1
|
Li T, Wang X, Wang Y, Zhang Y, Li S, Liu W, Liu S, Liu Y, Xing H, Otake KI, Kitagawa S, Wu J, Dong H, Wei H. Microenvironmental modulation breaks intrinsic pH limitations of nanozymes to boost their activities. Nat Commun 2024; 15:10861. [PMID: 39738107 DOI: 10.1038/s41467-024-55163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Functional nanomaterials with enzyme-mimicking activities, termed as nanozymes, have found wide applications in various fields. However, the deviation between the working and optimal pHs of nanozymes has been limiting their practical applications. Here we develop a strategy to modulate the microenvironmental pHs of metal-organic framework (MOF) nanozymes by confining polyacids or polybases (serving as Brønsted acids or bases). The confinement of poly(acrylic acid) (PAA) into the channels of peroxidase-mimicking PCN-222-Fe (PCN = porous coordination network) nanozyme lowers its microenvironmental pH, enabling it to perform its best activity at pH 7.4 and to solve pH mismatch in cascade systems coupled with acid-denatured oxidases. Experimental investigations and molecular dynamics simulations reveal that PAA not only donates protons but also holds protons through the salt bridges between hydroniums and deprotonated carboxyl groups in neutral pH condition. Therefore, the confinement of poly(ethylene imine) increases the microenvironmental pH, leading to the enhanced hydrolase-mimicking activity of MOF nanozymes. This strategy is expected to pave a promising way for designing high-performance nanozymes and nanocatalysts for practical applications.
Collapse
Affiliation(s)
- Tong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu, China
| | - Yuting Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Yihong Zhang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Sirong Li
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Wanling Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Shujie Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Yufeng Liu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Japan
| | - Jiangjiexing Wu
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.
- School of Marine Science and Technology, Tianjin University, Tianjin, China.
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, China.
- Institute for Brain Sciences, Nanjing University, Nanjing, Jiangsu, China.
- Engineering Research Centre of Protein and Peptide Medicine of Ministry of Education, Nanjing University, Nanjing, Jiangsu, China.
- Chemistry and Biomedicine Innovation Centre (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, Nanjing University, Nanjing, Jiangsu, China.
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, China.
- Chemistry and Biomedicine Innovation Centre (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang L, Dong L, Xie L, Wang Z, Li L, Shangguan E, Li J. Tailoring Ce-Centered Metal-Organic Frameworks for Fast Li + Transport in Composite Polymer Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62052-62063. [PMID: 39482830 DOI: 10.1021/acsami.4c13525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Regulating metal nodes to innovate the metal-organic framework (MOF) structure is of great interest to boost the performance of MOFs-incorporated composite solid electrolytes. Herein, Ce4+ with a low-lying 4f orbital is selected as metal center to coordinate with organic ligand to prepare MOF of Ce-UiO-66. The unsaturated open metal sites and defected oxygen vacancies furnish Ce-UiO-66 with strengthened Lewis acidity, which promotes Ce-UiO-66 interacting effectively with both poly(ethylene oxide) (PEO) and Li salt anions. Accordingly, Ce-UiO-66 as additive fillers can be uniformly dispersed in PEO matrix to form an advanced composite solid-state electrolyte (Ce-UiO@PEO) with accelerated Li+ transport. The optimized Ce-UiO@PEO displays a boosted ionic conductivity of 4.20 × 10-4 S cm-1 and an improved Li+ transference number of 0.39 at 60 °C, which are highly comparable to those of other MOFs@PEO electrolytes. Combined with the mechanical and thermal stabilities, such a Ce-UiO@PEO electrolyte enables Li/Li symmetric and Li/LiFePO4 full cells with superior cycling stability and rate performance. The Ce-UiO@PEO electrolytes are of great potential to be applied in high-performance lithium metal batteries.
Collapse
Affiliation(s)
- Liyuan Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lingli Dong
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Liyuan Xie
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhitao Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Linpo Li
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Enbo Shangguan
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Jing Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
3
|
Deng WQ, Chen JT, Chen SS, Wang ZQ, Mao GJ, Hu L, Ouyang J, Li CY. ATP-responsive copper(II)-doped ZIF-nanoparticles for synergistic cancer therapy: combining cuproptosis and chemo/chemodynamic therapy. J Mater Chem B 2024; 12:11414-11425. [PMID: 39380332 DOI: 10.1039/d4tb01574f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cancer, a pressing global health challenge, is characterized by its rapid onset and high mortality rates. Conventional treatment methods prove insufficient in achieving the desired therapeutic outcomes, underscoring the critical need to identify an effective and safe approach for cancer treatment. In this study, a copper-doped nanoparticle known as Cu2+-DOX@ZIF-90 is designed by incorporating copper(II) (Cu(II)) and encapsulating doxorubicin (DOX) within ZIF-90. Leveraging the elevated ATP levels in cancer cells relative to normal cells, Cu2+-DOX@ZIF-90 undergoes intracellular degradation, leading to the release of DOX and Cu(II). DOX, a traditional chemotherapy drug for clinical use, induces apoptosis in cancer cells. Cu(II) interacts with glutathione (GSH) to generate Cu(I), catalyzing H2O2 to produce ˙OH, thereby prompting apoptosis in cancer cells. Concurrently, the reduction of GSH enhances the therapeutic effect of chemodynamic therapy (CDT). Furthermore, Cu(II) triggers the aggregation of lipoylated mitochondrial proteins, leading to the formation of DLAT oligomers and ultimately promoting cuproptosis in cancer cells. In vivo experimental findings demonstrate that Cu2+-DOX@ZIF-90 does not cause damage to normal tissues and organs in tumor-bearing mice, with a notable tumor inhibition rate of 86.18%. This synergistic approach, combining chemotherapy, CDT, and cuproptosis, holds significant promise for the effective and safe treatment of cancer.
Collapse
Affiliation(s)
- Wei-Qun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Jun-Tao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Si-Si Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Zhi-Qing Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Guo-Jiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Liufang Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Juan Ouyang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| | - Chun-Yan Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China.
| |
Collapse
|
4
|
Yin X, Zhang H, Qiao X, Zhou X, Xue Z, Chen X, Ye H, Li C, Tang Z, Zhang K, Wang T. Artificial olfactory memory system based on conductive metal-organic frameworks. Nat Commun 2024; 15:8409. [PMID: 39333101 PMCID: PMC11436733 DOI: 10.1038/s41467-024-52567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The olfactory system can generate unique sensory memories of various odorous molecules, guiding emotional and cognitive decisions. However, most existing electronic noses remain constrained to momentary concentration, failing to trigger specific memories for different smells. Here, we report an artificial olfactory memory system utilizing conductive metal-organic frameworks (Ce-HHTP) that integrates sensing and memory and exhibits short- and long-term memory responses to alcohols and aldehydes. Experiments and theoretical calculations show that distinct memories are derived from the specific combinations of Ce-HHTP with O atoms in different guest. An unmanned aircraft equipped with this system realized the sensory memories in established areas. Moreover, the fusion of portable detection boxes and wearable flexible electrodes demonstrated the immense potential in off-site pollution monitoring and health management. This work represents an artificial olfactory memory system with two specific sensory memories under simultaneous conditions, laying the foundation for bionic design with qualities of human olfactory memory.
