cheng
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| |
Collapse
|
6
|
Zeng X, Liu C, Wang X, Cao Y, He P, Li H, Wang L. Versatile Underwater Pressure Sensitive Adhesive: UV Curing Synthesis and Substrate-Independent Adhesion. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39049199 DOI: 10.1021/acsami.4c06163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The demand for underwater pressure sensitive adhesives (PSAs) is rapidly increasing in fields such as underwater engineering and biomedicine. However, the achievement of underwater adhesion of PSAs remains a challenge because of the hydration layer that hinders the interaction between the adhesive and the substrate. Herein, a new type of underwater PSA was synthesized by the copolymerization of hydrophobic unsaturated poly(1,2-butylene oxide) (UPBO) and hydrophilic itaconic acid monomers using solvent-free ultraviolet curing. The PSA has demonstrated substrate-independent underwater adhesion strengths ranging from 108 to 141 kPa on both hydrophilic (glass, wood, steel) and hydrophobic (PET, PMMA, PTFE) substrates. The underwater adhesion performance of PSA remains stable during 30 adhesion-detachment cycles and incubation in water for 20 days. Notably, PSA shows cytocompatibility, antimicrobial, and degradable properties and can be used for rapid hemostasis of skin wounds. Experimental characterizations confirm that the process of underwater adhesion is achieved by hydrophobic alkyl side chains of the PBO chain segments, which repel water at the adhesive-substrate interface. This study should provide both practical and facile design strategies for multifunctional underwater PSAs that can be used in a variety of applications.
Collapse
Affiliation(s)
- Xianqiang Zeng
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Chen Liu
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xue Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Cao
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng He
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huiquan Li
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Wang
- CAS Key Laboratory of Green Process and Engineering, National Engineering Research Center of Green Recycling for Strategic Metal Resources, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhao J, Liu J, Wang Q, Wei A, Zhang P, Li A, Yu Y. Visual Quantitation of Dopamine-Inspired Fluorescent Adhesion with Orthogonal Phenanthrenequinone Photochemistry. ACS Macro Lett 2024; 13:788-797. [PMID: 38838345 DOI: 10.1021/acsmacrolett.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Quantifying adhesion is crucial for understanding adhesion mechanisms and developing advanced dopamine-inspired materials and devices. However, achieving nondestructive and real-time quantitation of adhesion using optical spectra remains challenging. Here, we present a dopamine-inspired orthogonal phenanthrenequinone photochemistry strategy for the one-step adhesion and real-time visual quantitation of fluorescent spectra. This strategy utilizes phenanthrenequinone-mediated photochemistry to facilitate conjoined network formation in the adhesive through simultaneous photoclick cycloaddition and free-radical polymerization. The resulting hydrogel-like adhesive exhibits good mechanical performance, with a Young's modulus of 300 kPa, a toughness of 750 kJ m-3, and a fracture energy of 4500 J m-2. This adhesive, along with polycyclic aromatic phenanthrenequinones, shows strong adhesion (>100 kPa) and interfacial toughness thresholds (250 J m-2) on diverse surfaces─twice to triple as much as typical dopamine-contained adhesives. Importantly, such an adhesive demonstrates excellent fluorescent performance under UV irradiation, closely correlating with its adhesion strengths. Their fluorescence intensities remain constant after continuous stretching/releasing treatment and even in the dried state. Therefore, this dopamine-inspired orthogonal phenanthrenequinone photochemistry is readily available for real-time and nondestructive visual quantitation of adhesion performance under various conditions. Moreover, the adhesive precursor is chemically ultrastable for more than seven months and achieves adhesion on substrates within seconds upon blue light irradiation. As a proof-of-concept, we leverage the rapid and visual quantitation of adhesion and printability to create fluorescent patterns and structures, showcasing applications in information storage, adhesion prediction, and self-reporting properties. This general and straightforward strategy holds promise for rapidly preparing functional adhesive materials and designing high-performance wearable devices.
Collapse
Affiliation(s)
- Jinhao Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Jupen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Qian Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - An Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Ping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| | - You Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, China 710069
| |
Collapse
|
8
|
Huang W, Wang S, Feng Z, Zhou D, Bai W. Tyrosinase-Modified UHMW SELP Polymers as Wet and Underwater Adhesives to Achieve Multi-interface Adhesion. ACS Synth Biol 2024; 13:1191-1204. [PMID: 38536670 DOI: 10.1021/acssynbio.3c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The presence of a hydration layer in humid and underwater environments challenges adhesive-substrate interactions and prevents effective bonding, which has become a significant obstacle to the development of adhesives in the industrial and biomedical fields. In this study, ultrahigh-molecular-weight (UHMW) silk-elastin-like proteins (SELP) with 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine residues by tyrosinase exhibited excellent adhesive properties on different interfaces, such as glass, aluminum, wood, polypropylene sheets, and pigskin, under both dry and wet conditions. Additionally, by incorporating trace amounts of cross-linking agents like Fe3+, NaIO4, and tris(hydroxymethyl) phosphine (THP), the mussel-inspired adhesives maintained a stable and excellent adhesion, broadening the conditions of application. Notably, the UHMW SELP adhesive exhibited remarkable underwater adhesion properties with a shear strength of 0.83 ± 0.17 MPa on glass. It also demonstrated good adhesion to biological tissues including the kidney, liver, heart, and lungs. In vitro cytocompatibility testing using L929 cells showed minimal toxicity, highlighting its potential application in the biomedical field. The sustainable, cytocompatible, cost-effective, and highly efficient adhesive provides valuable insights for the design and development of a new protein-based underwater adhesive for medical application.
Collapse
Affiliation(s)
- Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sijia Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhaoxuan Feng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dasen Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenqin Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
9
|
Wang J, Li XY, Qian HL, Wang XW, Wang YX, Ren KF, Ji J. Robust, Sprayable, and Multifunctional Hydrogel Coating through a Polycation Reinforced (PCR) Surface Bridging Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310216. [PMID: 38237136 DOI: 10.1002/adma.202310216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The sprayable hydrogel coatings that can establish robust adhesion onto diverse materials and devices hold enormous potential; however, a significant challenge persists due to monomer hydration, which impedes even coverage during spraying and induces inadequate adhesion post-gelation. Herein, a polycation-reinforced (PCR) surface bridging strategy is presented to achieve tough and sprayable hydrogel coatings onto diverse materials. The polycations offer superior wettability and instant electrostatic interactions with plasma-treated substrates, facilitating an effective spraying application. This PCR-based hydrogel coatings demonstrate tough adhesion performance to inert PTFE and silicone, including remarkable shear strength (161 ± 49 kPa for PTFE), interfacial toughness (198 ± 27 J m-2 for PTFE), and notable tolerance to cyclic tension (10 000 cycles, 200% strain, silicone). Meanwhile, this method can be applied to various hydrogel formulations, offering diverse functionalities, including underwater adhesion, lubrication, and drug delivery. Furthermore, the PCR concept enables the conformal construction of durable hydrogel coatings onto sophisticated medical devices like cardiovascular stents. Given its simplicity and adaptability, this approach paves an avenue for incorporating hydrogels onto solid surfaces and potentially promotes untapped applications.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| | - Xin-Yi Li
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hong-Lin Qian
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xing-Wang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - You-Xiang Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ke-Feng Ren
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
10
|
Kong L, Gao M, Shi J, Zhao C, Chen C. Synthetic Polypeptide Bioadhesive Based on Cation-π Interaction and Secondary Structure. ACS Macro Lett 2024; 13:361-367. [PMID: 38457308 DOI: 10.1021/acsmacrolett.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Bioadhesives have garnered widespread attention in the biomedical field, for wound healing and tissue sealing. However, challenges exist due to the inferior performance of bioadhesives, including weak adhesion, poor biocompatibility, or lack of biodegradability. In this work, we demonstrate the fabrication of hydrogel adhesive based on polypeptides composed of lysine and glutamic acid. The cation-π interaction between the ammonium cations and phenyl groups endows the hydrogel with strong cohesion, and the hydrophobicity of the phenyl group significantly enhances the interaction between polypeptides and the substrate interface, leading to excellent adhesive performance. The equivalent molar ratio of ammonium cations and the phenyl group is beneficial for the enhancement of adhesiveness. Furthermore, we discover that the polypeptides with an α-helix exhibit better adhesiveness than the polypeptides with a β-sheet because the α-helical structure can increase the exposure of the side group on the polypeptide surface, which further strengthens the interaction between polypeptides and the substrate. Besides, this synthetic polypeptide adhesive can seal the tissue quickly and remain intact in water. This adhesive holds significant promise for application in wound healing and tissue sealing, and this study provides insight into the development of more peptide-based adhesives.
