1
|
Xu X, Sun J, Zhao J, Yu F, Xu Y, Zhang C, Li J. Cell membrane-camouflaged nanoarchitectonics of photosensitizer nanoparticles for enhanced phototherapy in surgery. J Colloid Interface Sci 2024; 679:726-736. [PMID: 39393150 DOI: 10.1016/j.jcis.2024.09.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/13/2024]
Abstract
Surgical risk and wound area can be reduced by diminishing tumor volume before surgery. The chemotherapy and radiotherapy currently used that can reduce the tumor volume generally cause severe systemic side effects. Phototherapy has recently emerged as an effective treatment modality for superficial cancers. However, phototherapy is limited by the low utilization of photosensitizer, the tumor hypoxia, and the low photothermal conversion efficiency. Herein, we report the cancer membrane biomimetic nanoparticles assembled by Chlorin e6 (Ce6) and chlorambucil (CRB). Ce6@CRB nanoparticles (CCNPs) show excellent photothermal conversion efficiency, which is 2 times higher than free Ce6. Meanwhile, CCNPs can produce singlet oxygen stably compared to free Ce6 thereby reducing the dependence on oxygen. Furthermore, the coating of 4 T1 cancer membrane on the surface of CCNPs endows them with the ability of homologous targeting, not only improving the utilization of Ce6, but also effectively activating the immune system in vivo when combined photodynamic therapy (PDT) and photothermal therapy (PTT). Intriguingly, surgical resection is performed after phototherapy in this treatment regimen, which can effectively reduce the wound area. Together, this work provided a feasible and creative method for tumor clinical therapy for its patient-centric and humanitarian focus.
Collapse
Affiliation(s)
- Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiachen Sun
- Department of Dermatology, Peking University Third Hospital, Beijing 100191, China
| | - Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fanchen Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing 100191, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Patra S, Kar S, Gopal Bag B. First Vesicular Self-Assembly of an Apocarotenoid Bixin in Aqueous Liquids and Its Antibacterial Activity. Chem Asian J 2024:e202400361. [PMID: 39331573 DOI: 10.1002/asia.202400361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Bixin 1 is the major constituent of the reddish carotenoids present in the seed-coat of Bixa orellana. The use of the extract of the seed-coat of Bixa orellana in food, cosmetics and garments is well known. The nano-sized long 24 C chain molecule has nine conjugated double bonds having extended conjugation with the '-COOH' and '-COOMe' groups present at the two ends of the molecule. Herein, we report the first self-assembly of bixin in several aqueous liquids. The molecule undergoes spontaneous self-assembly in several liquids yielding vesicular self-assembly. Characterizations of the self-assemblies of bixin were carried out by various microscopic techniques, X-ray diffraction and FTIR studies. The critical vesicular concentrations (CVCs) of the compound carried out in DMSO-water in three different solvent ratios as 2: 1 (v/v), 1: 1 (v/v) and 1: 4 (v/v) were determined to be 100 μM, 90 μM and 60 μM respectively indicating lower CVC values at higher proportion of water. Utilization of the vesicular self-assemblies of bixin have been demonstrated in the entrapment and release of fluorophores including the anticancer drugs doxorubicin and curcumin. Self-assembled bixin and curcumin loaded self-assembled bixin showed significant antibacterial activity with both Gram positive as well as Gram negative bacteria.
Collapse
Affiliation(s)
- Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore, West Bengal, 721102, India
| |
Collapse
|
3
|
Meng J, Cheung LH, Ren Y, Stuart MCA, Wang Q, Chen S, Chen J, Leung FKC. Aqueous Supramolecular Transformations of Motor Bola-Amphiphiles at Multiple Length-Scale. Macromol Rapid Commun 2024; 45:e2400261. [PMID: 38805189 DOI: 10.1002/marc.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Molecular motor amphiphiles have already been widely attempted for dynamic nanosystems across multiple length-scale for developments of small functional materials, including controlling macroscopic foam properties, amplifying motion as artificial molecular muscles, and serving as extracellular matrix mimicking cell scaffolds. However, limiting examples of bola-type molecular motor amphiphiles are considered for constructing macroscopic biomaterials. Herein, this work presents the designed two second generation molecular motor amphiphiles, motor bola-amphiphiles (MBAs). Aside from the photoinduced motor rotation of MBAs achieved in both organic and aqueous media, the rate of recovering thermal helix inversion step can be controlled by the rotor part with different steric hindrances. Dynamic assembled structures of MBAs are observed under (cryo)-transmission electron microscopy (TEM). This dynamicity assists MBAs in further assembling as macroscopic soft scaffolds by applying a shear-flow method. Upon photoirradiation, the phototropic bending function of MBA scaffolds is observed, demonstrating the amplification of molecular motion into macroscopic phototropic bending functions at the macroscopic length-scale. Since MBAs are confirmed with low cytotoxicity, human bone marrow-derived mesenchymal stem cells (hBM-MSCs) can grow on the surface of MBA scaffolds. These results clearly demonstrate the concept of designing MBAs for developing photoresponsive dynamic functional materials to create new-generation soft robotic systems and cell-material interfaces.
Collapse
Affiliation(s)
- Jiahui Meng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Marc C A Stuart
- Centre for System Chemistry, Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, AG Groningen, 9747, Netherlands
| | - Qian Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaoyu Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiawen Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper, South China Normal University, Guangzhou, 510006, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
- Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, 999077, China
| |
Collapse
|
4
|
Tomasella P, Lucifora G, Ruffino R, Pandino I, Trusso Sfrazzetto G, Tuccitto N, Li-Destri G. Role of Density and Conformational Composition in the Surface-to-Bulk Molecular Dosing of Photosensitive Surfactant Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17517-17525. [PMID: 39119985 DOI: 10.1021/acs.langmuir.4c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Poorly water-soluble photosensitive monolayers might enable very precise control of the rate and number of desorbing molecules by controlling both the monolayer density and conformational composition. In this perspective, we systematically characterized the interfacial behavior of Langmuir monolayers consisting of a poorly water-soluble azobenzene-containing surfactant as a function of its trans/cis ratio. Precise control of the conformational ratio was achieved by controlling the UV irradiation time, allowing researchers to investigate compositions spanning from 100% trans to 90% cis. Our results demonstrate that in 100% trans monolayers, molecules do not desorb with compression until a threshold area is reached. Instead, the number of molecules desorbing in mixed trans-cis monolayers can be modulated by controlling both the composition and the compression rate. Additionally, the desorption rate at constant density is also strongly composition-dependent, and it accounts for two different regimes with two different characteristic times. We will show that trans molecules mostly desorb according to the slow regime while cis molecules conform to the fast one, but the two conformers mutually influence each other.
Collapse
Affiliation(s)
- Pascal Tomasella
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) and CSGI, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Giovanni Lucifora
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Roberta Ruffino
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) and CSGI, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Irene Pandino
- Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | | | - Nunzio Tuccitto
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) and CSGI, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| | - Giovanni Li-Destri
- Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) and CSGI, Department of Chemical Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
5
|
Wang X, Lu J, Shi S, Li S, Guo H, Shi AC, Liu B. Well-Defined Homopolymer Nanoparticles with Uniaxial Molecular Orientation by Synchronized Polymerization and Self-Assembly. J Am Chem Soc 2024; 146:22661-22674. [PMID: 39099104 DOI: 10.1021/jacs.4c07261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Synthesizing anisotropic polymeric nanoparticles (NPs) with well-defined shapes, dimensions, and molecular orientations is a very challenging task. Herein, we report the synthesis of surprisingly highly uniform shape-anisotropic polymer NPs with uniaxial internal molecular orientation. Keys to our method are synchronized polymerization and self-assembly (SPSA), which can even be realized by regular dispersion polymerization. This is demonstrated using a monomer containing a rigid 4-nitroazobenzene (NAB) side group. The short nucleation period, the completion of microphase separation before molecular motion is frozen, and sufficient low particle/solvent interfacial tension are shown to be the origins of the highly uniform dimensions, single liquid crystal domains, and well-defined anisotropic shape of particles. The liquid crystallization ability of the polymers, control of molecular weight distribution, and the polymerization kinetics are identified as three key factors controlling the NP formation. The uniformity of these NPs facilitates their SA formation into colloidal crystals. The particles exhibit optically anisotropic properties depending on orientations and, in particular, show intriguing photoswitchable LC-glass (order-disorder) transition, which can be used for the detection of ultraviolet (UV) light and allows the fabrication of photoreversible colloidal films.