Collapse
Affiliation(s)
- Xiaomeng Yin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Hao Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinyuan Zhou
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China
| | - Zhenjie Xue
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
| | - Haochen Ye
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Cancan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Zhe Tang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China.
| | - Kailin Zhang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China.
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P. R. China.
- University of Chinese Academy of Sciences, Beijing, P. R. China.
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, P. R. China.
| |
Collapse
|
5
|
Liu X, Gao M, Qin Y, Xiong Z, Zheng H, Willner I, Cai X, Li R. Exploring Nanozymes for Organic Substrates: Building Nano-organelles. Angew Chem Int Ed Engl 2024; 63:e202408277. [PMID: 38979699 DOI: 10.1002/anie.202408277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Since the discovery of the first peroxidase nanozyme (Fe3O4), numerous nanomaterials have been reported to exhibit intrinsic enzyme-like activity toward inorganic oxygen species, such as H2O2, oxygen, and O2 -. However, the exploration of nanozymes targeting organic compounds holds transformative potential in the realm of industrial synthesis. This review provides a comprehensive overview of the diverse types of nanozymes that catalyze reactions involving organic substrates and discusses their catalytic mechanisms, structure-activity relationships, and methodological paradigms for discovering new nanozymes. Additionally, we propose a forward-looking perspective on designing nanozyme formulations to mimic subcellular organelles, such as chloroplasts, termed "nano-organelles". Finally, we analyze the challenges encountered in nanozyme synthesis, characterization, nano-organelle construction and applications while suggesting directions to overcome these obstacles and enhance nanozyme research in the future. Through this review, our goal is to inspire further research efforts and catalyze advancements in the field of nanozymes, fostering new insights and opportunities in chemical synthesis.
Collapse
Affiliation(s)
- Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yunlong Qin
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Zhiqiang Xiong
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Itamar Willner
- The Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Xiaoming Cai
- School of Public Health, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RA-DX), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou Medical College, Soochow University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
6
|
Tang Y, Liu X, Qi P, Cai Y, Wang H, Qin Y, Gu W, Wang C, Sun Y, Zhu C. Single-Atom Ce-Doped Metal Hydrides with High Phosphatase-like Activity Amplify Oxidative Stress-Induced Tumor Apoptosis. ACS NANO 2024; 18:25685-25694. [PMID: 39223090 DOI: 10.1021/acsnano.4c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Phosphates within tumors function as key biomolecules, playing a significant role in sustaining the viability of tumors. To disturb the homeostasis of cancer cells, regulating phosphate within the organism proves to be an effective strategy. Herein, we report single-atom Ce-doped Pt hydrides (Ce/Pt-H) with high phosphatase-like activity for phosphate hydrolysis. The resultant Ce/Pt-H exhibits a 26.90- and 6.25-fold increase in phosphatase-like activity in comparison to Ce/Pt and Pt-H, respectively. Mechanism investigations elucidate that the Ce Lewis acid site facilitates the coordination with phosphate groups, while the surface hydrides enhance the electron density of Pt for promoting catalytic ability in H2O cleavage and subsequent nucleophilic attack of hydroxyl groups. Finally, by leveraging its phosphatase-like activity, Ce/Pt-H can effectively regulate intracellular phosphates to disrupt redox homeostasis and amplify oxidative stress within cancer cells, ultimately leading to tumor apoptosis. This work provides fresh insights into noble-metal-based phosphatase mimics for inducing tumor apoptosis.
Collapse
Affiliation(s)
- Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xupeng Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Pengcheng Qi
- Institute of Nano-Science and Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, P. R. China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hengjia Wang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, P. R. China
| | - Yao Sun
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
7
|
Baimanov D, Li S, Gao XJ, Cai R, Liu K, Li J, Liu Y, Cong Y, Wang X, Liu F, Li Q, Zhang G, Wei H, Wang J, Chen C, Gao X, Li Y, Wang L. A phosphatase-like nanomaterial promotes autophagy and reprograms macrophages for cancer immunotherapy. Chem Sci 2024; 15:10838-10850. [PMID: 39027281 PMCID: PMC11253186 DOI: 10.1039/d4sc01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Macrophages are plastic and play a key role in the maintenance of tissue homeostasis. In cancer progression, macrophages also take part in all processes, from initiation to progression, to final tumor metastasis. Although energy deprivation and autophagy are widely used for cancer therapy, most of these strategies do not target macrophages, resulting in undesired effects and unsatisfactory outcomes for cancer immunotherapy. Herein, we developed a lanthanum nickel oxide (LNO) nanozyme with phosphatase-like activity for ATP hydrolysis. Meanwhile, the autophagy of macrophages induced by LNO promotes the polarization of macrophages from M2-like macrophages (M2) to M1-like macrophages (M1) and reduces tumor-associated macrophages in tumor-bearing mice, exhibiting the capability of killing tumor-associated macrophages and antitumor effects in vivo. Furthermore, pre-coating the surface of LNO with a myeloid cell membrane significantly enhanced antitumor immunity. Our findings demonstrate that phosphatase-like nanozyme LNO can specifically induce macrophage autophagy, which improves therapeutic efficacy and offers valuable strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Su Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- Division of Allergy & Immunology, Department of Biosciences & Medical Biology, Paris Lodron University of Salzburg 5020 Salzburg Austria
| | - Xuejiao J Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Rui Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Ke Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Junjie Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University Nanchang 330022 P. R. China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xiaoyu Wang
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Beijing 100191 P. R. China
| | - Qi Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University Nanjing 210093 P. R. China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics Beijing 102206 P. R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
- New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China Beijing 100190 P. R. China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine & China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen 518055 P. R. China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences Shenzhen P. R. China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences and National Center for Nanoscience and Technology of China Beijing 100049 P. R. China
| |
Collapse
|
8
|
Shan J, Du L, Wang X, Zhang S, Li Y, Xue S, Tang Q, Liu P. Ultrasound Trigger Ce-Based MOF Nanoenzyme For Efficient Thrombolytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304441. [PMID: 38576170 PMCID: PMC11132072 DOI: 10.1002/advs.202304441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Indexed: 04/06/2024]
Abstract
The inflammatory damage caused by thrombus formation and dissolution can increase the risk of thrombotic complications on top of cell death and organ dysfunction caused by thrombus itself. Therefore, a rapid and precise thrombolytic therapy strategy is in urgent need to effectively dissolve thrombus and resist oxidation simultaneously. In this study, Ce-UiO-66, a cerium-based metal-organic framework (Ce-MOF) with reactive oxygen species (ROS) scavenging properties, encapsulated by low-immunogenic mesenchymal stem cell membrane with inflammation-targeting properties, is used to construct a targeted nanomedicine Ce-UiO-CM. Ce-UiO-CM is applied in combination with external ultrasound stimulation for thrombolytic therapy in rat femoral artery. Ce-UiO-66 has abundant Ce (III)/Ce (IV) coupling sites that react with hydrogen peroxide (H2O2) to produce oxygen, exhibiting catalase (CAT) activity. The multi-cavity structure of Ce-UiO-66 can generate electron holes, and its pore channels can act as micro-reactors to further enhance its ROS scavenging capacity. Additionally, the porous structure of Ce-UiO-66 and the oxygen produced by its reaction with H2O2 may enhance the cavitation effects of ultrasound, thereby improving thrombolysis efficacy.
