1
|
Vincent É, Brioche J. Silver-Catalyzed Carbofluorination of Olefins and α-Fluoroolefins with Carbamoyl Radicals. Chemistry 2024; 30:e202401419. [PMID: 38712694 DOI: 10.1002/chem.202401419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
The reactivity of carbamoyl radicals, generated in situ from sodium oxamate salts, has been investigated in the context of radical carbofluorination reactions of olefins and α-fluoroolefins, respectively. Both transformations are catalyzed by silver salts and required the presence of potassium persulfate (K2S2O8) and SelectfluorTM as a radicophilic fluorine source. The reported methods provide a direct access to β-fluoroamides and β,β-difluoroamides.
Collapse
Affiliation(s)
- Émilie Vincent
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| | - Julien Brioche
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000, Rouen, France
| |
Collapse
|
2
|
Huang H, Luan X, Zuo Z. Cooperative Photoredox and Cobalt-Catalyzed Acceptorless Dehydrogenative Functionalization of Cyclopropylamides towards Allylic N,O-Acyl-acetal Derivatives. Angew Chem Int Ed Engl 2024; 63:e202401579. [PMID: 38609328 DOI: 10.1002/anie.202401579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
We disclose herein a novel photoredox and cobalt co-catalyzed ring-opening/acceptorless dehydrogenative functionalization of mono-donor cyclopropanes. This sustainable and atom-economic approach allows the rapid assembly of a wide range of allylic N,O-acyl-acetal derivatives. The starting materials are readily available and the reaction features mild conditions, broad substrate scope, and excellent functional group compatibility. The optimized conditions accommodate assorted cycloalkylamides and primary, secondary, and tertiary alcohols, with applications in late-stage functionalization of pharmaceutically relevant compounds, stimulating further utility in medicinal chemistry. Moreover, selective nucleophilic substitutions with various carbon nucleophiles were achieved in a one-pot fashion, offering a reliable avenue to access some cyclic and acyclic derivatives.
Collapse
Affiliation(s)
- Haohao Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| | - Zhijun Zuo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
3
|
Hu SP, Gao CH, Liu TM, Miao BY, Wang HC, Yu W, Han B. Integrating Olefin Carboamination and Hofmann-Löffler-Freytag Reaction by Radical Deconstruction of Hydrazonyl N-N Bond. Angew Chem Int Ed Engl 2024; 63:e202400168. [PMID: 38380865 DOI: 10.1002/anie.202400168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 02/22/2024]
Abstract
As a type of elementary organic compounds containing N-N single bond, hydrazone involved chemical conversions are extremely extensive, but they are mainly limited to N2-retention and N2-removal modes. We report herein an unprecedented protocol for the realization of division utilization of the N2-moiety of hydrazone by a radical facilitated N-N bond deconstruction strategy. This new conversion mode enables the successful combination of alkene carboamination and Hofmann-Löffler-Freytag reaction by the reaction of N-homoallyl mesitylenesulfonyl hydrazones with ethyl difluoroiodoacetate under photocatalytic redox neutral conditions. Mechanism studies reveal that the reaction undergoes a radical relay involving addition, crucial remote imino-N migration and H-atom transfer. Consequently, a series of structurally significant ϵ-N-sulphonamide-α,α-difluoro-γ-amino acid esters are efficiently produced via continuous C-C bond and dual C-N bonds forging.
Collapse
Affiliation(s)
- Si-Pei Hu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chen-Hui Gao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tu-Ming Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing-Yang Miao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hong-Chen Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
4
|
Li S, Zhou L. Photocatalytic (3 + 3) Annnulation of Vinyldiazo Compounds and Aminocyclopropanes. Org Lett 2024; 26:3294-3298. [PMID: 38567829 DOI: 10.1021/acs.orglett.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A (3 + 3) annulation of aminocyclopropanes and vinyldiazo compounds enabled by organo-photocatalysis is described. The reaction allows the regioselective synthesis of cyclohexenes bearing adjacent amino and carbonyl groups with broad functional group tolerance. In a departure from previous reports, our work demonstrated that a distonic radical cation can be preferentially intercepted by weakly nucleophilic vinyldiazo compounds, followed by an exclusive 6-endo radical cyclization for ring closure. Based on the interaction between adjacent amino and ester groups, the products can be further converted to cyclohexene-fused 1,3-oxazinane and azetidine.