Collapse
Affiliation(s)
- Xiao Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Lu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanshan Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Guo
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Hung KL, Cheung LH, Ren Y, Chau MH, Lam YY, Kajitani T, Leung FKC. Supramolecular assemblies of amphiphilic donor-acceptor Stenhouse adducts as macroscopic soft scaffolds. Beilstein J Org Chem 2024; 20:1590-1603. [PMID: 39076292 PMCID: PMC11285068 DOI: 10.3762/bjoc.20.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
In the design of photoharvesting and photoresponsive supramolecular systems in aqueous medium, the fabrication of amphiphilic photoswitches enables a noninvasive functional response through photoirradiation. Although most aqueous supramolecular assemblies are driven by high-energy and biodamaging UV light, we have previously reported a design of amphiphilic donor-acceptor Stenhouse adducts (DASAs) controlled by white light. Herein, we present a series of DASA amphiphiles (DAs) with minor structural modifications on the alkyl linker chain length connecting the DASA motif with the hydrophilic moiety. The excellent photoswitchability in organic medium and the photoresponsiveness in aqueous medium, driven by visible light, were investigated by UV-vis absorption spectroscopy. The assembled supramolecular nanostructures were confirmed by electron microscopy, while the supramolecular packing was revealed by X-ray diffraction analysis. Upon visible-light irradiation, significant transformations of the DA geometry enabled transformations of the supramolecular assemblies on a microscopic scale, subsequently disassembling macroscopic soft scaffolds of DAs. The current work shows promising use for the fabrication of visible-light-controlled macroscopic scaffolds, offering the next generation of biomedical materials with visible-light-controlled microenvironments and future soft-robotic systems.
Collapse
Affiliation(s)
- Ka-Lung Hung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ming-Hin Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yan-Yi Lam
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Franco King-Chi Leung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
7
|
Martínez D, Schlossarek T, Würthner F, Soberats B. Isothermal Phase Transitions in Liquid Crystals Driven by Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2024; 63:e202403910. [PMID: 38635375 DOI: 10.1002/anie.202403910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The dynamic nature of calamitic liquid crystals is exploited to perform isothermal phase transitions driven by dynamic covalent chemistry. For this purpose, nematic (N) arrays based on aldehyde 1 were treated with different amines (A-E) in an on-surface process, which resulted in different isothermal phase transitions. These phase transformations were caused by in situ imination reactions and are dependent on the nature of the added amine. Transitions from the N to crystal (1A, 1E), isotropic (1B), and smectic (Sm) (1C, 1D) phases were achieved, while the resulting materials feature thermotropic liquid crystal behavior. A sequential transformation from the N 1 to the Sm 1C and then to the N 1B was achieved by coupling an imination to a transimination processes and adjusting the temperature. All of these processes were well characterized by microscopic, spectroscopic, and X-ray techniques, unlocking not only the constitutional but also the structural aspects of the phase transitions. This work provides new insights into designing constitutionally and structurally adaptable liquid crystal systems, paving the way toward the conception of programable evolutive pathways and adaptive materials.
Collapse
Affiliation(s)
- Daniel Martínez
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| | - Tim Schlossarek
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Center for Nanosystems Chemistry (CNC), and Bavarian Polymer Institute (BPI), Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Bartolome Soberats
- Department of Chemistry, Universitat de les Illes Balears, Cra. Valldemossa, Km. 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
8
|
Gallardo-Rosas D, Guevara-Vela JM, Rocha-Rinza T, Toscano RA, López-Cortés JG, Ortega-Alfaro MC. Structure and isomerization behavior relationships of new push-pull azo-pyrrole photoswitches. Org Biomol Chem 2024; 22:4123-4134. [PMID: 38700442 DOI: 10.1039/d4ob00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A family of stilbenyl-azopyrroles compounds 2a-d and 3a-d was efficiently obtained via a Mizoroki-Heck C-C-type coupling reaction between 2-(4'-iodophenyl-azo)-N-methyl pyrrole (1a) and different vinyl precursors. The influence of the π-conjugated backbone and the effect of the pyrrole moiety were correlated with their optical properties. Studies via UV-Visible spectrophotometry revealed that the inclusion of EWG or EDG favors a red-shift of the main absorption band in these azo compounds compared with their non-substituted analogues. Furthermore, there is a clear influence between the half-life of the Z isomer formed by irradiation with white light and the push-pull behavior of the molecules. In several cases, the stilbenyl-azopyrroles led to the formation of J-type aggregates in binary MeOH : H2O solvents, which are of interest for water compatible applications.
Collapse
Affiliation(s)
- D Gallardo-Rosas
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - J M Guevara-Vela
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - T Rocha-Rinza
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - R A Toscano
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - J G López-Cortés
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - M C Ortega-Alfaro
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Cappelletti D, Barbieri M, Aliprandi A, Maggini M, Đorđević L. Self-assembled π-conjugated chromophores: preparation of one- and two-dimensional nanostructures and their use in photocatalysis. NANOSCALE 2024; 16:9153-9168. [PMID: 38639760 PMCID: PMC11097008 DOI: 10.1039/d4nr00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Photocatalytic systems have attracted research interest as a clean approach to generate energy from abundant sunlight. In this context, developing efficient and robust photocatalytic structures is crucial. Recently, self-assembled organic chromophores have entered the stage as alternatives to both molecular systems and (in)organic semiconductors. Nanostructures made of self-assembled π-conjugated dyes offer, on the one hand, molecular customizability to tune their optoelectronic properties and activities and on the other hand, provide benefits from heterogeneous catalysis that include ease of separation, recyclability and improved photophysical properties. In this contribution, we present recent achievements in constructing supramolecular photocatalytic systems made of chromophores for applications in water splitting, H2O2 evolution, CO2 reduction, or environmental remediation. We discuss strategies that can be used to prepare ordered photocatalytic systems with an emphasis on the effect of packing between the dyes and the resulting photocatalytic activity. We further showcase supramolecular strategies that allow interfacing the organic nanostructures with co-catalysts, molecules, polymers, and (in)organic materials. The principles discussed here are the foundation for the utilization of these self-assembled materials in photocatalysis.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Marianna Barbieri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
10
|
Yau JCK, Hung KL, Ren Y, Kajitani T, Stuart MCA, Leung FKC. Red-light-controlled supramolecular assemblies of indigo amphiphiles at multiple length scales. J Colloid Interface Sci 2024; 662:391-403. [PMID: 38359503 DOI: 10.1016/j.jcis.2024.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Amphiphilic molecules functionalized with photoresponsive motifs have attractive prospects for applications in smart functional bio-material ranging from cell-material interfaces to drug delivery systems owing to the precisely controllable functionality of self-assembled hierarchical supramolecular structures in aqueous media by a non-invasive light stimulation with high temporal- and spatial-resolution. However, most of reported photoresponsive amphiphiles are triggered by bio-damaging UV-light, which greatly limits the potential in bio-related applications. Herein, we present newly designed red-light controlled N,N'-diaryl-substituted indigo amphiphiles (IA), exhibiting excellent photoswitchablity and photostability with dual red-/green-light in organic media. Meanwhile, aqueous solutions of IA assembled into supramolecular structures in both microscopic and macroscopic length-scale, though the photoresponsiveness of IA is slightly compromised in aqueous media. At macroscopic length-scale, morphological changes of IA macroscopic scaffold prepared by a shear-flow method can be fine adjusted upon red-light irradiation. Moreover, the preferential attachment of live h-MSCs to IA macroscopic scaffold surface also indicates a good biocompatibility of IA macroscopic scaffold. These results provide the potential for developing the next generation of red-light controlled soft functional materials with good biocompatibility.
Collapse
Affiliation(s)
- Jerry Chun-Kit Yau
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ka-Lung Hung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Marc C A Stuart
- Stratingh Institute for Chemistry and Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Franco King-Chi Leung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
11
|
Yin H, Guo W, Wang R, Doutch J, Li P, Tian Q, Zheng Z, Xie L, Feng Y. Self-Assembling Anti-Freezing Lamellar Nanostructures in Subzero Temperatures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309020. [PMID: 38368272 PMCID: PMC11077679 DOI: 10.1002/advs.202309020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Indexed: 02/19/2024]
Abstract
The requirement for cryogenic supramolecular self-assembly of amphiphiles in subzero environments is a challenging topic. Here, the self-assembly of lamellar lyotropic liquid crystals (LLCs) are presented to a subzero temperature of -70 °C. These lamellar nanostructures are assembled from specifically tailored ultra-long-chain surfactant stearyl diethanolamine (SDA) in water/glycerol binary solvent. As the temperature falls below zero, LLCs with a liquid-crystalline Lα phase, a tilted Lβ phase, and a new folded configuration are obtained consecutively. A comprehensive experimental and computational study is performed to uncover the precise microstructure and formation mechanism. Both the ultra-long alkyl chain and head group of SDA play a crucial role in the formation of lamellar nanostructures. SDA head group is prone to forming hydrogen bonds with water, rather than glycerol. Glycerol cannot penetrate the lipid layer, which mixes with water arranging outside of the lipid bilayer, providing an ideal anti-freezing environment for SDA self-assembly. Based on these nanostructures and the ultra-low freezing point of the system, a series of novel cryogenic materials are created with potential applications in extremely cold environments. These findings would contribute to enriching the theory and research methodology of supramolecular self-assembly in extreme conditions and to developing novel anti-freezing materials.