Collapse
Affiliation(s)
- Jianggui Shan
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ling Du
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Xingang Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Sidi Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Yiping Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Song Xue
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
9
|
Salazar Marcano DE, Savić ND, Declerck K, Abdelhameed SAM, Parac-Vogt TN. Reactivity of metal-oxo clusters towards biomolecules: from discrete polyoxometalates to metal-organic frameworks. Chem Soc Rev 2024; 53:84-136. [PMID: 38015569 DOI: 10.1039/d3cs00195d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources. For instance, metal-oxo clusters and related materials have been shown to be effective catalysts for biomass conversion into renewable fuels and platform chemicals. Furthermore, their reactivity towards biomolecules has also attracted interest in the development of inorganic drugs and bioanalytical tools. Additionally, the structural versatility of metal-oxo clusters allows for the efficiency and selectivity of the biomolecular reactions they promote to be readily tuned, thereby providing a pathway towards reaction optimization. The properties of the catalyst can also be improved through incorporation into solid supports or by linking metal-oxo clusters together to form Metal-Organic Frameworks (MOFs), which have been demonstrated to be powerful heterogeneous catalysts. Therefore, this review aims to provide a comprehensive and critical analysis of the state of the art on biomolecular transformations promoted by metal-oxo clusters and their applications, with a particular focus on structure-activity relationships.
Collapse
Affiliation(s)
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | | | | |
Collapse
|
10
|
Chen T, Lu Y, Xiong X, Qiu M, Peng Y, Xu Z. Hydrolytic nanozymes: Preparation, properties, and applications. Adv Colloid Interface Sci 2024; 323:103072. [PMID: 38159448 DOI: 10.1016/j.cis.2023.103072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Hydrolytic nanozymes, as promising alternatives to hydrolytic enzymes, can efficiently catalyze the hydrolysis reactions and overcome the operating window limitations of natural enzymes. Moreover, they exhibit several merits such as relatively low cost, easier recovery and reuse, improved operating stability, and adjustable catalytic properties. Consequently, they have found relevance in practical applications such as organic synthesis, chemical weapon degradation, and biosensing. In this review, we highlight recent works addressing the broad topic of the development of hydrolytic nanozymes. We review the preparation, properties, and applications of six types of hydrolytic nanozymes, including AuNP-based nanozymes, polymeric nanozymes, surfactant assemblies, peptide assemblies, metal and metal oxide nanoparticles, and MOFs. Last, we discuss the remaining challenges and future directions. This review will stimulate the development and application of hydrolytic nanozymes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yizhuo Lu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaorong Xiong
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
11
|
Xu W, Cai X, Wu Y, Wen Y, Su R, Zhang Y, Huang Y, Zheng Q, Hu L, Cui X, Zheng L, Zhang S, Gu W, Song W, Guo S, Zhu C. Biomimetic single Al-OH site with high acetylcholinesterase-like activity and self-defense ability for neuroprotection. Nat Commun 2023; 14:6064. [PMID: 37770453 PMCID: PMC10539540 DOI: 10.1038/s41467-023-41765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Neurotoxicity of organophosphate compounds (OPs) can catastrophically cause nervous system injury by inhibiting acetylcholinesterase (AChE) expression. Although artificial systems have been developed for indirect neuroprotection, they are limited to dissociating P-O bonds for eliminating OPs. However, these systems have failed to overcome the deactivation of AChE. Herein, we report our finding that Al3+ is engineered onto the nodes of metal-organic framework to synthesize MOF-808-Al with enhanced Lewis acidity. The resultant MOF-808-Al efficiently mimics the catalytic behavior of AChE and has a self-defense ability to break the activity inhibition by OPs. Mechanism investigations elucidate that Al3+ Lewis acid sites with a strong polarization effect unite the highly electronegative -OH groups to form the enzyme-like catalytic center, resulting in superior substrate activation and nucleophilic attack ability with a 2.7-fold activity improvement. The multifunctional MOF-808-Al, which has satisfactory biosafety, is efficient in reducing neurotoxic effects and preventing neuronal tissue damage.
Collapse
Affiliation(s)
- Weiqing Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Xiaoli Cai
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Yu Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yating Wen
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Rina Su
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yu Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Yuteng Huang
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Qihui Zheng
- Department of Nutrition, Hygiene and Toxicology, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, P.R. China
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, P.R. China
| | - Xiaowen Cui
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics Department, Chinese Academy of Sciences Institution, Beijing, 100049, P.R. China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, China University of Petroleum, Beijing, 102249, P.R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P.R. China.
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.