Collapse
Affiliation(s)
- Liufen Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mei Gao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jiangyan Shi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chuanzhuang Zhao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chongyi Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Garcia-Rodriguez JM, Wilker JJ. Positive Charge Influences on the Surface Interactions and Cohesive Bonding of a Catechol-Containing Polymer. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38470565 DOI: 10.1021/acsami.3c16889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Achieving robust underwater adhesion remains challenging. Through generations of evolution, marine mussels have developed an adhesive system that allows them to anchor onto wet surfaces. Scientists have taken varied approaches to developing mussel-inspired adhesives. Mussel foot proteins are rich in lysine residues, which may play a role in the removal of salts from surfaces. Displacement of water and ions on substrates could then enable molecular contact with surfaces. The necessity of cations for underwater adhesion is still in debate. Here, we examined the performance of a methacrylate polymer containing quaternary ammonium and catechol groups. Varying amounts of charge in the polymers were studied. As opposed to protonated amines such as lysine, quaternary ammonium groups offer a nonreactive cation for isolating effects from only charge. Results shown for dry bonding demonstrated that cations tended to decrease bulk cohesion while increasing surface interactions. Stronger interactions at surfaces, along with weaker bulk bonding, indicate that cations decreased the cohesive forces. When under salt water, overall bulk adhesion also dropped with higher cation loadings. Surface attachment under salt water also dropped, indicating that the polymer cations could not displace surface waters or sodium ions. Salt did, however, appear to shield bulk cation-cation repulsions. These studies help to distinguish influences upon bulk cohesion from attachment at surfaces. The roles of cations in adhesion are complex, with both cohesive and surface bonding being relevant in different ways, sometimes even working in opposite directions.
Collapse
Affiliation(s)
- Jennifer M Garcia-Rodriguez
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
| | - Jonathan J Wilker
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States
- School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana 47907-2045, United States
| |
Collapse
|
12
|
Li Y, Xue B, Yang J, Jiang J, Liu J, Zhou Y, Zhang J, Wu M, Yuan Y, Zhu Z, Wang ZJ, Chen Y, Harabuchi Y, Nakajima T, Wang W, Maeda S, Gong JP, Cao Y. Azobenzene as a photoswitchable mechanophore. Nat Chem 2024; 16:446-455. [PMID: 38052946 DOI: 10.1038/s41557-023-01389-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/27/2023] [Indexed: 12/07/2023]
Abstract
Azobenzene has been widely explored as a photoresponsive element in materials science. Although some studies have investigated the force-induced isomerization of azobenzene, the effect of force on the rupture of azobenzene has not been explored. Here we show that the light-induced structural change of azobenzene can also alter its rupture forces, making it an ideal light-responsive mechanophore. Using single-molecule force spectroscopy and ultrasonication, we found that cis and trans para-azobenzene isomers possess contrasting mechanical properties. Dynamic force spectroscopy experiments and quantum-chemical calculations in which azobenzene regioisomers were pulled from different directions revealed that the distinct rupture forces of the two isomers are due to the pulling direction rather than the energetic difference between the two isomers. These mechanical features of azobenzene can be used to rationally control the macroscopic fracture behaviours of polymer networks by photoillumination. The use of light-induced conformational changes to alter the mechanical response of mechanophores provides an attractive way to engineer polymer networks of light-regulatable mechanical properties.
Collapse
Affiliation(s)
- Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
- Medical School, Nanjing University, Nanjing, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Jiahui Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | | | - Jing Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Yanyan Zhou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Junsheng Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Mengjiao Wu
- College of Chemistry, Jilin University, Changchun, China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, China
| | - Zhenshu Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China
| | - Zhi Jian Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yulan Chen
- College of Chemistry, Jilin University, Changchun, China
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China.
| | - Satoshi Maeda
- Hokkaido University, Sapporo, Japan.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Nanjing University, Nanjing, China.
| |
Collapse
|
13
|
Zhao X, Demchuk Z, Tian J, Luo J, Li B, Cao K, Sokolov AP, Hun D, Saito T, Cao PF. Ductile adhesive elastomers with force-triggered ultra-high adhesion strength. MATERIALS HORIZONS 2024; 11:969-977. [PMID: 38053446 DOI: 10.1039/d3mh01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Elastomers play a vital role in many forthcoming advanced technologies in which their adhesive properties determine materials' interface performance. Despite great success in improving the adhesive properties of elastomers, permanent adhesives tend to stick to the surfaces prematurely or result in poor contact depending on the installation method. Thus, elastomers with on-demand adhesion that is not limited to being triggered by UV light or heat, which may not be practical for scenarios that do not allow an additional external source, provide a solution to various challenges in conventional adhesive elastomers. Herein, we report a novel, ready-to-use, ultra high-strength, ductile adhesive elastomer with an on-demand adhesion feature that can be easily triggered by a compression force. The precursor is mainly composed of a capsule-separated, two-component curing system. After a force-trigger and curing process, the ductile adhesive elastomer exhibits a peel strength and a lap shear strength of 1.2 × 104 N m-1 and 7.8 × 103 kPa, respectively, which exceed the reported values for advanced ductile adhesive elastomers. The ultra-high adhesion force is attributed to the excellent surface contact of the liquid-like precursor and to the high elastic modulus of the cured elastomer that is reinforced by a two-phase design. Incorporation of such on-demand adhesion into an elastomer enables a controlled delay between installation and curing so that these can take place under their individual ideal conditions, effectively reducing the energy cost, preventing failures, and improving installation processes.
Collapse
Affiliation(s)
- Xiao Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Jia Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Ke Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Hun
- Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
14
|
Chen H, Zheng C, Zhang F, Zhang Z, Zhang L. One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium α-linoleate driven by surfactant self-aggregation. SCIENCE ADVANCES 2023; 9:eadj3186. [PMID: 37939195 PMCID: PMC10631740 DOI: 10.1126/sciadv.adj3186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023]
Abstract
Janus adhesive hydrogels have one-sided adhesive properties and hold promising applications in the health care field. However, a simple method for synthesizing Janus hydrogels is still lacking. In this study, we introduce an innovative method to prepare Janus hydrogels by harnessing a fundamental phenomenon: the self-aggregation of surfactants at high concentrations at the water-air interface. By combining a small amount [0.8 to 3.2 weight %, relative to mass of acrylamide (AM)] of sodium α-linoleate (LAS) with AM through free radical polymerization, we have synthesized Janus adhesive hydrogels. The Janus hydrogels exhibit remarkable adhesive strength and adhesive differences, with the top side (84 J m-2) being 21 times stronger than the bottom side, also an excellent elongation rate. Through comprehensive experiments, including chemical composition, surface morphology, and molecular dynamics (MD) simulations, we thoroughly investigate the mechanisms of the hydrogel's heterogeneous adhesion. This study presents an easy, efficient, and innovative method for preparing one-sided adhesive hydrogels.