Collapse
Affiliation(s)
- Hongyao Yin
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Weiluo Guo
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Runxi Wang
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengdu610065P. R. China
| | - James Doutch
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell CampusOXONDidcotOX11 0QXUK
| | - Peixun Li
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton LaboratoryHarwell CampusOXONDidcotOX11 0QXUK
| | - Qiang Tian
- State Key laboratory of Environment‐Friendly Energy Materials, School of Materials and ChemistrySouthwest University of Science and TechnologyMianyang621010P. R. China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| | - Lingzhi Xie
- Institute of New Energy and Low‐Carbon TechnologySichuan UniversityChengdu610065P. R. China
| | - Yujun Feng
- State Key Laboratory of Polymer Materials EngineeringPolymer Research InstituteSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
12
|
Nguindjel AD, Franssen SCM, Korevaar PA. Reconfigurable Droplet-Droplet Communication Mediated by Photochemical Marangoni Flows. J Am Chem Soc 2024; 146:6006-6015. [PMID: 38391388 PMCID: PMC10921405 DOI: 10.1021/jacs.3c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Droplets are attractive building blocks for dynamic matter that organizes into adaptive structures. Communication among collectively operating droplets opens untapped potential in settings that vary from sensing, optics, protocells, computing, or adaptive matter. Inspired by the transmission of signals among decentralized units in slime mold Physarum polycephalum, we introduce a combination of surfactants, self-assembly, and photochemistry to establish chemical signal transfer among droplets. To connect droplets that float at an air-water interface, surfactant triethylene glycol monododecylether (C12E3) is used for its ability to self-assemble into wires called myelins. We show how the trajectory of these myelins can be directed toward selected photoactive droplets upon UV exposure. To this end, we developed a strategy for photocontrolled Marangoni flow, which comprises (1) the liquid crystalline coating formed at the surface of an oleic acid/sodium oleate (OA/NaO) droplet when in contact with water, (2) a photoacid generator that protonates sodium oleate upon UV exposure and therefore disintegrates the coating, and (3) the surface tension gradient that is generated upon depletion of the surfactant from the air-water interface by the uncoated droplet. Therefore, localized UV exposure of selected OA/NaO droplets results in attraction of the myelins such that they establish reconfigurable connections that self-organize among the C12E3 and OA/NaO droplets. As an example of communication, we demonstrate how the myelins transfer fluorescent dyes, which are selectively delivered in the droplet interior upon photochemical regulation of the liquid crystalline coating.
Collapse
Affiliation(s)
- Anne-Déborah
C. Nguindjel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Stan C. M. Franssen
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Peter A. Korevaar
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
13
|
Lvov AG, Klimenko LS, Bykov VN, Hecht S. Revisiting Peri-Aryloxyquinones: From a Forgotten Photochromic System to a Promising Tool for Emerging Applications. Chemistry 2024; 30:e202303654. [PMID: 38085655 DOI: 10.1002/chem.202303654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Indexed: 12/31/2023]
Abstract
Emerging applications of photochromic compounds demand new molecular designs that can be inspired by some long-known yet currently forgotten classes of photoswitches. In the present review, we remind the community about Peri-AryloxyQuinones (PAQs) and their unique photoswitching behavior originally discovered more than 50 years ago. At the heart of this phenomenon is the light-induced migration of an aromatic moiety (arylotropy) in peri-aryloxy-substituted quinones resulting in ana-quinones. PAQs feature absorbance of both isomers in the visible spectral region, photochromism in the amorphous and crystalline state, and thermal stability of the photogenerated ana-isomer. Particularly noticeable is the high sensitivity of the ana-isomer towards nucleophiles in solution. In addition to the mechanism of molecular photochromism and the underlaying structure-switch relationships, we analyze potential applications and prospects of aryloxyquinones in optically switchable materials and devices. Due to their ability to efficiently photoswitch in the solid state, PAQs are indeed attractive candidates for such materials and devices, including electronics (optically controllable circuits, switches, transistors, memories, and displays), porous crystalline materials, crystalline actuators, photoactivated sensors, and many more. This review is intended to serve as a guide for researchers who wish to use photoswitchable PAQs in the development of new photocontrollable materials, devices, and processes.
Collapse
Affiliation(s)
- Andrey G Lvov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky, St., Irkutsk, 664033, Russia
- Irkutsk National Research Technical University 83, Lermontov St., Irkutsk, 664074, Russia
| | - Lyubov S Klimenko
- Yugra State University, 16 Chekhov St., Khanty-Mansiysk, 628012, Russia
| | - Vasily N Bykov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky, St., Irkutsk, 664033, Russia
- Irkutsk National Research Technical University 83, Lermontov St., Irkutsk, 664074, Russia
| | - Stefan Hecht
- Department of Chemistry & Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| |
Collapse
|
14
|
Chan AKH, Chau MH, Ren Y, Jiang JJ, Wong MK, Leung FKC. Controlled Supramolecular Assemblies of Chiral Cyclometalated Gold (III) Amphiphiles in Aqueous Media. Chempluschem 2024; 89:e202300316. [PMID: 37493184 DOI: 10.1002/cplu.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Gold (III) cyclometalated based amphiphiles in aqueous media have been revealed with excellent supramolecular transformations to external stimuli to open new pathways for soft functional material fabrications. Herein, we report a new chiral cyclometalated gold (III) amphiphile (GA) assembling into lamellar nanostructures in aqueous media confirmed with transmission electron microscopy (TEM). Counterion exchange with D-, L-, or racemic-camphorsulfonates features the significant supramolecular helicity enhancements, enabling transformations of GA from lamellar structure to vesicles and to nanotubes with multi-equivalents of counterion. The limited cytotoxicity of GA in aqueous media exhibits good biocompatibility.
Collapse
Affiliation(s)
- Aries Kwok-Heung Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ming-Hin Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jia-Jun Jiang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
15
|
Mukherjee A, Ghosh G. Light-regulated morphology control in supramolecular polymers. NANOSCALE 2024; 16:2169-2184. [PMID: 38206133 DOI: 10.1039/d3nr04989b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Stimuli-responsive materials have gained significant recent interest owing to their versatility and wide applications in fields ranging from materials science to biology. In the majority of examples, external stimuli, including light, act as a remote source of energy to depolymerize/deconstruct certain nanostructures or provide energy for exploring their functional features. However, there is little emphasis on the creation and precise control of these materials. Although significant progress has been made in the last few decades in understanding the pros and cons of various directional non-covalent interactions and their specific molecular recognition ability, it is only in the recent past that the focus has shifted toward controlling the dimension, dispersity, and other macroscopic properties of supramolecular assemblies. Control over the morphology of supramolecular polymers is extremely crucial not only for material properties they manifest but also for effective interactions with biological systems for their potential application in the field of biomedicine. This could effectively be achieved using photoirradiation which has been demonstrated by some recent reports. The concept as such offers a broad scope for designing versatile stimuli-responsive supramolecular materials with precise structure-property control. However, there has not yet been a compilation that focuses on the present subject of employing light to impact and regulate the morphology of supramolecular polymers or categorize the functional motif for easy understanding. In this review, we have collated recent examples of how light irradiation can tune the morphology and nanostructures of supramolecular polymers and categorized them based on their chemical transformation such as cis-trans isomerization, cycloaddition, and photo-cleavage. We have also established a direct correlation among the structures of the building blocks, mesoscopic properties and functional behavior of such materials and suggested future directions.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Correnstrasse 36, 48149 Münster, Germany
| | - Goutam Ghosh
- Centre for Nano and Soft Matter Sciences (CeNS), Shivanapura, Dasanapura Hobli, Bengaluru, 562162, India.
| |
Collapse
|
16
|
Cheung LH, To JC, Wong WK, Stuart MCA, Kajitani T, Keng VW, Leung FKC. Tailoring Multicontrolled Supramolecular Assemblies of Stiff-Stilbene Amphiphiles into Macroscopic Soft Scaffolds as Cell-Material Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4056-4070. [PMID: 38198650 DOI: 10.1021/acsami.3c16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Biocompatible synthetic supramolecular systems have shed light on biomedical and tissue-regenerative material applications. The intrinsic functional applicability, tunability, and stimuli-responsiveness of synthetic supramolecular systems allow one to develop various multicontrolled supramolecular assemblies in aqueous media. However, it remains highly challenging to use state-of-the-art supramolecular assemblies of photoresponsive amphiphiles controlled by multiple stimulations in fabricating macroscopic materials. Herein, we demonstrate a stiff-stilbene amphiphile (SA) multicontrolled supramolecular assembling system that comprises two different charged end groups. The excellent photoswitchabilities of SA in both organic and aqueous media are demonstrated. Furthermore, multiple stimuli, i.e., light, pH, and counterions, are applied to control the supramolecular assembling behaviors, which are monitored by circular dichroism spectroscopy and electron microscopies. This multicontrolled supramolecular system can be systematically assembled into macroscopic soft functional scaffolds, whose structural parameters are investigated by electron microscopies and X-ray diffraction techniques, suggesting the large aspect ratio of SA nanostructures assembled into macroscopic soft scaffolds. The fabricated soft functional scaffold is highly biocompatible for photocontrolled biotarget encapsulation/release selectively, as well as a cell-material interface for diverse cells' attachment. This new synthetic multicontrolled soft functional material provides a new strategy toward the development of next-generation controllable and biocompatible soft functional materials.