| |
Collapse
|
12
|
Komiyama M. Ce-based solid-phase catalysts for phosphate hydrolysis as new tools for next-generation nanoarchitectonics. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2250705. [PMID: 37701758 PMCID: PMC10494760 DOI: 10.1080/14686996.2023.2250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/06/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023]
Abstract
This review comprehensively covers synthetic catalysts for the hydrolysis of biorelevant phosphates and pyrophosphates, which bridge between nanoarchitectonics and biology to construct their interdisciplinary hybrids. In the early 1980s, remarkable catalytic activity of Ce4+ ion for phosphate hydrolysis was found. More recently, this finding has been extended to Ce-based solid catalysts (CeO2 and Ce-based metal-organic frameworks (MOFs)), which are directly compatible with nanoarchitectonics. Monoesters and triesters of phosphates, as well as pyrophosphates, were effectively cleaved by these catalysts. With the use of either CeO2 nanoparticles or elegantly designed Ce-based MOF, highly stable phosphodiester linkages were also hydrolyzed. On the surfaces of all these solid catalysts, Ce4+ and Ce3+ coexist and cooperate for the catalysis. The Ce4+ activates phosphate substrates as a strong acid, whereas the Ce3+ provides metal-bound hydroxide as an eminent nucleophile. Applications of these Ce-based catalysts to practical purposes are also discussed.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Yu L, Wang Y, Sun Y, Tang Y, Xiao Y, Wu G, Peng S, Zhou X. Nanoporous Crystalline Materials for the Recognition and Applications of Nucleic Acids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305171. [PMID: 37616525 DOI: 10.1002/adma.202305171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Nucleic acid plays a crucial role in countless biological processes. Hence, there is great interest in its detection and analysis in various fields from chemistry, biology, to medicine. Nanoporous crystalline materials exhibit enormous potential as an effective platform for nucleic acid recognition and application. These materials have highly ordered and uniform pore structures, as well as adjustable surface chemistry and pore size, making them good carriers for nucleic acid extraction, detection, and delivery. In this review, the latest developments in nanoporous crystalline materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular organic frameworks (SOFs) for nucleic acid recognition and applications are discussed. Different strategies for functionalizing these materials are explored to specifically identify nucleic acid targets. Their applications in selective separation and detection of nucleic acids are highlighted. They can also be used as DNA/RNA sensors, gene delivery agents, host DNAzymes, and in DNA-based computing. Other applications include catalysis, data storage, and biomimetics. The development of novel nanoporous crystalline materials with enhanced biocompatibility has opened up new avenues in the fields of nucleic acid analysis and therapy, paving the way for the development of sensitive, selective, and cost-effective diagnostic and therapeutic tools with widespread applications.
Collapse
Affiliation(s)
- Long Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
14
|
Singh N, Sherin GR, Mugesh G. Antioxidant and Prooxidant Nanozymes: From Cellular Redox Regulation to Next-Generation Therapeutics. Angew Chem Int Ed Engl 2023; 62:e202301232. [PMID: 37083312 DOI: 10.1002/anie.202301232] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/22/2023]
Abstract
Nanozymes, nanomaterials with enzyme-mimicking activity, have attracted tremendous interest in recent years owing to their ability to replace natural enzymes in various biomedical applications, such as biosensing, therapeutics, drug delivery, and bioimaging. In particular, the nanozymes capable of regulating the cellular redox status by mimicking the antioxidant enzymes in mammalian cells are of great therapeutic significance in oxidative-stress-mediated disorders. As the distinction of physiological oxidative stress (oxidative eustress) and pathological oxidative stress (oxidative distress) occurs at a fine borderline, it is a great challenge to design nanozymes that can differentially sense the two extremes in cells, tissues and organs and mediate appropriate redox chemical reactions. In this Review, we summarize the advances in the development of redox-active nanozymes and their biomedical applications. We primarily highlight the therapeutic significance of the antioxidant and prooxidant nanozymes in various disease model systems, such as cancer, neurodegeneration, and cardiovascular diseases. The future perspectives of this emerging area of research and the challenges associated with the biomedical applications of nanozymes are described.
Collapse
Affiliation(s)
- Namrata Singh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
- Current address: Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum, Solnavägen 9, 171 65, Solna, Sweden
| | - G R Sherin
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
15
|
He HH, Yuan JP, Cai PY, Wang KY, Feng L, Kirchon A, Li J, Zhang LL, Zhou HC, Fang Y. Yolk-Shell and Hollow Zr/Ce-UiO-66 for Manipulating Selectivity in Tandem Reactions and Photoreactions. J Am Chem Soc 2023; 145:17164-17175. [PMID: 37440344 DOI: 10.1021/jacs.3c03883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
One of the hallmarks of multicomponent metal-organic frameworks (MOFs) is to finely tune their active centers to achieve product selectivity. In particular, obtaining bimetallic MOF hollow structures with precisely tailored redox centers under the same topology is still challenging despite a recent surge of such efforts. Herein, we present an engineering strategy named "cluster labilization" to generate hierarchically porous MOF composites with hollow structures and tunable active centers. By partially replacing zirconium with cerium in the hexanuclear clusters of UiO-66, unevenly distributed yolk-shell structures (YSS) were formed. Through acid treatment or annealing of the YSS precursor, single-shell hollow structures (SSHS) or double-shell hollow structures (DSHS) can be obtained, respectively. The active centers in SSHS and DSHS differ in their species, valence, and spatial locations. More importantly, YSS, SSHS, and DSHS with distinct active centers and microenvironments exhibit tunable catalytic activity, reversed selectivity, and high stability in the tandem reaction and the photoreaction.
Collapse
Affiliation(s)
- Hui-Hui He
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Jiang-Pei Yuan
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Pei-Yu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Angelo Kirchon
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ji Li
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Liang-Liang Zhang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- Innovation Institute of Industrial Design and Machine Intelligence Quanzhou-Hunan University, Quanzhou, Fujian 362801, China
| |
Collapse
|
16
|
Ding N, Qin M, Sun Y, Qi S, Dong X, Niazi S, Zhang Y, Wang Z. Universal Near-Infrared Fluorescent Nanoprobes for Detection and Real-Time Imaging of ATP in Real Food Samples, Living Cells, and Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12070-12079. [PMID: 37497565 DOI: 10.1021/acs.jafc.3c03963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adenosine triphosphate (ATP), an essential metabolite for active microorganisms to maintain life activities, has been widely regarded as a marker of cell activity and an indicator of microbial contamination. Herein, we designed two near-infrared (NIR) fluorescent nanoprobes named CYA@ZIF-90 and CYQ@ZIF-90 by encapsulating the NIR dye CYA/CYQ in ZIF-90 for the rapid detection of ATP. Between them, nanoprobe CYA@ZIF-90 can achieve higher NIR emission (702 nm) and rapid detection (2 min). Based on the superior spatiotemporal resolution imaging of ATP fluctuations in living cells, the applicability of CYA@ZIF-90 for imaging and detection of ATP in living bacteria was explored for the first time. The nanoprobe indirectly realizes the quantitative detection of bacteria, and the detection limit can be as low as 74 CFU mL-1. Therefore, the prepared nanoprobe is expected to become a universal ATP sensing detection tool, which can be further applied to evaluate cell apoptosis, cell proliferation, and food-harmful microbial control.