Collapse
Affiliation(s)
- Huowen Chen
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Chuchu Zheng
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Fusheng Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhuqin Zhang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | | |
Collapse
|
15
|
Chen M, Chen T, Bai J, He S, Luo M, Zeng Y, Peng W, Zhao Y, Wang J, Zhu X, Zhi W, Weng J, Zhang K, Zhang X. A Nature-Inspired Versatile Bio-Adhesive. Adv Healthc Mater 2023; 12:e2301560. [PMID: 37548628 DOI: 10.1002/adhm.202301560] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
The application of most hydrogel bio-adhesives is greatly limited due to their high swelling, low underwater adhesion, and single function. Herein, a spatial multi-level physical-chemical and bio-inspired in-situ bonding strategy is proposed, to develop a multifunctional hydrogel bio-glue using polyglutamic acid (PGA), tyramine hydrochloride (TYR), and tannic acid (TA) as precursors and 4-(4,6-dimethoxytriazine-2-yl) -4-methylmorpholine hydrochloride(DMTMM) as condensation agent, which is used for tissue adhesion, hemostasis and repair. By introducing TYR and TA into the PGA chain, it is demonstrated that not only can the strong adhesion of bio-glue to the surface of various fresh tissues and wet materials be realized through the synergistic effect of spatial multi-level physical and chemical bonding, but also this glue can be endowed with the functions of anti-oxidation and hemostasis. The excellent performance of such bio-glue in the repair of the wound, liver, and cartilage is achieved, showing a great potential in clinical application for such bio-glue. This study will open up a brand-new avenue for the development of multifunctional hydrogel biological adhesive.
Collapse
Affiliation(s)
- Mingxia Chen
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Taijun Chen
- Chengdu University of Traditional Chinese Medicine, School of Intelligent Medicine, Chengdu, 611137, China
| | - Jiafan Bai
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Siyuan He
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Minyue Luo
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Yili Zeng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yuancong Zhao
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jianxin Wang
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Zhi
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Jie Weng
- Key Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine, School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Yu J, Xie R, Zhang M, Shen K, Yang Y, Zhao X, Zhang X, Zhang Y, Cheng Y. Molecular architecture regulation for the design of instant and robust underwater adhesives. SCIENCE ADVANCES 2023; 9:eadg4031. [PMID: 37267351 PMCID: PMC10413663 DOI: 10.1126/sciadv.adg4031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 06/04/2023]
Abstract
Development of underwater adhesives with instant and robust adhesion to diverse substrates remains challenging. A strategy taking the structural advantage of phenylalanine derivative, N-acryloyl phenylalanine (APA), is proposed to facilely prepare a series of underwater polymeric glue-type adhesives (UPGAs) through one-pot radical polymerization with commonly used hydrophilic vinyl monomers. The adjacent phenyl and carboxyl groups in APA realize the synergy between interfacial interactions and cohesion strength, by which the UPGAs could achieve instant (~5 seconds) and robust wet tissue adhesion strength (173 kilopascal). The polymers with varied hydrophobicity and substitutional groups as well as carboxyl and phenyl groups in separated components are designed to investigate the underwater adhesion mechanism. The universality of APA for the construction of UPGAs is also verified by the copolymerization with different hydrophilic monomers, and the applications of the UPGAs have been validated in diverse hemorrhage models and distinct substrates. Our work may give a promising solution to design potent underwater adhesives.
Collapse
Affiliation(s)
- Jing Yu
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ruilin Xie
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Mengyuan Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kaixiang Shen
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yuxuan Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaodan Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
| | - Yanfeng Zhang
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yilong Cheng
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
17
|
Chang H, Adibnia V, Su R, Qi W, Banquy X. Biospecific cation-π interaction by modulating molecular hydration and supramolecular structure of short peptides. J Colloid Interface Sci 2023; 635:50-58. [PMID: 36577355 DOI: 10.1016/j.jcis.2022.12.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/26/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
This study presents novel adhesive materials that use cation-π interactions to achieve highly specific cohesive interaction under water. The materials are short length peptides based on the FKF motif flanked by different side groups. Using the surface forces apparatus, we show that the composition of the side group allows to finely tune the strength of the cohesive and adhesive energies of the peptide and its specificity, meaning its capacity to bind strongly only to substrates bearing the same peptide. The interfacial properties of these adhesive peptides are shown to strongly depend on the composition of the deposition solvent, with DMSO being the solvent of choice to achieve high cohesive and adhesive energies. This result was correlated with the supramolecular structure of the peptide film and confirmed that needle-like structures can significantly enhance the adhesion of the material. Altogether, we showed that cation-π interaction can be used efficiently to create adhesive materials that incorporate features already known for underwater adhesives such as activation via solvent displacement, as well as new ones such as specificity and supramolecular structure enhanced adhesion.
Collapse
Affiliation(s)
- Heng Chang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada
| | - Vahid Adibnia
- Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada; School of Biomedical Engineering, Dalhousie University, Halifax, Canada and Department of Applied Oral Sciences, Dalhousie University, Halifax, Canada
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; School of Marine Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
18
|
Baby M, Bhaskaran SP, Chandran Maniyeri S. Catechol-Amine-Decorated Epoxy Resin as an Underwater Adhesive: A Coacervate Concept Using a Liquid Marble Strategy. ACS OMEGA 2023; 8:7289-7301. [PMID: 36873002 PMCID: PMC9979230 DOI: 10.1021/acsomega.2c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The attachment phenomena of various hierarchical architectures found in nature, especially underwater adhesion, have drawn extensive attention to the development of similar biomimicking adhesives. Marine organisms show spectacular adhesion characteristics because of their foot protein chemistry and the formation of an immiscible phase (coacervate) in water. Herein, we report a synthetic coacervate derived using a liquid marble route composed of catechol amine-modified diglycidyl ether of bisphenol A (EP) polymers wrapped by silica/PTFE powders. The adhesion promotion efficiency of catechol moieties is established by functionalizing EP with monofunctional amines (MFA) of 2-phenyl ethylamine and 3,4-dihydroxy phenylethylamine (DA). The curing activation of MFA-incorporated resin pointed toward a lower activation energy (50.1-52.1 kJ mol-1) compared with the neat system (56.7-58 kJ mol-1). The viscosity build-up and gelation are faster for the catechol-incorporated system, making it ideal for underwater bonding performance. The PTFE-based adhesive marble of the catechol-incorporated resin was stable and exhibited an adhesive strength of 7.5 MPa under underwater bonding conditions.
Collapse
Affiliation(s)
- Monisha Baby
- Cochin
University of Science and Technology, Ernakulam 682022, Kerala, India
- Analytical and Spectroscopic Division and Polymers and Special Chemical Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, Kerala, India
| | - Soumyamol Panthaplackal Bhaskaran
- Analytical and Spectroscopic Division and Polymers and Special Chemical Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, Kerala, India
| | - Satheesh Chandran Maniyeri
- Analytical and Spectroscopic Division and Polymers and Special Chemical Division, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, Kerala, India
| |
Collapse
|
19
|
Lu Y, Huang X, Yuting Luo, Zhu R, Zheng M, Yang J, Bai S. Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing. Biomacromolecules 2023; 24:319-331. [PMID: 36503250 DOI: 10.1021/acs.biomac.2c01157] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid and strong adhesion of hydrogel adhesives is required for instant wound closure and hemostasis. However, in situ hydrogel formation and sufficient adhesion at target tissue sites in biological environments are severely compromised by the presence of blood and body fluids. In this work, an underwater adhesive hydrogel (named SHCa) is fabricated with rapid in situ gelation, enhanced mechanical toughness, and robust underwater adhesion. The SHCa can undergo rapid UV irradiation-induced gelation under water within 5 s and adhere firmly to underwater surfaces for 6 months. The synergistic effects of crystalline β-sheet structures and dynamic energy-dissipating mechanisms enhance the mechanical toughness and cohesion, supporting the balance between adhesion and cohesion in wet environments. Importantly, the SHCa can achieve rapid in situ gelation and robust underwater adhesion at various tissue surfaces in highly dynamic fluid environments, substantially outperforming the commercially available tissue adhesives. The lap shear adhesion strength and wound closure strength of SHCa on blood-covered substrates are 7.24 and 12.68 times higher than those of cyanoacrylate glue, respectively. Its fast hemostasis and wound sealing performance are further demonstrated in in vivo animal models. The proposed hydrogel with strong underwater adhesion provides an effective tool for fast wound closure and hemostasis.