Collapse
Affiliation(s)
- Sen Li
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lei Zhou
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Lv S, Xu WF, Yang TY, Lan MX, Xiao RX, Mou XQ, Chen YZ, Cui BD. Iron(II)-Catalyzed Radical [3 + 2] Cyclization of N-Aryl Cyclopropylamines for the Synthesis of Polyfunctionalized Cyclopentylamines. Org Lett 2024; 26:3151-3157. [PMID: 38564713 DOI: 10.1021/acs.orglett.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A facile iron(II)-catalyzed radical [3 + 2] cyclization of N-aryl cyclopropylamines with various alkenes to access the structurally polyfunctionalized cyclopentylamine scaffolds has been developed. Using low-cost FeCl2·4H2O as catalyst, N-aryl cyclopropylamines could be utilized to react with a wide range of alkenes including exocyclic/acyclic terminal alkenes, cycloalkenes, alkenes from the natural-occurring compounds (Alantolactone, Costunolide), and known drugs (Ibuprofen, l-phenylalanine, Flurbiprofen) to obtain a variety of cyclopentylamines fused with different useful motifs in generally good yields and diastereoselectivities. The highlight of this protocol is also featured by no extra oxidant, no base, EtOH as the solvent, gram-scale synthesis, and further diverse transformations of the synthetic products. More importantly, an iron(II)-mediated hydrogen radical dissociation pathway was proposed based on the mechanism research experiments.
Collapse
Affiliation(s)
- Shuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Feng Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting-You Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ming-Xing Lan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ren-Xu Xiao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Xu PC, Qian S, Meng X, Zheng Y, Huang S. Electrochemical Ring-Opening of Cyclopropylamides with Alcohols toward the Synthesis of 1,3-Oxazines. Org Lett 2024; 26:2806-2810. [PMID: 38127264 DOI: 10.1021/acs.orglett.3c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An electrochemical method is presented to construct 1,3-oxazines by the oxidative ring-opening of cyclopropylamides with alcohols. This method avoids the use of external oxidants and thus shows good functional group tolerance. The substrate scope covers primary, secondary, and tertiary alcohols as well as (hetero)aryl amide-substituted cyclopropanes.
Collapse
Affiliation(s)
- Peng-Cheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiangtai Meng
- Sinopec Maoming Petrochemical Company, Maoming, Guangdong 525000, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
7
|
Xie X, Li J, Li W, Li Y, Guo K, Zhu Y, Chen K. Silver-Catalyzed Decarboxylative Remote Fluorination via a Zwitterion-Promoted 1,4-Heteroaryl Migration. Org Lett 2024; 26:2228-2232. [PMID: 38457330 DOI: 10.1021/acs.orglett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A silver-catalyzed decarboxylative remote fluorination via a zwitterion-promoted 1,4-heteroaryl migration has been developed. A variety of heteroaryl-tethered benzyl fluorides have been readily synthesized with good regioselectivity under mild conditions. The zwitterion of the substrate is suggested to accelerate the 1,4-heteroaryl migration, which determines the regioselectivity of this transformation.