Collapse
Affiliation(s)
- Ning Ding
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingwei Qin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuhan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shuo Qi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiaoze Dong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Li T, Mei Q, Wang Y, Sun Q, Liu S, Zhang Y, Liu W, Wei G, Zhou M, Wei H. Air-Derived Inhibitor of Nanozymes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257026 DOI: 10.1021/acsami.3c06255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanozymes are functional nanomaterials with enzyme-mimicking activities, which have found wide applications in various fields. Investigation on nanozyme inhibitors not only helps to apply nanozymes in a controlled manner but also deepens our insight into the catalysis mechanism. Herein, we report an inorganic ion inhibitor, HCO3-, which can significantly inhibit the alkaline phosphatase-mimicking activities of Ce6 cluster-based metal-organic framework (Ce-MOF) nanozymes. The inhibition of adsorption of the negatively charged fluorescence sodium on Ce6 clusters in Ce-MOF nanoparticles (NPs) by HCO3- proves that HCO3- ions occupy and deactivate Ce6 clusters (i.e., catalytic active sites), leading to the activity inhibition of Ce-MOF nanozymes. Tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer is widely employed as the alkaline reaction medium. HCO3- ions can be formed in Tris-HCl buffer through adsorption of CO2 in the air during storage in a sealed tube, which significantly inhibits the activity of Ce-MOF nanozymes. To our knowledge, this study is the first to demonstrate an air-derived inhibitor of nanozymes.
Collapse
Affiliation(s)
- Tong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qi Mei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuting Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qi Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shujie Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yihong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wanling Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Gen Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Min Zhou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
18
|
Zhe Y, Zhang W, Gu C, Sun L, Dong F, Zhao Z, Li K, Lin Y. Bioinspired Structure Regulation of Apyrase-Like Nanozyme with Intracellular-Generated H 2O 2 for Tumor Catalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19178-19189. [PMID: 37023051 DOI: 10.1021/acsami.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Adenosine triphosphate (ATP) is the major resource of energy supply in tumor activity. Therefore, improving ATP consumption efficiencies is a promising approach for cancer therapy. Herein, inspired by the H2O2-involved structure regulation effect during the catalysis of natural protein enzymes, we developed an artificial H2O2-driven ATP catalysis-promoting system, the Ce-based metal-organic framework (Ce-MOF), for catalytic cancer therapy. In the presence of H2O2, the hydrolysis ATP activity of Ce-MOF(H2O2) was enhanced by around 1.6 times. Taking advantage of the endogenous H2O2 in cancerous cells, catalytic hydrolysis for intracellular ATP of the Ce-MOF achieves the inhibition of cancerous cell growth, which involves damaged mitochondrial function and autophagy-associated cell death. Furthermore, in vivo studies suggest that the Ce-MOF has a good tumor inhibition effect. The artificial H2O2-driven ATP catalysis-promoting system not only demonstrates high catalytic ATP consumption efficiencies for cancer therapy but also highlights a bioinspired strategy to expedite nanozyme research in both design and applied sciences.
Collapse
Affiliation(s)
- Yadong Zhe
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wang Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lu Sun
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Fangdi Dong
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhiqiang Zhao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
19
|
Liu T, Gu A, Wei T, Chen M, Guo X, Tang S, Yuan Y, Wang N. Ligand-Assistant Iced Photocatalytic Reduction to Synthesize Atomically Dispersed Cu Implanted Metal-Organic Frameworks for Photo-Enhanced Uranium Extraction from Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208002. [PMID: 36942774 DOI: 10.1002/smll.202208002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Uranium extraction from natural seawater is one of the most promising routes to address the shortage of uranium resources. By combination of ligand complexation and photocatalytic reduction, porous framework-based photocatalysts have been widely applied to uranium enrichment. However, their practical applicability is limited by poor photocatalytic activity and low adsorption capacity. Herein, atomically dispersed Cu implanted UiO-66-NH2 (Cu SA@UiO-66-NH2 ) photocatalysts are prepared via ligand-assistant iced photocatalytic reduction route. N-Cu-N moiety acts as an effective electron acceptor to potentially facilitate charge transfer kinetics. By contrast, there exist Cu sub-nanometer clusters by the typical liquid phase photoreduction, resulting in a relatively low photocatalytic activity. Cu SA@UiO-66-NH2 adsorbents exhibit superior antibacterial ability and improved photoreduction conversion of the adsorbed U(VI) to insoluble U(IV), leading to a high uranium sorption capacity of 9.16 mg-U/g-Ads from natural seawater. This study provides new insight for enhancing uranium uptake by designing SA-mediated MOF photocatalysts.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Anping Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Tao Wei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Mengwei Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Xi Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Shuai Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China
| |
Collapse
|
20
|
Ji G, Zhao L, Tang Y, Liu S, Wang Y, He C, Duan C. Ultrathin 2D Cerium-Based Metal-Organic Framework Nanosheet That Boosts Selective Oxidation of Inert C(sp 3 )H Bond through Multiphoton Excitation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300597. [PMID: 36938902 DOI: 10.1002/smll.202300597] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The development of methodologies for inducing and tailoring activities of catalysts is an important issue in various catalysis. The ultrathin 2D monolayer metal-organic framework (MOF) nanosheets with more accessible active sites and faster diffusion obtained by exfoliating 3D layered MOFs are of great potential as heterogeneous catalysts, but the rational design and preparation of 3D layered MOFs remains a grand challenge. Herein, a novel weak electrostatic interaction strategy to construct a 3D layered cerium-bearing MOF by coordinating chlorine-capped cerium nodes and linear photoactive methyl viologen (MV+ ) organic linkers is used. Under multiphoton excitation, the MV+ ligands and CeCl chromophores are triggered consecutively to form the high activity chlorine radical (Cl• ) for activation of inert C(sp3 )H bond through a hydrogen atom transfer. Benefiting from framework confinement effects, synergistic effects of two active sites and/or flexibility of the ultrathin framework nanosheets with high surface utilization, the observed activities increase in the order CeCl3 /MV+ < bulk 3D MOF crystals < 2D MOF nanosheets in photocatalysis. This work not only contributes a new strategy to construct 3D layered MOFs and their ultrathin nanosheets but also paves the way to use nanostructured MOFs to handle synergy of multiple molecular catalysts.
Collapse
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
21
|
Gai P, Pu L, Wang C, Zhu D, Li F. CeO2@NC nanozyme with robust dephosphorylation ability of phosphotriester: A simple colorimetric assay for rapid and selective detection of paraoxon. Biosens Bioelectron 2023; 220:114841. [DOI: 10.1016/j.bios.2022.114841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/29/2022]
|
22
|
Cong Y, Baimanov D, Zhou Y, Chen C, Wang L. Penetration and translocation of functional inorganic nanomaterials into biological barriers. Adv Drug Deliv Rev 2022; 191:114615. [PMID: 36356929 DOI: 10.1016/j.addr.2022.114615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
With excellent physicochemical properties, inorganic nanomaterials (INMs) have exhibited a series of attractive applications in biomedical fields. Biological barriers prevent successful delivery of nanomedicine in living systems that limits the development of nanomedicine especially for sufficient delivery of drugs and effective therapy. Numerous researches have focused on overcoming these biological barriers and homogeneity of organisms to enhance therapeutic efficacy, however, most of these strategies fail to resolve these challenges. In this review, we present the latest progress about how INMs interact with biological barriers and penetrate these barriers. We also summarize that both native structure and components of biological barriers and physicochemical properties of INMs contributed to the penetration capacity. Knowledge about the relationship between INMs structure and penetration capacity will guide the design and application of functional and efficient nanomedicine in the future.