Collapse
Affiliation(s)
- Yajie Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yuting Luo
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Rui Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Min Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
20
|
Pearce HA, Swain JWR, Victor LH, Hogan KJ, Jiang EY, Bedell ML, Navara AM, Farsheed A, Kim YS, Guo JL, Hartgerink JD, Grande-Allen KJ, Mikos AG. Thermogelling hydrogel charge and lower critical solution temperature influence cellular infiltration and tissue integration in an ex vivo cartilage explant model. J Biomed Mater Res A 2023; 111:15-34. [PMID: 36053984 DOI: 10.1002/jbm.a.37441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/03/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
Abstract
Thermogelling hydrogels based on poly(N-isopropyl acrylamide) (p[NiPAAm]) and crosslinked with a peptide-bearing macromer poly(glycolic acid)-poly(ethylene glycol)-poly(glycolic acid)-di(but-2-yne-1,4-dithiol) (PdBT) were fabricated to assess the role of hydrogel charge and lower critical solution temperature (LCST) over time in influencing cellular infiltration and tissue integration in an ex vivo cartilage explant model over 21 days. The p(NiPAAm)-based thermogelling polymer was synthesized to possess 0, 5, and 10 mol% dimethyl-γ-butyrolactone acrylate (DBA) to raise the LCST over time as the lactone rings hydrolyzed. Further, three peptides were designed to impart charge into the hydrogels via conjugation to the PdBT crosslinker. The positively, neutrally, and negatively charged peptides K4 (+), zwitterionic K2E2 (0), and E4 (-), respectively, were conjugated to the modular PdBT crosslinker and the hydrogels were evaluated for their thermogelation behavior in vitro before injection into the cartilage explant models. Samples were collected at days 0 and 21, and tissue integration and cellular infiltration were assessed via mechanical pushout testing and histology. Negatively charged hydrogels whose LCST changed over time (10 mol% DBA) were demonstrated to promote the greatest tissue integration when compared to the positive and neutral gels of the same thermogelling polymer formulation due to increased transport and diffusion across the hydrogel-tissue interface. Indeed, the negatively charged thermogelling polymer groups containing 5 and 10 mol% DBA demonstrated cellular infiltration and cartilage-like matrix deposition via histology. This study demonstrates the important role that material physicochemical properties play in dictating cell and tissue behavior and can inform future cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Hannah A Pearce
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | - Katie J Hogan
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Matthew L Bedell
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Adam M Navara
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Adam Farsheed
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Depatment of Chemistry, Rice University, Houston, Texas, USA
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jason L Guo
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Depatment of Chemistry, Rice University, Houston, Texas, USA
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
| |
Collapse
|
21
|
Hu Z, Wu W, Yu M, Wang Z, Yang Z, Xing X, Chen X, Niu L, Yu F, Xiao Y, Chen J. Mussel-inspired polymer with catechol and cationic Lys functionalities for dentin wet bonding. Mater Today Bio 2022; 18:100506. [DOI: 10.1016/j.mtbio.2022.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
|
22
|
Zhu H, Liu R, Shang Y, Sun L. Polylysine complexes and their biomedical applications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Montazerian H, Davoodi E, Baidya A, Badv M, Haghniaz R, Dalili A, Milani AS, Hoorfar M, Annabi N, Khademhosseini A, Weiss PS. Bio-macromolecular design roadmap towards tough bioadhesives. Chem Soc Rev 2022; 51:9127-9173. [PMID: 36269075 PMCID: PMC9810209 DOI: 10.1039/d2cs00618a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Emerging sutureless wound-closure techniques have led to paradigm shifts in wound management. State-of-the-art biomaterials offer biocompatible and biodegradable platforms enabling high cohesion (toughness) and adhesion for rapid bleeding control as well as robust attachment of implantable devices. Tough bioadhesion stems from the synergistic contributions of cohesive and adhesive interactions. This Review provides a biomacromolecular design roadmap for the development of tough adhesive surgical sealants. We discuss a library of materials and methods to introduce toughness and adhesion to biomaterials. Intrinsically tough and elastic polymers are leveraged primarily by introducing strong but dynamic inter- and intramolecular interactions either through polymer chain design or using crosslink regulating additives. In addition, many efforts have been made to promote underwater adhesion via covalent/noncovalent bonds, or through micro/macro-interlock mechanisms at the tissue interfaces. The materials settings and functional additives for this purpose and the related characterization methods are reviewed. Measurements and reporting needs for fair comparisons of different materials and their properties are discussed. Finally, future directions and further research opportunities for developing tough bioadhesive surgical sealants are highlighted.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
- Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Arash Dalili
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Abbas S Milani
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
- School of Engineering and Computer Science, University of Victoria, Victoria, British Columbia V8P 3E6, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, Los Angeles, California 90024, USA.
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
24
|
Wang Z, Gu X, Li B, Li J, Wang F, Sun J, Zhang H, Liu K, Guo W. Molecularly Engineered Protein Glues with Superior Adhesion Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204590. [PMID: 36006846 DOI: 10.1002/adma.202204590] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Naturally inspired proteins are investigated for the development of bioglues that combine adhesion performance and biocompatibility for biomedical applications. However, engineering such adhesives by rational design of the proteins at the molecular level is rarely reported. Herein, it is shown that a new generation of protein-based glues is generated by supramolecular assembly through de novo designed structural proteins in which arginine triggers robust liquid-liquid phase separation. The encoded arginine moieties significantly strengthen multiple molecular interactions in the complex, leading to ultrastrong adhesion on various surfaces, outperforming many chemically reacted and biomimetic glues. Such adhesive materials enable quick visceral hemostasis in 10 s and outstanding tissue regeneration due to their robust adhesion, good biocompatibility, and superior antibacterial capacity. Remarkably, their minimum inhibitory concentrations are orders of magnitude lower than clinical antibiotics. These advances offer insights into molecular engineering of de novo designed protein glues and outline a general strategy to fabricate mechanically strong protein-based materials for surgical applications.