Collapse
Affiliation(s)
- Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weinan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Hebei Normal University for Nationalities, Chengde 067000, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Zhang X, Wang Y, Liu J, Tian C, Li X, Xie P, Zhu Z, Yao T. Synthesis of 3-aminotetrahydro-1 H-carbazols by visible-light photocatalyzed cycloaddition of cyclopropylanilines with 2-alkenylarylisocyanides. Chem Commun (Camb) 2023; 59:14423-14426. [PMID: 37975829 DOI: 10.1039/d3cc04674e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A visible-light-induced cycloaddition between 2-alkenylarylisocyanides and cyclopropylanilines is reported. This cascade radical reaction constructs two new C-C bonds and two rings to afford 3-aminotetrahydro-1H-carbazols with high atom and step economy. The mechanism is rationalized as involving sequential distonic radical cation formation/isocyanide insertion/5-exo-trig cyclization/intramolecular iminium ion addition/tautomerization.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Yao Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Jiaxin Liu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Chengpeng Tian
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Xiang Li
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Pan Xie
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Zhenyu Zhu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Tuanli Yao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
9
|
Komatsuda M, Yamaguchi J. Ring-Opening Fluorination of Carbo/Heterocycles and Aromatics: Construction of Complex and Diverse Fluorine-Containing Molecules. CHEM REC 2023; 23:e202200281. [PMID: 36604947 DOI: 10.1002/tcr.202200281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Indexed: 01/07/2023]
Abstract
Fluorine-containing molecules have attracted much attention in medicinal, agrochemical, and materials sciences because they offer unique physical and biological properties. Therefore, many efficient fluorination reactions have been developed over the years. Recent advancements in fluorination chemistry have expanded the range of substrates, and regioselectivity/stereoselectivity control has also been achieved. Ring-opening fluorination is an efficient method to construct complex fluorine-containing molecules with diversity, starting from simple cyclic compounds. This review aims to summarize developments in ring-opening fluorination, particularly with larger-sized cyclic compounds. Fluorine introduction and bond cleavage of cyclic compounds such as carbocycles, heterocycles, and aromatics provide efficient access to fluorine-containing compounds that are difficult to be synthesized by conventional methods.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| |
Collapse
|
10
|
Yang S, Wu JY, Lin S, Pu M, Huang ZS, Wang H, Li Q. Divergent Fluorinations of Vinylcyclopropanes: Ring-Opening 1,5-Hydrofluorination and Ring-Retaining 1,2-Difluorination. Chem Asian J 2023; 18:e202300476. [PMID: 37366264 DOI: 10.1002/asia.202300476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/28/2023]
Abstract
Organofluorine compounds have been widely used in pharmaceutical, agrochemical, and material sciences. Reported herein are divergent fluorination reactions of vinylcyclopropanes with different electrophiles, which allow the facile synthesis of homoallylic monofluorides and vicinal-difluorides through ring-opening 1,5-hydrofluorination and ring-retaining 1,2-difluorination, respectively. Both protocols feature mild conditions, simple operations, good functional group tolerance, and generally good yields. The practicality of these reactions is demonstrated by their scalability, as well as the successful conversion of the formed homoallylic monofluorides into other complex fluorinated molecules.
Collapse
Affiliation(s)
- Shuang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jun-Yunzi Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital of Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
11
|
Zheng Y, Huang W, Dhungana RK, Granados A, Keess S, Makvandi M, Molander GA. Photochemical Intermolecular [3σ + 2σ]-Cycloaddition for the Construction of Aminobicyclo[3.1.1]heptanes. J Am Chem Soc 2022; 144:23685-23690. [PMID: 36523116 PMCID: PMC10413992 DOI: 10.1021/jacs.2c11501] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of synthetic strategies for the preparation of bioisosteric compounds is a demanding undertaking in medicinal chemistry. Numerous strategies have been developed for the synthesis of bicyclo[1.1.1]pentanes (BCPs), bridge-substituted BCPs, and bicyclo[2.1.1]hexanes. However, progress on the synthesis of bicyclo[3.1.1]heptanes, which serve as meta-substituted arene bioisosteres, has not been previously explored. Herein, we disclose the first photoinduced [3σ + 2σ] cycloaddition for the synthesis of trisubstituted bicyclo[3.1.1]heptanes using bicyclo[1.1.0]butanes and cyclopropylamines. This transformation not only uses mild and operationally simple conditions but also provides unique meta-substituted arene bioisosteres. The applicability of this method is showcased by simple derivatization reactions.
Collapse
Affiliation(s)
- Yongxiang Zheng
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Weichen Huang
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Roshan K. Dhungana
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Mehran Makvandi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
12
|
Du D, Peng H, He L, Bai S, Li Z, Teng H. Synthesis of remote fluoroalkenyl ketones by photo-induced ring-opening addition of cyclic alkoxy radicals to fluorinated alkenes. Org Biomol Chem 2022; 20:9313-9318. [PMID: 36408839 DOI: 10.1039/d2ob01533a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fluoroalkenyl moieties are often used as carbonyl mimics in medicine preparation, and thus the development of facile routes for the synthesis of such compounds is of great importance. In this work, we report a photocatalytic ring-opening addition of cyclic alcohols to α-(trifluoromethyl)styrenes, which underwent a proton-coupled electron transfer and β-scission process, delivering a great variety of remote gem-difluoroalkenyl ketone derivatives. This methodology can also be applied in the reaction of gem-difluorostyrenes and 1,1,2-trifluorostyrenes to access monofluoro- and 1,2-difluoroalkenyl ketones.