Collapse
Affiliation(s)
- Yalin Cong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China
| | - Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China
| | - Yunlong Zhou
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, PR China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; GBA Research Innovation Institute for Nanotechnology, Guangzhou 510700, Guangdong, PR China; Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China & Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; CAS-HKU Joint Laboratory of Metallomics on Health and Environment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
23
|
A cerium-based metal-organic framework as adsorbent for the 99Mo/99mTc generator. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Dextran-coated Gd-based ultrasmall nanoparticles as phosphatase-like nanozyme to increase ethanol yield via reduction of yeast intracellular ATP level. J Colloid Interface Sci 2022; 627:405-414. [PMID: 35863199 DOI: 10.1016/j.jcis.2022.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
Abstract
Nanozymes-functional materials that possess intrinsic enzyme-like characteristics-have gained tremendous attention in recent years owing to their unique advantages; however, further research is required to understand their scope in biological applications. In this study, dextran-coated nanogadolinia (DCNG) was synthesised, and its phosphatase mimetic activity was demonstrated. Specifically, the dephosphorylation of adenosine triphosphate (ATP), an important biomolecule, by DCNG was investigated. The results showed that DCNG could selectively catalyse the hydrolysis of the terminal high-energy phosphate bonds of ATP under physiological conditions. Furthermore, the biocompatible DCNG, with remarkable phosphatase mimicking activity, decreased the intracellular ATP content by dephosphorylation and increased ethanol yield during glucose fermentation by S. cerevisiae. These results indicate potential alternatives for improving ethanol yields and exploring novel biological applications of nanozymes.
Collapse
|
25
|
Ji G, Zhao L, Wang Y, Tang Y, He C, Liu S, Duan C. A Binuclear Cerium-Based Metal–Organic Framework as an Artificial Monooxygenase for the Saturated Hydrocarbon Aerobic Oxidation with High Efficiency and High Selectivity. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Liang Zhao
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Yang Tang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Songtao Liu
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, People’s Republic of China
| |
Collapse
|
26
|
Tong Z, Sha J, Liu D, Xu M. An Unprecedented FeMo 6 @Ce-Uio-66 Nanocomposite with Cascade Enzyme-Mimic Activity as Colorimetric Sensing Platform. Chemistry 2022; 28:e202104213. [PMID: 35212424 DOI: 10.1002/chem.202104213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Introducing the idea of integrated design and cascade activity into nanozyme, the novel integrated nanozymes (INAzymes), FeMo6 @Ce-Uio-66 (FC-66(n)), were designed and synthesized by encapsulating iron-based polyoxometalates (FeMo6 ) into the ceria-based metal-organic framework (Ce-Uio-66). Due to the oxygen-driven reversible Ce3+ /Ce4+ couple sites, the "Fenton-like" effect by iron centers, the "nanoscale proximity" effects by nanocages, and their synergistic effects, FC-66(n) as INAzymes exhibit elegant cascade enzyme-mimic activities (oxidase-, peroxidase-, and Fenton-like activity), which realizes INAzyme activities based on polyoxometalates based metal-organic framework (POMOFs). By employing dopamine (DA) detection as a model reaction, a high-efficient fluorescent "turning-on-enhanced" platform under near neutral conditions was established.
Collapse
Affiliation(s)
- Zhibo Tong
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155, Qufu, Shandong, China.,School of Materials Science and Engineering, Jiamusi University, 154007, Jiamusi, Heilongjiang, China
| | - Jingquan Sha
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155, Qufu, Shandong, China
| | - Dingzhou Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155, Qufu, Shandong, China
| | - Mingqi Xu
- School of Chemistry, Chemical Engineering and Materials, Jining University, 273155, Qufu, Shandong, China
| |
Collapse
|
27
|
Yao SJ, Li N, Liu J, Dong LZ, Liu JJ, Xin ZF, Li DS, Li SL, Lan YQ. Ferrocene-Functionalized Crystalline Biomimetic Catalysts for Efficient CO 2 Photoreduction. Inorg Chem 2022; 61:2167-2173. [PMID: 35025501 DOI: 10.1021/acs.inorgchem.1c03368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoreducing carbon dioxide (CO2) into highly valued chemicals or energy products has been recognized as one of the most promising proposals to degrade atmospheric CO2 concentration and achieve carbon neutrality. Adenine with a photosensitive amino group and aromatic nitrogen atom can strongly interact with CO2 and has been authenticated for its catalytic activity for the CO2 photoreduction reaction (CO2RR). Herein, two adenine-constructed crystalline biomimetic photocatalysts (Co2-AW and Co2-AF) were designed and synthesized to achieve CO2RR. Between them, Co2-AF displayed higher photocatalytic activity (225.8 μmol g-1 h-1) for CO2-to-HCOOH conversion than that of Co2-AW. It was found that the superior charge transfer capacity of the functional ferrocene group in Co2-AF is the primary reason to facilitate the photocatalytic performance efficiently. Additionally, this work also demonstrated the great potential of the ferrocene group as an electron donor and mediator in improving the photocatalytic activity of crystalline coordination catalysts.
Collapse
Affiliation(s)
- Su-Juan Yao
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ning Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiang Liu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Long-Zhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jing-Jing Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| | - Zhi-Feng Xin
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Hubei Provincial Collaborative Innovation Center for New Energy Microgrid, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, No. 8, Daxue Road, Yichang 443002, China
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ya-Qian Lan
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
28
|
Gao R, Ye N, Kou X, Shen Y, Yang H, Wu T, Huang S, Chen G, Ouyang G. Hierarchically mesoporous Ce-based MOFs with enhanced alkaline phosphatase-like activity for phosphorylated biomarker sensing. Chem Commun (Camb) 2022; 58:12720-12723. [DOI: 10.1039/d2cc04895g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a hierarchically mesoporous metal–organic framework nanozyme with enhanced alkaline phosphatase-mimicking activity for rapid and sensitive sensing of phosphorylated biomarkers.