Collapse
Affiliation(s)
- Zili Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xinquan Gu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Molecular Engineering, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Weisheng Guo
- State Key Laboratory of Respiratory Disease, School of Biomedical Engineering & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
25
|
Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. iScience 2022; 25:105106. [PMID: 36185384 PMCID: PMC9519738 DOI: 10.1016/j.isci.2022.105106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The widespread use of biological tissue adhesives for tissue repair is limited by their weak adhesion in a wet environment. Herein, we report the wet adhesion mechanism of a dry granular natural bioadhesive from Andrias davidianus skin secretion (ADS). Once contacting water, ADS granules self-assemble to form a hydrophobic hydrogel strongly bonding to wet substrates in seconds. ADS showed higher shear adhesion than current commercial tissue adhesives and an impressive 72-h underwater adhesion strength of ∼47kPa on porcine skin tissue. The assembled hydrogel in water maintained a dissipation energy of ∼8 kJ/m3, comparable to the work density of muscle, exhibiting its robustness. Unlike catechol adhesion mechanism, ADS wet adhesion mechanism is attributed to water absorption by granules, and the unique equilibrium of protein hydrophobicity, hydrogen bonding, and ionic complexation. The in vivo adhesion study demonstrated its excellent wet adhesion and hemostasis performance in a rat hepatic and cardiac hemorrhage model. Dry granule adhesive of Andrias davidianus skin secretion build strong wet adhesion The granules absorb water and self-assemble to form a hydrophobic adhesive in seconds The adhesive showed 72-h underwater adhesion strength of ∼47kPa on porcine skin tissue Remarkable hemostasis effect was found on rat hepatic and cardiac hemorrhage model
Collapse
|
26
|
Nan L, Liu J, Liu C, Quan P, Guo J, Fang L. Fe(III)-coordinated N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesives with enhanced adhesion and cohesion for efficient transdermal application. Acta Biomater 2022; 152:186-196. [PMID: 36064108 DOI: 10.1016/j.actbio.2022.08.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/01/2022]
Abstract
Pressure-sensitive adhesives are critical to the product's safety, efficacy, and quality in transdermal drug delivery systems. However, many defects of transdermal patches (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) remain. Herein, the N-[tris(hydroxymethyl)methyl]acrylamide (NAT)-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) (AA-NAT/Fe3+) was creatively proposed. Results demonstrated that the adhesiveness and cohesiveness of the optimized AA-NAT/Fe3+ were higher by 1.8- and 9.7-fold, respectively, than those of commercially available DURO-TAK® 87-4098 due to the hydrogen bonding interaction of NAT-skin interface and coordination of NAT-Fe3+. Moreover, compared with that of DURO-TAK® 87-4098, the adhesion time of AA-NAT/Fe3+ on the human forearm was remarkably prolonged, and no "dark ring" phenomenon was observed for AA-NAT/Fe3+ after removal. After clonidine (CLO) was loaded into AA-NAT/Fe3+, controlled drug release and a drug transdermal behavior were endowed for CLO@AA-NAT/Fe3+in vitro and in vivo. AA-NAT/Fe3+ still maintained superiority in adhesion and cohesion properties after CLO loading. These observations would contribute to the development of pressure-sensitive adhesives with outstanding adhesion and cohesion for transdermal patches. STATEMENT OF SIGNIFICANCE: This N-[tris(hydroxymethyl)methyl]acrylamide-modified acrylic pressure-sensitive adhesive coordinated with Fe(III) has enhanced adhesion and cohesion properties, which provide a simple but effective strategy to solve the problems (e.g., insufficient adhesion, patch displacement, and "dark ring" phenomenon) in existing transdermal patches.
Collapse
Affiliation(s)
- Longyi Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jianpeng Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, 977 Gongyuan Road, Yanji 133002, China.
| |
Collapse
|
27
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
28
|
Mondal P, Chakraborty I, Chatterjee K. Injectable Adhesive Hydrogels for Soft tissue Reconstruction: A Materials Chemistry Perspective. CHEM REC 2022; 22:e202200155. [PMID: 35997710 DOI: 10.1002/tcr.202200155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Abstract
Injectable bioadhesives offer several advantages over conventional staples and sutures in surgery to seal and close incisions or wounds. Despite the growing research in recent years few injectable bioadhesives are available for clinical use. This review summarizes the key chemical features that enable the development and improvements in the use of polymeric injectable hydrogels as bioadhesives or sealants, their design requirements, the gelation mechanism, synthesis routes, and the role of adhesion mechanisms and strategies in different biomedical applications. It is envisaged that developing a deep understanding of the underlying materials chemistry principles will enable researchers to effectively translate bioadhesive technologies into clinically-relevant products.
Collapse
Affiliation(s)
- Pritiranjan Mondal
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Indranil Chakraborty
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
| |
Collapse
|
29
|
Alfieri ML, Weil T, Ng DYW, Ball V. Polydopamine at biological interfaces. Adv Colloid Interface Sci 2022; 305:102689. [PMID: 35525091 DOI: 10.1016/j.cis.2022.102689] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022]
Abstract
In the last years coating of surfaces in the presence of dopamine or other catecholamines in oxidative conditions to yield "polydopamine" films has become a popular, easy and versatile coating methodology. Polydopamine(s) offer(s) also a rich chemistry allowing to post-functionalize the obtained coatings with metal nanoparticles with polymers and proteins. However, the interactions either of covalent or non-covalent nature between polydopamine and biomolecules has only been explored more recently. They allow polydopamine to become a material, in the form of nanoparticles, membranes and other assemblies, in its own right not just as a coating. It is the aim of this review to describe the most recent advances in the design of composites between polydopamine and related eumelanin like materials with biomolecules like proteins, nucleotides, oligosaccharides and lipid assemblies. Furthermore, the interactions between polydopamine and living cells will be also reported.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 21, I-80126 Naples, Italy
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz. Germany
| | - David Yuen Wah Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz. Germany
| | - Vincent Ball
- Université de Strasbourg, Faculté de Chirurgie Dentaire, 8 rue Sainte Elizabeth, 67000 Strasbourg, France; Institut National de la Santé et de la Recherche Médicale, Unité mixte de rechere 1121, 1 rue Eugène Boeckel, 67084 Strasbourg Cedex. France.
| |
Collapse
|
30
|
Bao Y, Huang X, Xu D, Xu J, Jiang L, Lu ZY, Cui S. Bound water governs the single-chain property of Poly(vinyl alcohol) in aqueous environments. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Geng H, Zhang P, Peng Q, Cui J, Hao J, Zeng H. Principles of Cation-π Interactions for Engineering Mussel-Inspired Functional Materials. Acc Chem Res 2022; 55:1171-1182. [PMID: 35344662 DOI: 10.1021/acs.accounts.2c00068] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supramolecular assembly is commonly driven by noncovalent interactions (e.g., hydrogen bonding, electrostatic, hydrophobic, and aromatic interactions) and plays a predominant role in multidisciplinary research areas ranging from materials design to molecular biology. Understanding these noncovalent interactions at the molecular level is important for studying and designing supramolecular assemblies in chemical and biological systems. Cation-π interactions, initially found through their influence on protein structure, are generally formed between electron-rich π systems and cations (mainly alkali, alkaline-earth metals, and ammonium). Cation-π interactions play an essential role in many biological systems and processes, such as potassium channels, nicotinic acetylcholine receptors, biomolecular recognition and assembly, and the stabilization and function of biomacromolecular structures. Early fundamental studies on cation-π interactions primarily focused on computational calculations, protein crystal structures, and gas- and solid-phase experiments. With the more recent development of spectroscopic and nanomechanical techniques, cation-π interactions can be characterized directly in aqueous media, offering opportunities for the rational manipulation and incorporation of cation-π interactions into the design of supramolecular assemblies. In 2012, we reported the essential role of cation-π interactions in the strong underwater adhesion of Asian green mussel foot proteins deficient in l-3,4-dihydroxyphenylalanine (DOPA) via direct molecular force measurements. In another study in 2013, we reported the experimental quantification and nanomechanics of cation-π interactions of various cations and π electron systems in aqueous solutions using a surface forces apparatus (SFA).Over the past decade, much progress has been achieved in probing cation-π interactions in aqueous solutions, their impact on the underwater adhesion and cohesion of different soft materials, and the fabrication of functional materials driven by cation-π interactions, including surface coatings, complex coacervates, and hydrogels. These studies have demonstrated cation-π interactions as an important driving force for engineering functional materials. Nevertheless, compared to other noncovalent interactions, cation-π interactions are relatively less investigated and underappreciated in governing the structure and function of supramolecular assemblies. Therefore, it is imperative to provide a detailed overview of recent advances in understanding of cation-π interactions for supramolecular assembly, and how these interactions can be used to direct supramolecular assembly for various applications (e.g., underwater adhesion). In this Account, we present very recent advances in probing and applying cation-π interactions for mussel-inspired supramolecular assemblies as well as their structural and functional characteristics. Particular attention is paid to experimental characterization techniques for quantifying cation-π interactions in aqueous solutions. Moreover, the parameters responsible for modulating the strengths of cation-π interactions are discussed. This Account provides useful insights into the design and engineering of smart materials based on cation-π interactions.