Collapse
Affiliation(s)
- Donghua Du
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Han Peng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Ling He
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Shunpeng Bai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430072, P. R. China
| | - Zhenghua Li
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
13
|
Qiao X, Lin Y, Huang D, Ji H, Chen C, Ma W, Zhao J. Photocatalytic Oxo-Amination of Aryl Cyclopropanes through an Unusual S N2-Like Ring-Opening Pathway: Won >99% ee. J Org Chem 2022; 87:13627-13642. [PMID: 36174109 DOI: 10.1021/acs.joc.2c01291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One-pot oxo-amination of unactivated cyclopropanes with safe, green dioxygen as an oxidant and low-cost amines as nitrogen sources has generated interest since this can directly result in uniform β-located difunctional units. Formation of the three-electron cation radical followed by the nucleophilic attack of amines to open the strained ring of cyclopropanes catalyzed by classic noble-complex photocatalysts was a promising strategy. However, this ring-opening pathway could not maintain the entire second-order nucleophilic substitution (SN2) conversion, which generally led to unsatisfactory enantioselectivity (enantiomeric excess (ee) value ∼60%). Here, we demonstrate that for such a one-step oxo-amination of cyclopropanes with benign dioxygen and pyrazoles, a highly uniform inversion of configuration could be first accomplished through a TiO2 photocatalyst. This strategy features low-cost, semiheterogeneous photocatalysis and environmentally friendly reaction conditions, without using any sacrificial reagent or additive. Importantly, our protocol not only provides a relatively broad substrate scope tolerant to a certain range of substituted cyclopropanes and pyrazoles, resulting in various β-amino ketone products (∼50 examples) with excellent conversions and yields, but also retains excellent enantioselectivity (ee value ∼99%). A concerted SN2 ring opening raised from an oxetane cation intermediate rather than a conventional three-electron cation radical prior to attaching to dioxygen was proposed.
Collapse
Affiliation(s)
- Xiaofeng Qiao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuhan Lin
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Di Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanhong Ma
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
14
|
Wang MM, Nguyen TVT, Waser J. Activation of aminocyclopropanes via radical intermediates. Chem Soc Rev 2022; 51:7344-7357. [PMID: 35938356 DOI: 10.1039/d2cs00090c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminocyclopropanes are versatile building blocks for accessing high value-added nitrogen-containing products. To control ring-opening promoted by ring strain, the Lewis acid activation of donor-acceptor substituted systems is now well established. Over the last decade, alternative approaches have emerged proceeding via the formation of radical intermediates, alleviating the need for double activation of the cyclopropanes. This tutorial review summarizes key concepts and recent progress in ring-opening transformations of aminocyclopropanes via radical intermediates, divided into formal cycloadditions and 1,3-difunctionalizations.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. .,Department of Chemical Biology, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
15
|
Huang CY, Li J, Li CJ. Photocatalytic C(sp 3) radical generation via C-H, C-C, and C-X bond cleavage. Chem Sci 2022; 13:5465-5504. [PMID: 35694342 PMCID: PMC9116372 DOI: 10.1039/d2sc00202g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/17/2022] [Indexed: 12/12/2022] Open
Abstract
C(sp3) radicals (R˙) are of broad research interest and synthetic utility. This review collects some of the most recent advancements in photocatalytic R˙ generation and highlights representative examples in this field. Based on the key bond cleavages that generate R˙, these contributions are divided into C–H, C–C, and C–X bond cleavages. A general mechanistic scenario and key R˙-forming steps are presented and discussed in each section. C(sp3) radicals (R˙) are of broad research interest and synthetic utility.![]()
Collapse
Affiliation(s)
- Chia-Yu Huang
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Jianbin Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street W. Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
16
|