Collapse
Affiliation(s)
- Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jeffrey C To
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Wai-Ki Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Marc C A Stuart
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747AG Groningen, Netherlands
| | - Takashi Kajitani
- TC College Promotion Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Vincent W Keng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
| |
Collapse
|
17
|
Akamatsu M. Accelerated Recombination of Lophyl Radicals in Micelles: Rapid Controlled Self-Assembly of Micelles Formed by Amphiphilic Lophine Dimers and Release of Solubilized Substance by Photoirradiation. J Oleo Sci 2024; 73:839-846. [PMID: 38825537 DOI: 10.5650/jos.ess24047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Controlling the morphology of molecular assemblies formed by surfactants by photoirradiation enables the controlled release of incorporated substances, which can be applied to delivery systems for drugs and active ingredients. On the other hand, conventional photoresponsive surfactants and molecular assemblies have a slow response speed, making it difficult to control their functions at the desired time. In this review, I discuss our recent progress in the accelerated control of functions of photoresponsive molecular assemblies by using lophine dimer as a photochromic compound. The lophine dimer derivative dissociates into a pair of lophyl radicals that upon ultraviolet (UV) light irradiation, and these radical species thermally recombine although the recombination reaction is extremely slow due to the diffusion of lophyl radicals. By using the confined inner space of micelles formed by surfactants, the recombination reaction was extremely accelerated. With UV light irradiation, rapid morphological changes in micelles, formed by amphiphilic lophine dimers were observed by using in situ small-angle neutron scattering (in situ SANS) system. Moreover, the rapid controlled release of calcein as a model drug was achieved by UV light irradiation using the photoresponsive micelles. This rapid system can realize the controlled release of drugs truly at the desired time, developing an efficient and precise drug delivery system (DDS). Furthermore, it can be applied in a wide range of fields such as release control of active ingredients, efficient heat exchange control, and actuating systems.
Collapse
Affiliation(s)
- Masaaki Akamatsu
- Department of Chemistry and Biotechnology, Faculty of Engineering, Tottori University
- Center for Research on Green Sustainable Chemistry, Tottori University
- Research Institute for Science and Technology, Tokyo University of Science
| |
Collapse
|
18
|
Wycisk V, Wagner MC, Urner LH. Trends in the Diversification of the Detergentome. Chempluschem 2024; 89:e202300386. [PMID: 37668309 DOI: 10.1002/cplu.202300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/06/2023]
Abstract
Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.
Collapse
Affiliation(s)
- Virginia Wycisk
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Marc-Christian Wagner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Leonhard H Urner
- TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
19
|
Wang W, Xu X, Feng F, Shao Y, Jian H, Liu H, Dong XH, Ge A, Yang S. Interfacial Behaviors of Giant Amphiphilic Molecules Composed of Hydrophobic Isobutyl POSS and Hydrophilic POSS Bearing Carboxylic Acid Groups at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16854-16862. [PMID: 37956463 DOI: 10.1021/acs.langmuir.3c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The behavior of giant amphiphilic molecules at the air-water interface has become a subject of concern to researchers. Small changes in the molecular structure can cause obvious differences in the molecular arrangement and interfacial properties of the monolayer. In this study, we have systematically investigated the interfacial behaviors of the giant amphiphilic molecules with different number of hydrophobic BPOSS blocks and one hydrophilic ACPOSS block ((BPOSS)n-ACPOSS (n = 1-5)) at the air-water interface by the surface pressure-area (π-A) isotherm, Brewster angle microscopy (BAM), compression modulus measurement, and hysteresis measurement. We found that both the number of BPOSS blocks and the compression rate can significantly influence the interfacial behaviors of giant molecules. The π-A isotherms of giant molecules (BPOSS)n-ACPOSS (n = 2-5) exhibit a "cusp" phenomenon which can be attributed to the transition from monolayer to multilayer. However, the cusp is dramatically different from the "collapse" of the monolayer studied in other molecular systems, which is highly dependent on the compression rate of the monolayer. In addition, the compression modulus and hysteresis measurements reveal that the number of BPOSS blocks of (BPOSS)n-ACPOSS plays an important role in the static elasticity, stability, and reversibility of the Langmuir films.
Collapse
Affiliation(s)
- Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- School of Rehabilitation Sciences and Engineering, Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao 266024, China
| | - Xian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Fengfeng Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yu Shao
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanxin Jian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xue-Hui Dong
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Aimin Ge
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
20
|
Clerc M, Sandlass S, Rifaie-Graham O, Peterson JA, Bruns N, Read de Alaniz J, Boesel LF. Visible light-responsive materials: the (photo)chemistry and applications of donor-acceptor Stenhouse adducts in polymer science. Chem Soc Rev 2023; 52:8245-8294. [PMID: 37905554 PMCID: PMC10680135 DOI: 10.1039/d3cs00508a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 11/02/2023]
Abstract
Donor-acceptor Stenhouse adduct (DASA) photoswitches have gained a lot of attention since their discovery in 2014. Their negative photochromism, visible light absorbance, synthetic tunability, and the large property changes between their photoisomers make them attractive candidates over other commonly used photoswitches for use in materials with responsive or adaptive properties. The development of such materials and their translation into advanced technologies continues to widely impact forefront materials research, and DASAs have thus attracted considerable interest in the field of visible-light responsive molecular switches and dynamic materials. Despite this interest, there have been challenges in understanding their complex behavior in the context of both small molecule studies and materials. Moreover, incorporation of DASAs into polymers can be challenging due to their incompatibility with the conditions for most common polymerization techniques. In this review, therefore, we examine and critically discuss the recent developments and challenges in the field of DASA-containing polymers, aiming at providing a better understanding of the interplay between the properties of both constituents (matrix and photoswitch). The first part summarizes current understanding of DASA design and switching properties. The second section discusses strategies of incorporation of DASAs into polymers, properties of DASA-containing materials, and methods for studying switching of DASAs in materials. We also discuss emerging applications for DASA photoswitches in polymeric materials, ranging from light-responsive drug delivery systems, to photothermal actuators, sensors and photoswitchable surfaces. Last, we summarize the current challenges in the field and venture on the steps required to explore novel systems and expand both the functional properties and the application opportunities of DASA-containing polymers.
Collapse
Affiliation(s)
- Michèle Clerc
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- University of Fribourg, Department of Chemistry, 1700 Fribourg, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| | - Sara Sandlass
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Omar Rifaie-Graham
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Julie A Peterson
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, UK
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
- Department of Chemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany.
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Luciano F Boesel
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Switzerland
| |
Collapse
|
21
|
Jia S, Ye H, He P, Lin X, You L. Selection of isomerization pathways of multistep photoswitches by chalcogen bonding. Nat Commun 2023; 14:7139. [PMID: 37932318 PMCID: PMC10628202 DOI: 10.1038/s41467-023-43013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023] Open
Abstract
Multistep photoswitches are able to engage in different photoisomerization pathways and are challenging to control. Here we demonstrate a multistep sequence of E/Z isomerization and photocyclization/cycloreversion of photoswitches via manipulating the strength and mechanism of noncovalent chalcogen bonding interactions. The incorporation of chalcogens and the formyl group on open ethene bridged dithienylethenes offers a versatile skeleton for single photochromic molecules. While bidirectional E/Z photoswitching is dominated by neutral tellurium arising from enhanced resonance-assisted chalcogen bonding, the creation of cationic telluronium enables the realization of photocyclization/cycloreversion. The reversible nucleophilic substitution reactions further allow interconversion between neutral tellurium and cationic telluronium and selection of photoisomerization mechanisms on purpose. By leveraging unique photoswitching patterns and dynamic covalent reactivity, light and pH stimuli-responsive multistate rewritable materials were constructed, triggered by an activating reagent for additional control. The results should provide ample opportunities to molecular recognition, intelligent switches, information encryption, and smart materials.