Collapse
Affiliation(s)
- Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, and the State Key Laboratory of Microbial Technology, Shandong University, Jinan, Shandong 250100, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
32
|
Wen Q, Huang J, Tang H, He F, Yuan J, Wan S, Liu H, Zeng Q, Feng Y, Yu G, Li J. Fabricating Network-Link Acetamiprid-Loading Micelles Based on Dopamine-Functionalized Alginate and Alkyl Polyglucoside To Enhance Folia Deposition and Retention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3596-3607. [PMID: 35311267 DOI: 10.1021/acs.jafc.1c07324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of an eco-friendly nanopesticide formulation can alleviate the problems of low pesticide utilization and environmental pollution. However, the development of green nanopesticide carriers with ideal physical properties and specific bioavailability is still a challenging task at present. In this study, we propose a novel binary additive pesticide carrier system that is a functional polysaccharide-based polymer/surfactant (Alg-DA/APG) to improve the deposition and retention of pesticide droplets. The self-assembled micelle morphology of Alg-DA/APG and its effect on the apparent viscosity were investigated by transmission electron microscopy (TEM) and a Discovery HR-2 rotational rheometer. Surface tension was carried out to investigate the surface activity and critical micelle concentration (CMC) of Alg-DA/APG. The drop impacting experiments exhibited superior antisplash performance of Alg-DA/APG. Furthermore, a binary additive was used as the carrier material and loaded acetamiprid to prepare nanopesticide formulation Ace@Alg-DA/APG. The encapsulation efficiency (EE) and acetamiprid release behavior from Ace@Alg-DA/APG were also studied. Moreover, the dynamic contact angle (DCA) and retention experiment showed that the DCA and wetting radius at 600 s were, respectively, 6.8 ± 2.39° and 4.044 ± 0.0662 mm for the Ace@0.05 wt % Alg-DA/0.05 wt % APG on the banana foliage surface, and its retention rates on foliage surface were up to 74.80% after washing. The novel binary additive as a nanopesticide carrier has the potential to alleviate the problems of low pesticide utilization and environmental pollution in the future.
Collapse
Affiliation(s)
- Qiyan Wen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Junhao Huang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Haiyun Tang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Furui He
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Jijie Yuan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Sihui Wan
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Haifang Liu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Qu Zeng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Yuhong Feng
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Gaobo Yu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| | - Jiacheng Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education and School of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
33
|
Kim M, Park J, Lee KM, Shin E, Park S, Lee J, Lim C, Kwak SK, Lee DW, Kim BS. Peptidomimetic Wet-Adhesive PEGtides with Synergistic and Multimodal Hydrogen Bonding. J Am Chem Soc 2022; 144:6261-6269. [PMID: 35297615 DOI: 10.1021/jacs.1c11737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The remarkable underwater adhesion of mussel foot proteins has long been an inspiration in the design of peptidomimetic materials. Although the synergistic wet adhesion of catechol and lysine has been recently highlighted, the critical role of the polymeric backbone has remained largely underexplored. Here, we present a peptidomimetic approach using poly(ethylene glycol) (PEG) as a platform to evaluate the synergistic compositional relation between the key amino acid residues (i.e., DOPA and lysine), as well as the role of the polyether backbone in interfacial adhesive interactions. A series of PEG-based peptides (PEGtides) were synthesized using functional epoxide monomers corresponding to catechol and lysine via anionic ring-opening polymerization. Using a surface force apparatus, highly synergistic surface interactions among these PEGtides with respect to the relative compositional ratio were revealed. Furthermore, the critical role of the catechol-amine synergy and diverse hydrogen bonding within the PEGtides in the superior adhesive interactions was verified by molecular dynamics simulations. Our study sheds light on the design of peptidomimetic polymers with reduced complexity within the framework of a polyether backbone.
Collapse
Affiliation(s)
- Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jinwoo Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyung Min Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Eeseul Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Joonhee Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Chanoong Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sang Kyu Kwak
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dong Woog Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
34
|
Gao L, Ma S, Bao L, Zhao X, Xiang Y, Zhang Z, Ma Y, Ma Z, Liang YM, Zhou F. Molecular Engineering Super-Robust Dry/Wet Adhesive with Strong Interface Bonding and Excellent Mechanical Tolerance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12684-12692. [PMID: 35230813 DOI: 10.1021/acsami.2c00494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the fact that synthetic adhesives have achieved great progress, achieving robust dry/wet adhesion under harsh operating environments is still challenging. Herein, inspired from the extraordinary adhesion mechanism of nature mussel protein adhesive, the balanced design concept of co-adhesion and interfacial adhesion is proposed to prepare one kind of novel copolymer adhesive of [poly(dopamine methacrylamide-co-methoxethyl acrylate-co-adamantane-1-carboxylic acid 2-(2-methyl-acryloyloxy)-ethyl ester)] [p(DMA-co-MEA-co-AD)], named as super-robust adhesive (SRAD). The SRAD exhibits ultra-high interface bonding strengths in air (∼7.66 MPa) and underwater (∼2.78 MPa) against an iron substrate. Especially, a greatly tough and stable adhesion strength (∼2.11 MPa) can be achieved after immersing the bonded sample in water for half a year. Furthermore, the SRAD demonstrates surprising wet bonding robustness/tolerance even encountering harsh conditions such as fluid shearing, dynamic loading, and cyclic mechanical fretting. The great advantages of SRAD, such as strong interface bonding, stable wet adhesion underwater, and good mechanical tolerance, makes it demonstrate huge application potential in engineering sealants and underwater adhesion.
Collapse
Affiliation(s)
- Luyao Gao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China
| | - Luyao Bao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yangyang Xiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhizhi Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai 264006, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
35
|
Zhang C, Xiang L, Zhang J, Liu C, Wang Z, Zeng H, Xu ZK. Revisiting the adhesion mechanism of mussel-inspired chemistry. Chem Sci 2022; 13:1698-1705. [PMID: 35282627 PMCID: PMC8827048 DOI: 10.1039/d1sc05512g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/14/2022] [Indexed: 11/21/2022] Open
Abstract
Mussel-inspired chemistry has become an ideal platform to engineer a myriad of functional materials, but fully understanding the underlying adhesion mechanism is still missing. Particularly, one of the most pivotal questions is whether catechol still plays a dominant role in molecular-scale adhesion like that in mussel adhesive proteins. Herein, for the first time, we reveal an unexplored adhesion mechanism of mussel-inspired chemistry that is strongly dictated by 5,6-dihydroxyindole (DHI) moieties, amending the conventional viewpoint of catechol-dominated adhesion. We demonstrate that polydopamine (PDA) delivers an unprecedented adhesion of 71.62 mN m-1, which surpasses that of many mussel-inspired derivatives and is even 121-fold higher than that of polycatechol. Such a robust adhesion mainly stems from a high yield of DHI moieties through a delicate synergy of leading oxidation and subsidiary cyclization within self-polymerization, allowing for governing mussel-inspired adhesion by the substituent chemistry and self-polymerization manner. The adhesion mechanisms revealed in this work offer a useful paradigm for the exploitation of functional mussel-inspired materials.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
- Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University Nanjing 211189 China
| | - Chang Liu
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong Hong Kong 999077 China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta Edmonton Alberta T6G 1H9 Canada
| | - Zhi-Kang Xu
- Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| |
Collapse
|
36
|
Degen GD, Delparastan P, Tiu BDB, Messersmith PB. Surface Force Measurements of Mussel-Inspired Pressure-Sensitive Adhesives. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6212-6220. [PMID: 35050591 DOI: 10.1021/acsami.1c22295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Translating fundamental studies of marine mussel adhesion into practical mussel-inspired wet adhesives remains an important technological challenge. To adhere, mussels secrete adhesive proteins rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (Dopa) and positively charged lysine. Consequently, numerous synthetic adhesives incorporating catecholic and cationic functionalities have been designed. However, despite widespread research, uncertainties remain about the optimal design of synthetic mussel-inspired adhesives. Here, we present a study of the adhesion of mussel-inspired pressure-sensitive adhesives. We explore the effects of catechol content, molecular architecture, and solvent quality on pressure-sensitive adhesive (PSA) adhesion and cohesion measured in a surface forces apparatus. Our findings demonstrate that the influence of catechol content depends on the choice of solvent and that adhesive performance is dictated by film composition rather than molecular architecture. Our results also highlight the importance of electrostatic and hydrophobic interactions for adhesion and cohesion in aqueous environments. Together, our findings contribute to an improved understanding of the interplay between materials chemistry, environmental conditions, and adhesive performance to facilitate the design of bioinspired wet adhesives.