Kumar M, Verma S, Mishra V, Reiser O, Verma AK. Visible-Light-Accelerated Copper-Catalyzed [3 + 2] Cycloaddition of N-Tosylcyclopropylamines with Alkynes/Alkenes. J Org Chem 2022; 87:6263-6272. [PMID: 35476544 DOI: 10.1021/acs.joc.2c00491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Copper-catalyzed [3 + 2] cycloadditions of N-tosylcyclopropylamine with alkynes and alkenes have been accomplished under visible light irradiation. The developed approach is compatible with a range of functionalities and allows the synthesis of diversified aminated cyclopentene and cyclopentane derivatives being relevant for drug synthesis. The protocol is operationally simple and economically affordable as it does not require any ligand, base, or additives. As the key step, the one-electron oxidation of the N-tosyl moiety by visible light-induced homolysis of a transient Cu(II)-tosylamide complex is proposed, providing a facile entry for N-centered radicals.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India.,Institut für Organische Chemie, Universität Regensburg, Universitätsstr, 93053 Regensburg, Germany
| | - Shalini Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Vivek Mishra
- Amity Institute of Click-Chemistry Research and Studies, Amity University, Noida 201313, India
| | - Oliver Reiser
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr, 93053 Regensburg, Germany
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
17
|
Komatsuda M, Ohki H, Kondo H, Suto A, Yamaguchi J. Ring-Opening Fluorination of Isoxazoles. Org Lett 2022; 24:3270-3274. [PMID: 35471036 DOI: 10.1021/acs.orglett.2c01149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A ring-opening fluorination of isoxazoles has been developed. Upon treatment of isoxazoles with an electrophilic fluorinating agent (Selectfluor), fluorination followed by deprotonation leads to tertiary fluorinated carbonyl compounds. This method features mild reaction conditions, good functional group tolerance, and a simple experimental procedure. Diverse transformations of the resulting α-fluorocyanoketones were also demonstrated, furnishing a variety of fluorinated compounds.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hugo Ohki
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Kondo
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ayane Suto
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
18
|
Jiang L, Sarró P, Teo WJ, Llop J, Suero MG. Catalytic alkene skeletal modification for the construction of fluorinated tertiary stereocenters. Chem Sci 2022; 13:4327-4333. [PMID: 35509472 PMCID: PMC9006967 DOI: 10.1039/d2sc00968d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 11/25/2022] Open
Abstract
Herein we describe the first construction of fluorinated tertiary stereocenters based on an alkene C(sp2)-C(sp2) bond cleavage. The new process, that takes advantage of a Rh-catalyzed carbyne transfer, relies on a branched-selective fluorination of tertiary allyl cations and is distinguished by a wide scope including natural products and drug molecule derivatives as well as adaptability to radiofluorination.
Collapse
Affiliation(s)
- Liyin Jiang
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Pau Sarró
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
- Departament de Química Analítica I Química Orgànica, Universitat Rovira I Virgili, C. Marcel·lí Domingo, 1 43007 Tarragona Spain
| | - Wei Jie Teo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| | - Jordi Llop
- CIC BiomaGUNE, Basque Research and Technology Alliance 20014 San Sebastián Guipuzcoa Spain
| | - Marcos G Suero
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology. Av. Països Catalans, 16 43007 Tarragona Spain
| |
Collapse
|
19
|
Komatsuda M, Suto A, Kondo H, Takada H, Kato K, Saito B, Yamaguchi J. Ring-opening fluorination of bicyclic azaarenes. Chem Sci 2022; 13:665-670. [PMID: 35173930 PMCID: PMC8768879 DOI: 10.1039/d1sc06273e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/21/2021] [Indexed: 02/03/2023] Open
Abstract
We have discovered a ring-opening fluorination of bicyclic azaarenes. Upon treatment of bicyclic azaarenes such as pyrazolo[1,5-a]pyridines with electrophilic fluorinating agents, fluorination of the aromatic ring is followed by a ring-opening reaction. Although this overall transformation can be classified as an electrophilic fluorination of an aromatic ring, it is a novel type of fluorination that results in construction of tertiary carbon-fluorine bonds. The present protocol can be applied to a range of bicyclic azaarenes, tolerating azines and a variety of functional groups. Additionally, mechanistic studies and enantioselective fluorination have been examined.