Collapse
Affiliation(s)
- Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Niru Ye
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Yujian Shen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Huangsheng Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Tong Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guang-zhou 510275, China
| |
Collapse
|
29
|
Chen J, Li K, Yang J, Gu J. Bimetallic Ordered Large-Pore MesoMOFs for Simultaneous Enrichment and Dephosphorylation of Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60173-60181. [PMID: 34882408 DOI: 10.1021/acsami.1c18201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the fact that bimetallic metal-organic frameworks (MOFs) could afford multiple functionalities by a synergistic effect of individual metallic centers, their intrinsic microporous structure frequently restricts their wide applications with bulky molecules involved. An urgent need is consequently triggered to design bimetallic hierarchical mesoporous MOFs (mesoMOFs). Herein, Zr/Ce mesoMOFs with a uniform pore size of up to 8 nm was successfully synthesized by a copolymer template strategy with the aid of a Hoffmeister ion. The obtained Zr/Ce mesoMOFs feature high porosity, good chemical and thermal stabilities, and tunable element components, and up to 70% Zr could be incorporated into the mesoporous Ce-based framework without deteriorating its crystallinity. Thanks to the synergistic effect of inherent Ce and Zr as well as the large and open pore channels, a broad range of phosphopeptides with different molecule sizes could be effectively checked out, thanks to their simultaneous enrichment and dephosphorylation capabilities. Such an ability to efficiently concentrate phosphopeptides remained intact even in the presence of abundant non-phosphorylated species. The practical detection of phosphopeptides from human serum was also verified, prefiguring the great potentials of bimetallic large-pore mesoMOFs for the proteome applications.
Collapse
Affiliation(s)
- Jingwen Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ke Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlou Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
30
|
Chen J, Xu F, Zhang Q, Li S, Lu X. Tetracycline antibiotics and NH 4+ detection by Zn-organic framework fluorescent probe. Analyst 2021; 146:6883-6892. [PMID: 34632986 DOI: 10.1039/d1an00894c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A fluorescent probe based on single metal-organic framework material without additional fluorophores and active sites can significantly improve the stability of the probe for detection, and has very important application value in environmental analysis and detection. In this paper, a simple and rapid fluorescence detection method was established with Zn-MOF, which realized the highly sensitive detection of tetracycline antibiotics and NH4+ in water. The prepared Zn-MOF has abundant pores and can exist stably in water. When tetracycline antibiotics are present in Zn-MOF aqueous solution, based on the unique coordination ability between Zn and N, tetracycline antibiotics rich in N will be adsorbed into the pore canals of MOF, and aggregation-induced luminescence will occur. The original non-fluorescent Zn-MOF will immediately produce yellow fluorescence, realizing the detection of tetracycline antibiotics in water, with the limit of detection reaching 0.017 μM in a linear range of 0.02-13 μM. Zn-MOF is further used for the detection of tetracycline antibiotics in actual samples of milk and honey. Oxytetracycline (OTC) with the best fluorescence response of tetracycline antibiotics was coated on Zn-MOF to synthesize OTC@Zn-MOF fluorescent probe. NH4+ will replace the original ligand of Zn-MOF, which will disintegrate MOF and release OTC, resulting in a fluorescence decrease. Therefore, NH4+ can be detected with low limit of detection (0.038 μM) in a linear range of 0 to 3 mM. The probe is expected to be able to detect ammonia in the environment.
Collapse
Affiliation(s)
- Jing Chen
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Fanghong Xu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Qian Zhang
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Shuying Li
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xiaoquan Lu
- Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| |
Collapse
|
31
|
Xiong Y, Su L, Ye F, Zhao S. Porous Oxyhydroxide Derived from Metal-Organic Frameworks as Efficient Triphosphatase-like Nanozyme for Chromium(III) Ion Colorimetric Sensing. ACS APPLIED BIO MATERIALS 2021; 4:6962-6973. [PMID: 35006996 DOI: 10.1021/acsabm.1c00628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The dephosphorylation that involves the removal of a phosphate group from a substrate molecule plays a significant role in living organisms. An enzyme mimic (nanozyme) with phosphatase-like catalytic activity has recently received attention in terms of its capacity for dephosphorylation. In this study, three types of highly porous oxyhydroxide with remarkable triphosphatase-like catalytic activities, ZrOOH, GdOOH, and HfOOH, have been prepared through the transformation of metal-organic frameworks (MOFs) using a simple alkaline hydrolysis method. The triphosphatase mimetic activities of ZrOOH, GdOOH, and HfOOH were then thoroughly investigated and verified. In particular, an isotopic tracing experiment revealed that abundant surface hydroxyls could serve as nucleophilic agents to directly attack the electropositive phosphorus atom, causing the cleavage of the terminal phosphoester bonds of phosphoester substrate molecules. The kinetic analysis provided calculated values of Km of 105.7, 90.5, and 46.1 μM, while the Vmax values were 3.57, 4.76, and 2.74 × 10-8 M s-1 and Ea values were estimated to be 47.52, 41.15, and 52.79 kJ/mol for ZrOOH, GdOOH, and HfOOH, respectively. The chromium(III) ions acting as "poisoning" inhibitors efficiently downregulated the triphosphatase mimetic activity of GdOOH. On the basis of this effect, a colorimetric chromium(III) ion-sensing system was explored, which provided a relevant linear response range for the detection of chromium(III) ions of 5.0-200 μM and a low detection limit of 0.84 μM. This work not only shows the great potential of ZrOOH, GdOOH, and HfOOH as triphosphatase nanozymes but also deepens our understanding of the role of surface hydroxyls on phosphatase-mimicking nanozyme catalytic dephosphorization, which could be used in the rational design of phosphatase-mimicking nanozymes. Furthermore, the developed colorimetric sensing system could be applied to chromium(III) ion detection in biological systems.
Collapse
Affiliation(s)
- Yuhao Xiong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.,College of Food and Bioengineering, Hezhou University, Hezhou 542899, P. R. China
| | - Linjing Su
- College of Food and Bioengineering, Hezhou University, Hezhou 542899, P. R. China
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
32
|
Yang J, Li K, Li C, Gu J. In Situ Coupling of Catalytic Centers into Artificial Substrate Mesochannels as Super-Active Metalloenzyme Mimics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101455. [PMID: 34310077 DOI: 10.1002/smll.202101455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/21/2021] [Indexed: 06/13/2023]
Abstract
Highly evolved substrate channels in natural enzymes facilitate the rapid capture of substrates and direct transfer of intermediates between cascaded catalytic units, thus rationalizing their efficient catalysis. In this study, a nanoscale ordered mesoporous Ce-based metal-organic framework (OMUiO-66(Ce)) is designed as an artificial substrate channel, where MnO2 is coupled to Ce-O clusters as a super-active catalase (CAT). An in situ soft template reduction strategy is developed to deposit well-dispersed and exposed MnO2 in the mesochannels of OMUiO-66(Ce). Several synthesis parameters are optimized to minimize the particle size to ≈150 nm for efficient intracellular endocytosis. The mesochannels provide interaction guidance that not only rapidly drove H2 O2 substrates to CAT-like catalytic centers, but also seamlessly transfer H2 O2 intermediates between superoxide dismutase-like and CAT-like biocatalytic cascades. As a result, the biomimetic system exhibits high efficiency, low dosage, and long-lasting intracellular antioxidant function. Under disease-related oxidative stress, the artificial substrate channels promote the rate of the reactions catalyzed by MnO2 , which exceeds that of the reactions catalyzed by natural CAT. Based on this observation, a set of design rules for substrate channels are proposed to guide the rational design of super-active biomimetic systems.