Collapse
Affiliation(s)
- George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | - Phillip B Messersmith
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021; 60:26357-26362. [PMID: 34580967 PMCID: PMC8629958 DOI: 10.1002/anie.202110829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/18/2022]
Abstract
Polymer nanocapsules have demonstrated significant value in materials science and biomedical technology, but require complicated and time-consuming synthetic steps. We report here the facile synthesis of monodisperse polymer nanocapsules via a redox-mediated kinetic strategy from two simple molecules: dopamine and benzene-1,4-dithiol (BDT). Specifically, BDT forms core templates and modulates the oxidation kinetics of dopamine into polydopamine (PDA) shells. These uniform nanoparticles can be tuned between ≈70 and 200 nm because the core diameter directly depends on BDT while the shell thickness depends on dopamine. The supramolecular core can then rapidly disassemble in organic solvents to produce PDA nanocapsules. Such nanocapsules exhibit enhanced physicochemical performance (e.g., loading capacity, photothermal transduction, and anti-oxidation) versus their solid counterparts. Particularly, this method enables a straightforward encapsulation of functional nanoparticles providing opportunities for designing complex nanostructures such as yolk-shell nanoparticles.
Collapse
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Raina M Borum
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| |
Collapse
|
38
|
Sunoqrot S, Al-Hadid A, Manasrah A, Khnouf R, Hasan Ibrahim L. Immobilization of glucose oxidase on bioinspired polyphenol coatings as a high-throughput glucose assay platform. RSC Adv 2021; 11:39582-39592. [PMID: 35492494 PMCID: PMC9044463 DOI: 10.1039/d1ra07467a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/21/2021] [Indexed: 12/23/2022] Open
Abstract
Glucose oxidase (GOx) is an enzyme with important industrial and biochemical applications, particularly in glucose detection. Here we leveraged the oxidative self-polymerization phenomenon of simple polyphenols (pyrogallol or catechol) in the presence of polyethylenimine (PEI) to form adhesive coatings that enabled GOx immobilization on conventional multi-well plates. Immobilization was verified and optimized by directly measuring GOx activity inside the coated wells. Our results showed that incorporating PEI in polyphenol coatings enhanced their enzyme immobilization efficiency, with pyrogallol (PG)-based coatings displaying the greatest enzyme activity. The immobilized enzyme maintained similar affinity to glucose compared to the free enzyme. GOx-immobilized PG/PEI-coated wells exhibited intermediate recycling ability but excellent resistance to urea as a denaturing agent compared to the free enzyme. GOx-immobilized 96-well plates allowed the construction of a linear glucose calibration curve upon adding glucose standards, with a detection limit of 0.4–112.6 mg dL−1, which was comparable to commercially available enzymatic glucose assay kits. The assay platform was also capable of effectively detecting glucose in rat plasma samples. Our findings present a simple enzyme immobilization technique that can be used to construct a glucose assay platform in a convenient multi-well format for high-throughput glucose quantification. Glucose oxidase was immobilized on conventional multi-well plates via bioinspired polyphenol chemistry for convenient colorimetric quantitation of glucose.![]()
Collapse
Affiliation(s)
- Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| | - Amani Al-Hadid
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| | - Ahmad Manasrah
- Department of Mechanical Engineering, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan Amman 11733 Jordan
| | - Ruba Khnouf
- Department of Biomedical Engineering, Faculty of Engineering, Jordan University of Science and Technology Irbid 22110 Jordan
| | - Lina Hasan Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan Amman 11733 Jordan +962 64291423 +962 64291511 ext. 197
| |
Collapse
|
39
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Ming Xu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Wonjun Yim
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Tengyu He
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jingcheng Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhuohong Wu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yash Mantri
- Department of Bioengineering University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
- Department of Radiology University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| |
Collapse
|
40
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Narayanan A, Dhinojwala A, Joy A. Design principles for creating synthetic underwater adhesives. Chem Soc Rev 2021; 50:13321-13345. [PMID: 34751690 DOI: 10.1039/d1cs00316j] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water and adhesives have a conflicting relationship as demonstrated by the failure of most man-made adhesives in underwater environments. However, living creatures routinely adhere to substrates underwater. For example, sandcastle worms create protective reefs underwater by secreting a cocktail of protein glue that binds mineral particles together, and mussels attach themselves to rocks near tide-swept sea shores using byssal threads formed from their extracellular secretions. Over the past few decades, the physicochemical examination of biological underwater adhesives has begun to decipher the mysteries behind underwater adhesion. These naturally occurring adhesives have inspired the creation of several synthetic materials that can stick underwater - a task that was once thought to be "impossible". This review provides a comprehensive overview of the progress in the science of underwater adhesion over the past few decades. In this review, we introduce the basic thermodynamics processes and kinetic parameters involved in adhesion. Second, we describe the challenges brought by water when adhering underwater. Third, we explore the adhesive mechanisms showcased by mussels and sandcastle worms to overcome the challenges brought by water. We then present a detailed review of synthetic underwater adhesives that have been reported to date. Finally, we discuss some potential applications of underwater adhesives and the current challenges in the field by using a tandem analysis of the reported chemical structures and their adhesive strength. This review is aimed to inspire and facilitate the design of novel synthetic underwater adhesives, that will, in turn expand our understanding of the physical and chemical parameters that influence underwater adhesion.
Collapse
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA.
| |
Collapse
|
42
|
Zhang D, Liu J, Chen Q, Jiang W, Wang Y, Xie J, Ma K, Shi C, Zhang H, Chen M, Wan J, Ma P, Zou J, Zhang W, Zhou F, Liu R. A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat Commun 2021; 12:6331. [PMID: 34732724 PMCID: PMC8566497 DOI: 10.1038/s41467-021-26659-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used in many fields. Current synthesis of functional hydrogels requires incorporation of functional molecules either before or during gelation via the pre-organized reactive site along the polymer chains within hydrogels, which is tedious for polymer synthesis and not flexible for different types of hydrogels. Inspired by sandcastle worm, we develop a simple one-step strategy to functionalize wet hydrogels using molecules bearing an adhesive dibutylamine-DOPA-lysine-DOPA tripeptide. This tripeptide can be easily modified with various functional groups to initiate diverse types of polymerizations and provide functional polymers with a terminal adhesive tripeptide. Such functional molecules enable direct modification of wet hydrogels to acquire biological functions such as antimicrobial, cell adhesion and wound repair. The strategy has a tunable functionalization degree and a stable attachment of functional molecules, which provides a tool for direct and convenient modification of wet hydrogels to provide them with diverse functions and applications.