Collapse
Affiliation(s)
- Shuaipeng Jia
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Peng He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xin Lin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China.
| |
Collapse
|
22
|
Romero-Ben E, Castillejos MC, Rosales-Barrios C, Expósito M, Ruda P, Castillo PM, Nardecchia S, de Vicente J, Khiar N. Divergent approach to nanoscale glycomicelles and photo-responsive supramolecular glycogels. Implications for drug delivery and photoswitching lectin affinity. J Mater Chem B 2023; 11:10189-10205. [PMID: 37853786 DOI: 10.1039/d3tb01713c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The field of stimuli-responsive supramolecular biomaterials has rapidly advanced in recent years, with potential applications in diverse areas such as cancer theranostics, tissue engineering, and catalysis. However, designing molecular materials that exhibit predetermined hierarchical self-assembly to control the size, morphology, surface chemistry, and responsiveness of the final nanostructures remains a significant challenge. In this study, we present a divergent synthetic approach for the fabrication of spherical micelles and functional 1D-glyconanotube-based photoresponsive gels from structurally related diazobenzene/diacetylene glycolipids. The resulting nanostructures were characterized using NMR, TEM, and SEM, confirming the formation of spherical and tubular nanostructures in both the gel and solution states. Upon UV irradiation, a reversible gel-sol transition was observed, resulting from the photoswitching of the azobenzene unit from the stretched trans form to the compact, metastable cis form. Our gels were shown to enable spatio-temporal control of the adhesion and release of the lectin Concanavalin A, demonstrating potential use as regenerable biomaterials to fight against infections with toxins and pathogens. Additionally, our micelles and gels were evaluated as nanocontainers for loading and controlled release of hydrophobic dyes and antitumoural agents, suggesting their possible use as smart theranostic drug delivery systems.
Collapse
Affiliation(s)
- Elena Romero-Ben
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| | - M Carmen Castillejos
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| | - Cristian Rosales-Barrios
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| | - María Expósito
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| | - Pilar Ruda
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| | - Paula M Castillo
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| | - Stefania Nardecchia
- Department of Applied Physics and Excellence Research Unit 'Modeling Nature' (MNat), Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 - Granada, Spain
| | - Juan de Vicente
- Department of Applied Physics and Excellence Research Unit 'Modeling Nature' (MNat), Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 - Granada, Spain
| | - Noureddine Khiar
- Asymmetric Synthesis and Functional Nanosystems Group, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain.
| |
Collapse
|
23
|
Craciun BF, Sandu IA, Peptanariu D, Pinteala M. Novel Nanotherapeutic Systems Based on PEGylated Squalene Micelles for Enhanced In Vitro Activity of Methotrexate and Cytarabine. Polymers (Basel) 2023; 15:4225. [PMID: 37959905 PMCID: PMC10650902 DOI: 10.3390/polym15214225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Nanomedicine has garnered significant attention due to the advantages it offers in the treatment of cancer-related disorders, some of the deadliest diseases affecting human lives. Conventional medication formulations often encounter issues of instability or insolubility in biological environments, resulting in low bioavailability. Nanocarriers play a crucial role in transporting and safeguarding drugs at specific sites of action, enabling gradual release under particular conditions. This study focuses on methotrexate (MTx) and cytarabine (Cyt), essential antitumoral drugs, loaded into PEGylated squalene micellar structures to enhance therapeutic effectiveness and minimize drawbacks. The micelles were prepared using ultrasound-assisted methods in both water and phosphate buffer saline solutions. Evaluation of drug-loaded micelles encompassed parameters such as particle size, colloidal stability, surface charge, morphology, encapsulation efficiency, drug loading capacity, and in vitro release profiles under simulated physiological and tumoral conditions. In vitro cell inhibition studies conducted on MCF-7 and HeLa cell lines demonstrated higher antitumoral activity for the drug-encapsulated micelles compared to free drugs. The encapsulation effectively addressed the burst effect, providing sustained release for at least 48 h while enhancing the drug's protection under physiological conditions.
Collapse
Affiliation(s)
- Bogdan-Florin Craciun
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.S.); (D.P.)
| | | | | | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (I.-A.S.); (D.P.)
| |
Collapse
|
24
|
Allam T, Balderston DE, Chahal MK, Hilton KLF, Hind CK, Keers OB, Lilley RJ, Manwani C, Overton A, Popoola PIA, Thompson LR, White LJ, Hiscock JR. Tools to enable the study and translation of supramolecular amphiphiles. Chem Soc Rev 2023; 52:6892-6917. [PMID: 37753825 DOI: 10.1039/d3cs00480e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
This tutorial review focuses on providing a summary of the key techniques used for the characterisation of supramolecular amphiphiles and their self-assembled aggregates; from the understanding of low-level molecular interactions, to materials analysis, use of data to support computer-aided molecular design and finally, the translation of this class of compounds for real world application, specifically within the clinical setting. We highlight the common methodologies used for the study of traditional amphiphiles and build to provide specific examples that enable the study of specialist supramolecular systems. This includes the use of nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray scattering techniques (small- and wide-angle X-ray scattering and single crystal X-ray diffraction), critical aggregation (or micelle) concentration determination methodologies, machine learning, and various microscopy techniques. Furthermore, this review provides guidance for working with supramolecular amphiphiles in in vitro and in vivo settings, as well as the use of accessible software programs, to facilitate screening and selection of druggable molecules. Each section provides: a methodology overview - information that may be derived from the use of the methodology described; a case study - examples for the application of these methodologies; and a summary section - providing methodology specific benefits, limitations and future applications.
Collapse
Affiliation(s)
- Thomas Allam
- School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Dominick E Balderston
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Kira L F Hilton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Charlotte K Hind
- Research and Evaluation, UKHSA, Porton Down, Salisbury SP4 0JG, UK
| | - Olivia B Keers
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Rebecca J Lilley
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Chandni Manwani
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Alix Overton
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Precious I A Popoola
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa R Thompson
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Lisa J White
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| | - Jennifer R Hiscock
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK.
| |
Collapse
|
25
|
Pathak SS, Kedarnath G, Panchakarla LS. Mechanistic Study of Amphiphilic-Assisted Self-Assembled Cadmium Sulfide Quantum Dots into 3D Superstructures. J Phys Chem Lett 2023; 14:8114-8120. [PMID: 37668342 DOI: 10.1021/acs.jpclett.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Self-assembling of nanoparticles into complex superstructures is very challenging, which usually depends on postorganizing techniques or pre-existing templates such as polypeptide chains or DNA or external stimulus. Such self-assembled processes typically lead to close-packed structures. Here, it has been demonstrated that under carefully template-free reaction conditions CdS quantum dots (QDs) could be synthesized and simultaneously self-assembled into complex superstructures without compromising individual QD properties. The superstructures of CdS QDs attained by the chemical-based method demonstrate Stokes-shifted photoluminescence (PL) from trap states. Remarkably, the PL decay of superstructures exhibits a single-exponential feature. This behavior is unusual for the synthesized superstructures, indicating that the trap states are restricted to a narrow range. The growth mechanism of these superstructures is explained through the formation of liquid crystal phases (LCPs) with the help of a small-angle X-ray scattering (SAXS) analysis.
Collapse
Affiliation(s)
- Sushil Swaroop Pathak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gotluru Kedarnath
- Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Leela S Panchakarla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
26
|
Zhang G, Fang H, Chang S, Chen R, Li L, Wang D, Liu Y, Sun R, Zhao Y, Li B. Fullerene [60] encapsulated water-soluble supramolecular cage for prevention of oxidative stress-induced myocardial injury. Mater Today Bio 2023; 21:100693. [PMID: 37404456 PMCID: PMC10316085 DOI: 10.1016/j.mtbio.2023.100693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
A water-soluble cube-like supramolecular cage was constructed by an engagement of six molecules through a hydrophobic effect in the water. The obtained cage could perfectly encapsulate one fullerene C60 molecule inside of the cavity and significantly improve the water-solubility of the C60 without changing the original structure. The water-soluble complex was further applied to reduce the reactive oxygen species (R.O.S.) in cardiomyocytes (FMC84) through Akt/Nrf2/HO-1 pathway. Furthermore, in the mouse model of myocardial ischemia-reperfusion injury, the application of C60 was found to be effective in reducing myocardial injury and improving cardiac function. It also reduced the levels of R.O.S. in myocardial tissue, inhibited myocardial apoptosis, and mitigated myocardial inflammatory responses. The present study provides a new guideline for constructing water-soluble C60 and verifies the important role of C60 in preventing oxidative stress-related cardiovascular disease injury.