Collapse
Affiliation(s)
- Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Ayane Suto
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Hiroki Kondo
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Hiroyuki Takada
- Research, Takeda Pharmaceutical Company Limited 26-1, Muraoka-Higashi 2-chome Fujisawa Kanagawa 251-8555 Japan
| | - Kenta Kato
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| | - Bunnai Saito
- Research, Takeda Pharmaceutical Company Limited 26-1, Muraoka-Higashi 2-chome Fujisawa Kanagawa 251-8555 Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University 513, Wasedatsurumakicho, Shinjuku Tokyo 169-8555 Japan
| |
Collapse
|
20
|
|
21
|
Liu Z, Wu S, Chen Y. Selective C(sp 3)-C(sp 3) Cleavage/Alkynylation of Cycloalkylamides Enables Aminoalkyne Synthesis with Hypervalent Iodine Reagents. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhengyi Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuang Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yiyun Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Centre of Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
22
|
He Y, Huang Z, Ma J, Huang F, Lin J, Wang H, Xu BH, Zhou YG, Yu Z. Palladium-Catalyzed Fluoroalkylation via C(sp 3)-S Bond Cleavage of Vinylsulfonium Salts. Org Lett 2021; 23:6110-6114. [PMID: 34283623 DOI: 10.1021/acs.orglett.1c02172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An interrupted Pummerer/palladium-catalyzed fluoro-alkylation strategy was developed for alkenyl C-H fluoroalkylthiolation. Palladium-catalyzed ring-opening fluoroalkylation via aliphatic C-S bond cleavage of the vinylsulfonium salts efficiently afforded fluoroalkylthiolated alkene derivatives from readily available alkene substrates and CsF. The protocol features broad substrate scopes and good functional group tolerance under an air atmosphere. The practicability of the synthetic method was demonstrated by transforming the multisubstituted alkene products to diverse fluoroalkylthiolated N-heterocycles.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jie Lin
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China
| | - Bao-Hua Xu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
23
|
Wang MM, Nguyen TVT, Waser J. Diamine Synthesis via the Nitrogen-Directed Azidation of σ- and π-C-C Bonds. J Am Chem Soc 2021; 143:11969-11975. [PMID: 34339216 DOI: 10.1021/jacs.1c06700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diamines are essential building blocks for the synthesis of agrochemicals, drugs, and organic materials, yet their synthesis remains challenging, as both nitrogens need to be differentiated and diverse substitution patterns (1,2, 1,3, or 1,4) are required. We report herein a new strategy giving access to 1,2, 1,3, and 1,4 amido azides as orthogonally protected diamines based on the nitrogen-directed diazidation of alkenes, cyclopropanes, and cyclobutanes. Commercially available copper thiophene-2-carboxylate (CuTc, 2 mol %) as catalyst promoted the diazidation of both π and σ C-C bonds within 10 min in the presence of readily available oxidants and trimethylsilyl azide. Selective substitution of the formed α-amino azide by carbon nucleophiles (electron-rich aromatic, malonate, organosilicon, organoboron, organozinc, and organomagnesium compounds) was then achieved in a one-pot fashion, leading to the formation of 1,2-, 1,3-, and 1,4-diamines with the amino groups protected orthogonally as an amide/carbamate and an azide.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
24
|
Qiao X, Lin Y, Li J, Ma W, Zhao J. All at once arrangement of both oxygen atoms of dioxygen into aliphatic C(sp3)-C(sp3) bonds for hydroxyketone difunctionalization. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9949-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
White DH, Noble A, Booker-Milburn KI, Aggarwal VK. Diastereoselective Photoredox-Catalyzed [3 + 2] Cycloadditions of N-Sulfonyl Cyclopropylamines with Electron-Deficient Olefins. Org Lett 2021; 23:3038-3042. [DOI: 10.1021/acs.orglett.1c00711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dawn H. White
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Kevin I. Booker-Milburn
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s
Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
26
|
Wang MM, Jeon S, Waser J. Synthesis of Thiochromans via [3+3] Annulation of Aminocyclopropanes with Thiophenols. Org Lett 2020; 22:9123-9127. [DOI: 10.1021/acs.orglett.0c03528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ming-Ming Wang
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Seongmin Jeon
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institut des Sciences et Ingénierie Chimique, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|