Collapse
Affiliation(s)
- Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingjing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaiqian Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haodong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianglin Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengcheng Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
43
|
Sun J, Xiao L, Li B, Zhao K, Wang Z, Zhou Y, Ma C, Li J, Zhang H, Herrmann A, Liu K. Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021; 60:23687-23694. [PMID: 33886148 PMCID: PMC8596419 DOI: 10.1002/anie.202100064] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/01/2021] [Indexed: 11/20/2022]
Abstract
Adhesive hydrogels have been developed for wound healing applications. However, their adhesive performance is impaired dramatically due to their high swelling on wet tissues. To tackle this challenge, we fabricated a new type of non-swelling protein adhesive for underwater and in vivo applications. In this soft material, the electrostatic complexation between supercharged polypeptides with oppositely charged surfactants containing 3,4-dihydroxylphenylalanine or azobenzene moieties plays an important role for the formation of ultra-strong adhesive coacervates. Remarkably, the adhesion capability is superior to commercial cyanoacrylate when tested in ambient conditions. Moreover, the adhesion is stronger than other reported protein-based adhesives in underwater environment. The ex vivo and in vivo experiments demonstrate the persistent adhesive performance and outstanding behaviors for wound sealing and healing.
Collapse
Affiliation(s)
- Jing Sun
- Department of ChemistryTsinghua UniversityBeijing100084China
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Lingling Xiao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Bo Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Kelu Zhao
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Zili Wang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Yu Zhou
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
| | - Chao Ma
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Hongjie Zhang
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| | - Andreas Herrmann
- Zernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- DWI—Leibniz Institute for Interactive MaterialsForckenbeckstr. 5052056AachenGermany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 152074AachenGermany
| | - Kai Liu
- Department of ChemistryTsinghua UniversityBeijing100084China
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
44
|
Sun J, Han J, Wang F, Liu K, Zhang H. Bioengineered Protein-based Adhesives for Biomedical Applications. Chemistry 2021; 28:e202102902. [PMID: 34622998 DOI: 10.1002/chem.202102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/11/2022]
Abstract
Protein-based adhesives with their robust adhesion performance and excellent biocompatibility have been extensively explored over years. In particular, the unique adhesion behaviours of mussel and sandcastle worm inspired the development of synthetic adhesives. However, the chemical synthesized adhesives often demonstrate weak underwater adhesion performance and poor biocompatibility/biodegradability, limiting their further biomedical applications. In sharp contrast, genetically engineering endows the protein-based adhesives the ability to maintain underwater adhesion property as well as biocompatibility/biodegradability. Herein, we outline recent advances in the design and development of protein-based adhesives by genetic engineering. We summarize the fabrication and adhesion performance of elastin-like polypeptide-based adhesives, followed by mussel foot protein (mfp) based adhesives and other sources protein-based adhesives, such as, spider silk spidroin and suckerin. In addition, the biomedical applications of these bioengineered protein-based adhesives are presented. Finally, we give a brief summary and perspective on the future development of bioengineered protein-based adhesives.
Collapse
Affiliation(s)
- Jing Sun
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Jiaying Han
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Fan Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Kai Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Hongjie Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
45
|
Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
46
|
Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Dual-Responsive Material Based on Catechol-Modified Self-Immolative Poly(Disulfide) Backbones. Angew Chem Int Ed Engl 2021; 60:21543-21549. [PMID: 34279056 PMCID: PMC8518080 DOI: 10.1002/anie.202108698] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 01/18/2023]
Abstract
Functional materials engineered to degrade upon triggering are in high demand due their potentially lower impact on the environment as well as their use in sensing and in medical applications. Here, stimuli-responsive polymers are prepared by decorating a self-immolative poly(dithiothreitol) backbone with pendant catechol units. The highly functional polymer is fashioned into stimuli-responsive gels, formed through pH-dependent catecholato-metal ion cross-links. The gels degrade in response to specific environmental changes, either by addressing the pH responsive, non-covalent, catecholato-metal complexes, or by addition of a thiol. The latter stimulus triggers end-to-end depolymerization of the entire self-immolative backbone through end-cap replacement via thiol-disufide exchanges. Gel degradation is visualized by release of a dye from the supramolecular gel as it itself is converted into smaller molecules.
Collapse
Affiliation(s)
- Asger Holm Agergaard
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Andreas Sommerfeldt
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Steen Uttrup Pedersen
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Henrik Birkedal
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| | - Kim Daasbjerg
- Department of ChemistryAarhus UniversityLangelandsgade 1408000AarhusDenmark
- Interdisciplinary Nanoscience Center (iNANO)Aarhus UniversityGustav Wieds Vej 148000AarhusDenmark
| |
Collapse
|
47
|
Agergaard AH, Sommerfeldt A, Pedersen SU, Birkedal H, Daasbjerg K. Dual‐Responsive Material Based on Catechol‐Modified Self‐Immolative Poly(Disulfide) Backbones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Asger Holm Agergaard
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Andreas Sommerfeldt
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Steen Uttrup Pedersen
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Henrik Birkedal
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| | - Kim Daasbjerg
- Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
| |
Collapse
|
48
|
Degen GD, Cunha KC, Levine ZA, Waite JH, Shea JE. Molecular Context of Dopa Influences Adhesion of Mussel-Inspired Peptides. J Phys Chem B 2021; 125:9999-10008. [PMID: 34459591 DOI: 10.1021/acs.jpcb.1c05218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Improving adhesives for wet surfaces is an ongoing challenge. While the adhesive proteins of marine mussels have inspired many synthetic wet adhesives, the mechanisms of mussel adhesion are still not fully understood. Using surface forces apparatus (SFA) measurements and replica-exchange and umbrella-sampling molecular dynamics simulations, we probed the relationships between the sequence, structure, and adhesion of mussel-inspired peptides. Experimental and computational results reveal that peptides derived from mussel foot protein 3 slow (mfp-3s) containing 3,4-dihydroxyphenylalanine (Dopa), a post-translationally modified variant of tyrosine commonly found in mussel foot proteins, form adhesive monolayers on mica. In contrast, peptides with tyrosine adsorb as weakly adhesive clusters. We further considered simulations of mfp-3s derivatives on a range of hydrophobic and hydrophilic organic and inorganic surfaces (including silica, self-assembled monolayers, and a lipid bilayer) and demonstrated that the chemical character of the target surface and proximity of cationic and hydrophobic residues to Dopa affect peptide adsorption and adhesion. Collectively, our results suggest that conversion of tyrosine to Dopa in hydrophobic, sparsely charged peptides influences peptide self-association and ultimately dictates their adhesive performance.
Collapse
Affiliation(s)
- George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Keila C Cunha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Zachary A Levine
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
| | - J Herbert Waite
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
49
|
Huang S, Wan Y, Ming X, Zhou J, Zhou M, Chen H, Zhang Q, Zhu S. Adhering Low Surface Energy Materials without Surface Pretreatment via Ion-Dipole Interactions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41112-41119. [PMID: 34406738 DOI: 10.1021/acsami.1c11822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Low surface energy materials resist adhesion due to their chemical inertness and non-wetting properties. Herein, we report the creation of a transparent ionogel adhesive that uses ion-dipole interactions to achieve a higher bonding performance to polytetrafluoroethylene (PTFE) relative to most commercial glues. The ionogel adhesive is composed of a poly(hexafluorobutyl acrylate-co-methyl methacrylate) random copolymer and a hydrophobic ionic liquid. The prepared ionogel can adhere to various hydrophobic substrates, such as PTFE, polypropylene, and polyethylene, as well as hydrophilic glass, ceramics, and steel. The design strategy and adhesion behavior are well interpreted using the density functional theory calculations and molecular dynamics simulations. The straightforward ultraviolet-curing method, high optical clarity, versatile adhesion ability, and reversible adhesion capabilities make this high-performance adhesive a promising product for commercialization.
Collapse
Affiliation(s)
- Shuaishuai Huang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yichen Wan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Jiaming Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Miaomiao Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hong Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
50
|
Ferretti A, Prampolini G, d’Ischia M. Noncovalent interactions in catechol/ammonium-rich adhesive motifs: Reassessing the role of cation-π complexes? Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|