Collapse
Affiliation(s)
- Guanzhao Zhang
- Department of Cardiology, Binzhou Medical University, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| | - Hui Fang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Shuting Chang
- Weifang Medical University, NO.7166, Baotong West Street, Weifang, 261053, China
| | - Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lanlan Li
- Center of Translational Medicine, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yamei Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Bo Li
- Department of Cardiology, Binzhou Medical University, Zibo Central Hospital, NO.10, South Shanghai Road, Zibo, 255000, China
| |
Collapse
|
27
|
Hardt M, Busse F, Raschke S, Honnigfort C, Carrascosa-Tejedor J, Wenk P, Gutfreund P, Campbell RA, Heuer A, Braunschweig B. Photo-Responsive Control of Adsorption and Structure Formation at the Air-Water Interface with Arylazopyrazoles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5861-5871. [PMID: 37058525 DOI: 10.1021/acs.langmuir.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Smart interfaces that are responsive to external triggers such as light are of great interest for the development of responsive or adaptive materials and interfaces. Using alkyl-arylazopyrazole butyl sulfonate surfactants (alkyl-AAP) that can undergo E/Z photoisomerization when irradiated with green (E) and UV (Z) lights, we demonstrate through a combination of experiments and computer simulations that there can be surprisingly large changes in surface tension and in the molecular structure and order at air-water interfaces. Surface tensiometry, vibrational sum-frequency generation (SFG) spectroscopy, and neutron reflectometry (NR) are applied to the study of custom-synthesized AAP surfactants with octyl- and H-terminal groups at air-water interfaces as a function of their bulk concentration and E/Z configuration. Upon photoswitching, a drastic influence of the alkyl chain on both the surface activity and the responsiveness of interfacial surfactants is revealed from changes in the surface tension, γ, where the largest changes in γ are observed for octyl-AAP (Δγ ∼ 23 mN/m) in contrast to H-AAP with Δγ < 10 mN/m. Results from vibrational SFG spectroscopy and NR show that the interfacial composition and the molecular order of the surfactants drastically change with E/Z photoisomerization and surface coverage. Indeed, from analysis of the S-O (head group) and C-H vibrational bands (hydrophobic tail), a qualitative analysis of orientational and structural changes of interfacial AAP surfactants is provided. The experiments are complemented by resolution of thermodynamic parameters such as equilibrium constants from ultra-coarse-grained simulations, which also capture details like island formation and interaction parameters of interfacial molecules. Here, the interparticle interaction ("stickiness") and the interaction with the surface are adjusted, closely reflecting experimental conditions.
Collapse
Affiliation(s)
- Michael Hardt
- Center for Soft Nanoscience, Busso-Peus-Straße 10, 48149 Münster, Germany
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Franziska Busse
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Simon Raschke
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Christian Honnigfort
- Center for Soft Nanoscience, Busso-Peus-Straße 10, 48149 Münster, Germany
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Javier Carrascosa-Tejedor
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, U.K
| | - Paul Wenk
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042 Grenoble Cedex 9, France
| | - Richard A Campbell
- Division of Pharmacy & Optometry, University of Manchester, M13 9PT Manchester, U.K
| | - Andreas Heuer
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- Center for Soft Nanoscience, Busso-Peus-Straße 10, 48149 Münster, Germany
- Institute of Physical Chemistry, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
28
|
Xu F, Feringa BL. Photoresponsive Supramolecular Polymers: From Light-Controlled Small Molecules to Smart Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204413. [PMID: 36239270 DOI: 10.1002/adma.202204413] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Photoresponsive supramolecular polymers are well-organized assemblies based on highly oriented and reversible noncovalent interactions containing photosensitive molecules as (co-)monomers. They have attracted increasing interest in smart materials and dynamic systems with precisely controllable functions, such as light-driven soft actuators, photoresponsive fluorescent anticounterfeiting and light-triggered electronic devices. The present review discusses light-activated molecules used in photoresponsive supramolecular polymers with their main photo-induced changes, e.g., geometry, dipole moment, and chirality. Based on these distinct changes, supramolecular polymers formed by light-activated molecules exhibit photoresponsive disassembly and reassembly. As a consequence, photo-induced supramolecular polymerization, "depolymerization," and regulation of the lengths and topologies are observed. Moreover, the light-controlled functions of supramolecular polymers, such as actuation, emission, and chirality transfer along length scales, are highlighted. Furthermore, a perspective on challenges and future opportunities is presented. Besides the challenge of moving from harmful UV light to visible/near IR light avoiding fatigue, and enabling biomedical applications, future opportunities include light-controlled supramolecular actuators with helical motion, light-modulated information transmission, optically recyclable materials, and multi-stimuli-responsive supramolecular systems.
Collapse
Affiliation(s)
- Fan Xu
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| |
Collapse
|
29
|
Liu Y, Zhang H, Zhang W, Binks BP, Cui Z, Jiang J. Charge Density Overcomes Steric Hindrance of Ferrocene Surfactant in Switchable Oil-in-Dispersion Emulsions. Angew Chem Int Ed Engl 2023; 62:e202210050. [PMID: 36328980 DOI: 10.1002/anie.202210050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
A ferrocene surfactant can be switched between single and double head form (FcN+ C12 /Fc+ N+ C12 ) triggered by redox reaction. FcN+ C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+ N+ C12 , so that oil-in-dispersion emulsions can be co-stabilized by Fc+ N+ C12 and alumina nanoparticles at very low concentrations (1×10-7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.
Collapse
Affiliation(s)
- Yunshan Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Haojie Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Wanqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Zhenggang Cui
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical & Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
30
|
Duan HY, Han ST, Zhan TG, Liu LJ, Zhang KD. Visible-Light-Switchable Tellurium-Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212707. [PMID: 36383643 DOI: 10.1002/anie.202212707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Collapse
Affiliation(s)
- Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
31
|
Jing Y, Su F, Yu X, Fang H, Wan Y. Advances in artificial muscles: A brief literature and patent review. Front Bioeng Biotechnol 2023; 11:1083857. [PMID: 36741767 PMCID: PMC9893653 DOI: 10.3389/fbioe.2023.1083857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Background: Artificial muscles are an active research area now. Methods: A bibliometric analysis was performed to evaluate the development of artificial muscles based on research papers and patents. A detailed overview of artificial muscles' scientific and technological innovation was presented from aspects of productive countries/regions, institutions, journals, researchers, highly cited papers, and emerging topics. Results: 1,743 papers and 1,925 patents were identified after retrieval in Science Citation Index-Expanded (SCI-E) and Derwent Innovations Index (DII). The results show that China, the United States, and Japan are leading in the scientific and technological innovation of artificial muscles. The University of Wollongong has the most publications and Spinks is the most productive author in artificial muscle research. Smart Materials and Structures is the journal most productive in this field. Materials science, mechanical and automation, and robotics are the three fields related to artificial muscles most. Types of artificial muscles like pneumatic artificial muscles (PAMs) and dielectric elastomer actuator (DEA) are maturing. Shape memory alloy (SMA), carbon nanotubes (CNTs), graphene, and other novel materials have shown promising applications in this field. Conclusion: Along with the development of new materials and processes, researchers are paying more attention to the performance improvement and cost reduction of artificial muscles.
Collapse
Affiliation(s)
- Yuan Jing
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China,*Correspondence: Yuan Jing,
| | - Fangfang Su
- School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaona Yu
- Periodicals Agency, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hui Fang
- Library, Zhejiang University of Technology, Hangzhou, China
| | - Yuehua Wan
- Library, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
32
|
Biswas S, Karishma S, Ramesh B, Jeganmohan M, Mani E. Light-induced destabilisation of oil-in-water emulsions using light-active bolaform surfactants. SOFT MATTER 2023; 19:199-207. [PMID: 36503968 DOI: 10.1039/d2sm01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
External stimuli-induced destabilisation of oil-in-water emulsions is of both fundamental and technological importance. In this work we synthesize light-active bolaform-type surfactants (LABSs) and show the preparation of decane-in-water emulsions over a range of surfactant and salt concentrations. Under ultraviolet (UV) illumination, LABSs undergo trans to cis isomerization affecting their interfacial activity. Therefore when stable emulsions stabilized by LABSs are exposed to UV light, they undergo partial destabilization. To induce interfacial flow, a small amount of volatile solvent (methanol, ethanol, tetrahydrofuran, etc.) is added at the emulsification stage and in this case complete phase separation is observed. This study demonstrates a facile route to induce destabilization of surfactant-stabilized emulsions using benign solvents and minimal use of energy (UV light) and this method could be of importance in wastewater treatment, enhanced oil recovery, protein separation, etc. where emulsion destabilization is desired.