Collapse
Affiliation(s)
- Jian Yang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ke Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jinlou Gu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
33
|
Wang Q, Yi X, Chen Y, Xiao Y, Zheng A, Chen JL, Peng Y. Electronic‐State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO
2
Near Room Temperature. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Quan Wang
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Yu‐Cheng Chen
- Department of Mechanical Engineering City University of Hong Kong Hong Kong SAR China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Key Laboratory of Magnetic Resonance in Biological Systems Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 China
| | - Jian Lin Chen
- Department of Science School of Science and Technology The Open University of Hong Kong Hong Kong SAR China
| | - Yung‐Kang Peng
- Department of Chemistry City University of Hong Kong Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
34
|
Wang Q, Yi X, Chen YC, Xiao Y, Zheng A, Chen JL, Peng YK. Electronic-State Manipulation of Surface Titanium Activates Dephosphorylation Over TiO 2 Near Room Temperature. Angew Chem Int Ed Engl 2021; 60:16149-16155. [PMID: 33977664 DOI: 10.1002/anie.202104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Indexed: 11/10/2022]
Abstract
Dephosphorylation that removes a phosphate group from substrates is an important reaction for living organisms and environmental protection. Although CeO2 has been shown to catalyze this reaction, cerium is low in natural abundance and has a narrow global distribution (>90 % of these reserves are located within six countries). It is thus imperative to find another element/material with high worldwide abundance that can also efficiently extract the phosphate out of agricultural waste for phosphorus recycle. Using para-nitrophenyl phosphate (p-NPP) as a model compound, we demonstrate that TiO2 with a F-modified (001) surface can activate p-NPP dephosphorylation at temperatures as low as 40 °C. By probe-assisted nuclear magnetic resonance (NMR), it was revealed that the strong electron-withdrawing effect of fluorine makes Ti atoms (the active sites) on the (001) surface very acidic. The bidentate adsorption of p-NPP on this surface further promotes its subsequent activation with a barrier ≈20 kJ mol-1 lower than that of the pristine (001) and (101) surfaces, allowing the activation of this reaction near room temperature (from >80 °C).
Collapse
Affiliation(s)
- Quan Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yu-Cheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Lin Chen
- Department of Science, School of Science and Technology, The Open University of Hong Kong, Hong Kong SAR, China
| | - Yung-Kang Peng
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
35
|
Wei M, Lee J, Xia F, Lin P, Hu X, Li F, Ling D. Chemical design of nanozymes for biomedical applications. Acta Biomater 2021; 126:15-30. [PMID: 33652165 DOI: 10.1016/j.actbio.2021.02.036] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
With the advancement of nanochemistry, artificial nanozymes with high catalytic stability, low manufacturing and storage cost, and greater design flexibility over natural enzymes, have emerged as a next-generation nanomedicine. The catalytic activity and selectivity of nanozymes can be readily controlled and optimized by the rational chemical design of nanomaterials. This review summarizes the various chemical approaches to regulate the catalytic activity and selectivity of nanozymes for biomedical applications. We focus on the in-depth correlation between the physicochemical characteristics and catalytic activities of nanozymes from several aspects, including regulating chemical composition, controlling morphology, altering the size, surface modification and self-assembly. Furthermore, the chemically designed nanozymes for various biomedical applications such as biosensing, infectious disease therapy, cancer therapy, neurodegenerative disease therapy and injury therapy, are briefly summarized. Finally, the current challenges and future perspectives of nanozymes are discussed from a chemistry point of view. STATEMENT OF SIGNIFICANCE: As a kind of nanomaterials that performs enzyme-like properties, nanozymes perform high catalytic stability, low manufacturing and storage cost, attracting the attention of researchers from various fields. Notably, chemically designed nanozymes with robust catalytic activity, tunable specificity and multi-functionalities are promising for biomedical applications. It's crucial to define the correlation between the physicochemical characteristics and catalytic activities of nanozymes. To help readers understand this rapidly expanding field, in this review, we summarize various chemical approaches that regulate the catalytic activity and selectivity of nanozymes together with the discussion of related mechanisms, followed by the introduction of diverse biomedical applications using these chemically well-designed nanozymes. Hopefully our review will bridge the chemical design and biomedical applications of nanozymes, supporting the extensive research on high-performance nanozymes.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
36
|
Hu Z, Wang Y, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal-organic frameworks. Chem Soc Rev 2021; 50:4629-4683. [PMID: 33616126 DOI: 10.1039/d0cs00920b] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coordination connection of organic linkers to the metal clusters leads to the formation of metal-organic frameworks (MOFs), where the metal clusters and ligands are spatially entangled in a periodic manner. The immense availability of tuneable ligands of different length and functionalities gives rise to robust molecular porosity ranging from several angstroms to nanometres. Among the large family of MOFs, hafnium (Hf) based MOFs have been demonstrated to be highly promising for practical applications due to their unique and outstanding characteristics such as chemical, thermal, and mechanical stability, and acidic nature. Since the report of UiO-66(Hf) and DUT-51(Hf) in 2012, less than 200 Hf-MOFs (ca. 50 types of structures) have been reported. Besides, tetravalent cerium [Ce(iv)] has been proven to be capable of forming similar topological MOF structures to Zr and Hf since its first discovery in 2015. So far, ca. 40 Ce(iv) MOFs with 60% having UiO-66-type structure have been reported. This review will offer a holistic summary of the chemistry, uniqueness, synthesis, and applications of Hf/Ce(iv)-MOFs with a focus on presenting the development in the Hf/Ce(iv)-clusters, topologies, ligand structures, synthetic strategies, and practical applications of Hf/Ce(iv)-MOFs. In the end, we will present the research outlook for the development of Hf/Ce(iv)-MOFs in the future, including fundamental design of Hf/Ce(iv)-clusters, defect engineering, and various applications including membrane development, diversified types of catalytic reactions, irradiation absorption in nuclear waste treatment, water production and wastewater treatment, etc. We will also present the emerging computational approaches coupled with machine-learning algorithms that can be applied in screening Hf and Ce(iv) based MOF structures and identifying the best-performing MOFs for tailor-made applications in future practice.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | | | | |
Collapse
|