Collapse
Affiliation(s)
- Soumodeep Biswas
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - S Karishma
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - Balu Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | | - Ethayaraja Mani
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
33
|
Chau MH, Stuart MC, Leung FKC. Red-Light Driven Photoisomerisation and Supramolecular Transformation of Indigo Amphiphiles in Aqueous Media. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
Courtine C, Hamouda I, Pearson S, Billon L, Lavedan P, Ladeira S, Micheau JC, Pimienta V, Nicol E, Lauth de Viguerie N, Mingotaud AF. Photoswitchable assembly of long-lived azobenzenes in water using visible light. J Colloid Interface Sci 2023; 629:670-684. [DOI: 10.1016/j.jcis.2022.08.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
35
|
Chen P, Zhang X, Zhang P, Kang X, Zhang L, Zhang L, Wu T, Zhang Z, Yang H, Han B. Synthesis of d-Gluconic Acetal Surfactants and Their Foaming Behaviors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14725-14732. [PMID: 36399129 DOI: 10.1021/acs.langmuir.2c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sugars are natural and environmentally benign substances, which can offer various hydroxyl groups. The understanding of details of the hydroxyl interactions in the hydrophilic groups of sugar-based surfactants, as well as the related properties, is still indistinct. Here, novel d-gluconic acetal surfactants with bicyclic and monocyclic structures in the head group were designed and synthesized. The obtained surfactant with a bicyclic architecture exhibited excellent foamability and a multistimulus-responsive behavior toward foam stabilization. In addition, the control of foamability from defoaming and foaming could be achieved by changing pH values or bubbling gas of CO2/N2. To explore the structural effects such as hydroxyl groups and rigidity of the head group on the properties of sugar-based surfactants, another kind of amphiphilic molecule with various OH- groups and a monocycle in the head group was designed for comparison. These two series of amphiphilic molecules both exhibited good surface activity. However, only the d-gluconic acetal surfactant with a bicyclic structure and a smaller number of OH- groups exhibited excellent foamability. Further studies showed that the foam behaviors were attributed to the conformation and arrangement of the surfactant molecule at the surface layer with the assistance of hydrogen bonds formed by hydroxyl groups and H2O molecules. In addition, the surfactant could provide an environmentally friendly foamer in many potential applications.
Collapse
Affiliation(s)
- Peng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Xiudong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
| | - Pei Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Lei Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Tianbin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Zhanrong Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Haijun Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
| |
Collapse
|
36
|
Nguindjel ADC, de Visser PJ, Winkens M, Korevaar PA. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Phys Chem Chem Phys 2022; 24:23980-24001. [PMID: 36172850 PMCID: PMC9554936 DOI: 10.1039/d2cp02542f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.
Collapse
Affiliation(s)
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
37
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible-Light-Responsive Self-Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination. Angew Chem Int Ed Engl 2022; 61:e202205701. [PMID: 35972841 PMCID: PMC9541570 DOI: 10.1002/anie.202205701] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/10/2022]
Abstract
A photoswitchable ligand based on azobenzene is self-assembled with palladium(II) ions to form a [Pd2 (E-L)4 ]4+ cage. Irradiation with 470 nm light results in the near-quantitative switching to a monomeric species [Pd(Z-L)2 ]2+ , which can be reversed by irradiation with 405 nm light, or heat. The photoswitching selectivity towards the metastable isomer is significantly improved upon self-assembly, and the thermal half-life is extended from 40 days to 850 days, a promising approach for tuning photoswitching properties.
Collapse
Affiliation(s)
| | | | - Ruoming Tian
- Crystallography laboratoryMark Wainwright Analytical CentreUNSW SydneySydneyNSW 2052Australia
| | - Jason R. Price
- School of ChemistryUNSW SydneySydneyNSW 2052Australia
- ANSTOThe Australian Synchrotron800 Blackburn RdClaytonVic 3168Australia
| | | | | | | |
Collapse
|
38
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
39
|
DiNardi RG, Douglas AO, Tian R, Price JR, Tajik M, Donald WA, Beves JE. Visible‐Light‐Responsive Self‐Assembled Complexes: Improved Photoswitching Properties by Metal Ion Coordination**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ray G. DiNardi
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | - Ruoming Tian
- Crystallography laboratory Mark Wainwright Analytical Centre UNSW Sydney Sydney NSW 2052 Australia
| | - Jason R. Price
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
- ANSTO The Australian Synchrotron 800 Blackburn Rd Clayton Vic 3168 Australia
| | - Mohammad Tajik
- School of Chemistry UNSW Sydney Sydney NSW 2052 Australia
| | | | | |
Collapse
|
40
|
Cheung LH, Kajitani T, Leung FKC. Visible-light controlled supramolecular transformations of donor-acceptor Stenhouse adducts amphiphiles at multiple length-scale. J Colloid Interface Sci 2022; 628:984-993. [PMID: 35970131 DOI: 10.1016/j.jcis.2022.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 08/05/2022] [Indexed: 12/31/2022]
Abstract
Designing responsive, adaptive, and dynamic supramolecular systems in water, the incorporation of photoresponsive units in amphiphilic molecular structures enables functional responses in a non-invasive way by using light. However, in aqueous media, vast majority of reported synthetic photoresponsive molecular amphiphiles are commonly driven by high energy and bio-damaging UV-light for supramolecular transformation at multiple length-scale. Herein, we present newly designed visible-light controlled supramolecular assembly of donor-acceptor Stenhouse adducts amphiphiles (DA) with excellent stability and solubility in aqueous media. The excellent photoswitchability in organic media and photoresponsiveness in aqueous media driven by visible-light are found, as confirmed with UV-vis absorption and NMR spectroscopies. Supramolecular assembly at multiple length-scale of DAs is investigated with electron microscopies and X-ray diffraction to show large aspect-ratio of nanostructures assembled into macroscopic soft scaffolds. Upon visible-light irradiation, the large geometrical transformation of DAs enables supramolecular transformations, and subsequently destabilizes the macroscopic soft scaffold to release fluorophores from the scaffolds. These results provide the feasibility in developing the next generation of visible-light controlled macroscopic soft functional scaffold from supramolecular assembly across multiple length-scale without and offer ample opportunity to design future soft robotic materials and functional biomaterials.
Collapse
Affiliation(s)
- Leong-Hung Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
41
|
Kwan KSY, Lui YY, Kajitani T, Leung FKC. Aqueous Supramolecular Co-Assembly of Anionic and Cationic Photoresponsive Stiff-Stilbene Amphiphiles. Macromol Rapid Commun 2022; 43:e2200438. [PMID: 35904452 DOI: 10.1002/marc.202200438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Fabrication of macroscopic soft functional materials, such as macroscopic photoresponsive soft materials and artificial muscles, can be commonly prepared by charge screening of supramolecular assemblies with inorganic salt solutions using a shear-flow method. However, some of the charged end-groups of photoresponsive molecular amphiphiles cannot be stabilized with inorganic salt solutions to fabricate macroscopic soft materials. We design and synthesize stiff stilbene amphiphiles (SAs) functionalized with anionic phosphite and cationic quaternary ammonium end groups and determine their photochemical and supramolecular assembly properties. Supramolecular co-assembly of anionic and cationic nanotubes of SAs allows to transform into nanoribbons, confirmed by TEM, CAC, and Zeta potential measurements. Nanoribbons of anionic and cationic SAs can be prepared into macroscopic soft materials with inorganic salt solutions and surprisingly also with deionized water. The macroscopic soft material of anionic and cationic SAs can be stabilized at low concentration ∼5 mM. Meanwhile, the photoresponsiveness of the macroscopic soft materials is retained to provide macroscopic morphological change upon photoirradiation. These results exhibit the feasibility in fabrication of macroscopic functional soft materials from supramolecular assembly across multiple length-scale without help of inorganic salts and offer ample opportunity in developing future soft supramolecular robotic systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Khloe Shuk-Ying Kwan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ying-Ying Lui
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, China
| | - Takashi Kajitani
- Open Facility Development Office, Open Facility Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.,Centre for Eye and Vision Research, 17 W Hong Kong Science Park, Hong Kong, China.,E-mail
| |
Collapse
|
42
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
43
|
Light-fueled dissipative self-assembly at molecular and macro-scale enabled by a visible-light-responsive transient hetero-complementary quadruple hydrogen bond. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Chen B, Chu C, Ren E, Lin H, Zhang Y, Wang P, Yao H, Liu A, Liu G, Lin X. Metal Ion-Based Supramolecular Self-Assembly for Cancer Theranostics. Front Chem 2022; 10:870769. [PMID: 35668829 PMCID: PMC9163678 DOI: 10.3389/fchem.2022.870769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Metal-ion-based self-assembly supramolecular theranostics exhibit excellent performance in biomedical applications owing to their potential superiorities for simultaneous precise diagnosis, targeted drug delivery, and monitoring the response to therapy in real-time. Specially, the rational designed systems could achieve specific in vivo self-assembly through complexation or ionic interaction to improve tissue-specific accumulation, penetration, and cell internalization, thereby reducing toxicities of drugs in diagnostics and therapy. Furthermore, such imaging traceable nanosystems could provide real-timely information of drug accumulation and therapeutic effects in a non-invasive and safe manner. Herein, the article highlights the recent prominent applications based on the metal ions self-assembly in cancer treatment. This strategy may open up new research directions to develop novel drug delivery systems for cancer theranostics.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Huirong Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Peiyu Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Hong Yao
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China
| | - Ailin Liu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Xinhua Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), School of Pharmacy, Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China
| |
Collapse
|
45
|
Jiang JJ, Chau AKH, Wong MK, Leung FKC. Controlled Supramolecular Assembly of Gold (III) Amphiphiles in Aqueous Media. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia-Jun Jiang
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology HONG KONG
| | - Anson Kwok-Hei Chau
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology Hong Kong HONG KONG
| | - Man-Kin Wong
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology HONG KONG
| | - Franco King Chi Leung
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon xxx Hong Kong HONG KONG
| |
Collapse
|
46
|
Cheng Q, Hao A, Xing P. Eutectogels as Matrices to Manipulate Supramolecular Chirality and Circularly Polarized Luminescence. ACS NANO 2022; 16:6825-6834. [PMID: 35349257 DOI: 10.1021/acsnano.2c01731] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Solvent is regarded as a factor in tuning the supramolecular chirality of self-assemblies. Deep eutectic solvents (DESs) show diverse properties in contrast to other common solvents, which are emerging in fabricating functional aggregates and nanoarchitectures. Nevertheless, the emergence and manipulation of supramolecular chirality in DES still remain mysterious. Exploring supramolecular chirality in DES would produce tunable chiroptical materials considering their feasible preparation process and abundant hydrogen bonding sites. In this work, we explored the occurrence and manipulation of supramolecular chirality in DES. Transfer from inherent chiral DES to solutes in either aggregated or monomeric building units is blocked. However, the chiral assembly of π-conjugated amino acids was realized. Compared to aqueous media, self-assembly in DES hinders the spontaneous structural and chirality evolution that benefit from efficient solvation, where the π-conjugated amino acids were involved as hydrogen bonding donors. DES performs as a dye-friendly matrix to afford chiroptical eutectogels with tunable circularly polarized luminescence, whereby a large dissymmetry g-factor of up to 0.015 was realized. DES behaves as feasible and flexible solvents to fabricate and stabilize functional soft chiral self-assemblies with controllable chiroptical properties.
Collapse
Affiliation(s)
- Qiuhong Cheng
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
47
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo-Induced β-Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202201103. [PMID: 35165986 DOI: 10.1002/anie.202201103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/07/2022]
Abstract
Spatiotemporally controllable activation of prodrugs within tumors is highly desirable for cancer therapy to minimize toxic side effects. Herein we report that stable alkylgold(III) complexes can undergo unprecedented photo-induced β-hydride elimination, releasing alkyl ligands and forming gold(III)-hydride intermediates that could be quickly converted into bioactive [AuIII -S] adducts; meanwhile, the remaining alkylgold(III) complexes can photo-catalytically reduce [AuIII -S] into more bioactive AuI species. Such photo-reactivities make it possible to functionalize gold complexes on the auxiliary alkyl ligands without attenuating the metal-biomacromolecule interactions. As a result, the gold(III) complexes containing glucose-functionalized alkyl ligands displayed efficient and tumor-selective uptake; notably, after one- or two-photon activation, the complexes exhibited high thioredoxin reductase (TrxR) inhibition, potent cytotoxicity, and strong antiangiogenesis and antitumor activities in vivo.
Collapse
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology, and General Education Division, The Chinese University of Hong Kong, Shenzhen, 518172, P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
48
|
Del Sorbo GR, Clemens D, Schneck E, Hoffmann I. Stimuli-responsive polyelectrolyte surfactant complexes for the reversible control of solution viscosity. SOFT MATTER 2022; 18:2434-2440. [PMID: 35274665 DOI: 10.1039/d1sm01774h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Interactions of polyelectrolytes with oppositely charged surfactants can give rise to a large variety of self-assembled structures. Some of these systems cause a drastic increase in solution viscosity, which is related to the surfactant forming aggregates interconnecting several polyelectrolyte chains. For these aggregates to form, the surfactant needs to be sufficiently hydrophobic. Here, we present a system consisting of the anionic surfactant sodium monododecyl phosphate and the cationic cellulose-based polyelectrolyte JR 400. The hydrophobicity of the surfactant can be controlled by the solution's pH. At pH > 12, the surfactant headgroup bears two charges. As a consequence, the solution viscosity decreases drastically by up to two orders of magnitude, while it can be as high as 10 Pa s at lower pH. In this paper, we investigate the changes of the mesoscopic structure of the system which lead to such drastic changes in viscosity using small angle neutron scattering and neutron spin-echo spectroscopy. Such systems are potentially interesting as they allow for a modular design where stimuli responsiveness is introduced by relatively small amounts of surfactant reusing the same simple polyelectrolyte.
Collapse
Affiliation(s)
- Giuseppe Rosario Del Sorbo
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France.
| | - Daniel Clemens
- Helmholtz-Zentrum Berlin, Hahn-Meitner Platz 1, D-14109, Berlin, Germany
| | - Emanuel Schneck
- Department of Physics, Technische Universität Darmstadt, Hochschulstraße 8, D-64289 Darmstadt, Germany.
| | - Ingo Hoffmann
- Institut Max von Laue-Paul Langevin (ILL), 71 Avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France.
| |
Collapse
|
49
|
Jiang J, Cao B, Chen Y, Luo H, Xue J, Xiong X, Zou T. Alkylgold(III) Complexes Undergo Unprecedented Photo‐Induced β‐Hydride Elimination and Reduction for Targeted Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia Jiang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Bei Cao
- Warshel Institute for Computational Biology and General Education Division The Chinese University of Hong Kong Shenzhen 518172 P. R. China
| | - Yuting Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hejiang Luo
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Jiaying Xue
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Xiaolin Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Taotao Zou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
50
|
Chen S, Yang L, Leung FKC, Kajitani T, Stuart MCA, Fukushima T, van Rijn P, Feringa BL. Photoactuating Artificial Muscles of Motor Amphiphiles as an Extracellular Matrix Mimetic Scaffold for Mesenchymal Stem Cells. J Am Chem Soc 2022; 144:3543-3553. [PMID: 35171583 PMCID: PMC8895399 DOI: 10.1021/jacs.1c12318] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Mimicking the native
extracellular matrix (ECM) as a cell culture
scaffold has long attracted scientists from the perspective of supramolecular
chemistry for potential application in regenerative medicine. However,
the development of the next-generation synthetic materials that mimic
key aspects of ECM, with hierarchically oriented supramolecular structures,
which are simultaneously highly dynamic and responsive to external
stimuli, remains a major challenge. Herein, we present supramolecular
assemblies formed by motor amphiphiles (MAs), which mimic
the structural features of the hydrogel nature of the ECM and additionally
show intrinsic dynamic behavior that allow amplifying molecular motions
to macroscopic muscle-like actuating functions induced by light. The
supramolecular assembly (named artificial muscle) provides an attractive
approach for developing responsive ECM mimetic scaffolds for human
bone marrow-derived mesenchymal stem cells (hBM-MSCs).
Detailed investigations on the photoisomerization by nuclear magnetic
resonance and UV–vis absorption spectroscopy, assembled structures
by electron microscopy, the photoactuation process, structural order
by X-ray diffraction, and cytotoxicity are presented. Artificial muscles
of MAs provide fast photoactuation in water based on
the hierarchically anisotropic supramolecular structures and show
no cytotoxicity. Particularly important, artificial muscles of MAs with adhered hBM-MSCs still can be actuated
by external light stimulation, showing their ability to convert light
energy into mechanical signals in biocompatible systems. As a proof-of-concept
demonstration, these results provide the potential for building photoactuating
ECM mimetic scaffolds by artificial muscle-like supramolecular assemblies
based on MAs and offer opportunities for signal transduction
in future biohybrid systems of cells and MAs.
Collapse
Affiliation(s)
- Shaoyu Chen
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands.,Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangliang Yang
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, AV Groningen 9713, The Netherlands
| | - Franco King-Chi Leung
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands
| | - Takashi Kajitani
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Marc C A Stuart
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands
| | - Takanori Fukushima
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, AV Groningen 9713, The Netherlands
| | - Ben L Feringa
- Center for System Chemistry, Stratingh Institute for Chemistry, University of Groningen, AG Groningen 9747, The Netherlands.,Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|