1
|
London N. Covalent Proximity Inducers. Chem Rev 2024. [PMID: 39692621 DOI: 10.1021/acs.chemrev.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Molecules that are able to induce proximity between two proteins are finding ever increasing applications in chemical biology and drug discovery. The ability to introduce an electrophile and make such proximity inducers covalent can offer improved properties such as selectivity, potency, duration of action, and reduced molecular size. This concept has been heavily explored in the context of targeted degradation in particular for bivalent molecules, but recently, additional applications are reported in other contexts, as well as for monovalent molecular glues. This is a comprehensive review of reported covalent proximity inducers, aiming to identify common trends and current gaps in their discovery and application.
Collapse
Affiliation(s)
- Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Katz LS, Visser EJ, Plitzko KF, Pennings MAM, Cossar PJ, Tse IL, Kaiser M, Brunsveld L, Ottmann C, Scott DK. Molecular glues of the regulatory ChREBP/14-3-3 complex protect beta cells from glucolipotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.16.580675. [PMID: 38405965 PMCID: PMC10888794 DOI: 10.1101/2024.02.16.580675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Carbohydrate Response Element Binding Protein (ChREBP) is a glucose-responsive transcription factor (TF) with two major splice isoforms (α and β). In chronic hyperglycemia and glucolipotoxicity, ChREBPα-mediated ChREBPβ expression surges, leading to insulin-secreting β-cell dedifferentiation and death. 14-3-3 binding to ChREBPα results in cytoplasmic retention and suppression of transcriptional activity. Thus, small molecule-mediated stabilization of this protein-protein interaction (PPI) may be of therapeutic value. Here, we show that structure-based optimizations of a 'molecular glue' compound led to potent ChREBPα/14-3-3 PPI stabilizers with cellular activity. In primary human β-cells, the most active compound retained ChREBPα in the cytoplasm, and efficiently protected β-cells from glucolipotoxicity while maintaining β-cell identity. This study may thus not only provide the basis for the development of a unique class of compounds for the treatment of Type 2 Diabetes but also showcases an alternative 'molecular glue' approach for achieving small molecule control of notoriously difficult to target TFs.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Kathrin F Plitzko
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Isabelle L Tse
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Markus Kaiser
- Chemical Biology, Center of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute and Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| |
Collapse
|
3
|
Antonini G, Bernardi A, Gillon E, Dal Corso A, Civera M, Belvisi L, Varrot A, Mazzotta S. Achieving High Affinity for a Bacterial Lectin with Reversible Covalent Ligands. J Med Chem 2024; 67:19546-19560. [PMID: 39480244 DOI: 10.1021/acs.jmedchem.4c01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
High-affinity monovalent ligands for lectins are challenging to develop due to weak binding interactions. This study investigates the potential of rationally designed covalent ligands targeting the N-terminal domain of BC2L-C lectin from Burkholderia cenocepacia, a pathogen causing severe respiratory infections in immunocompromised patients. Antiadhesion therapy is emerging as a complementary approach against such infections, and bacterial lectins are suitable targets. The fucose-specific BC2L-C-Nt recognizes blood group oligosaccharides on host cells. Using a computational approach, we designed reversible covalent competitive ligands that include a fucoside anchor and a salicylaldehyde warhead targeting Lys108 near the fucose-binding site. Several candidates were synthesized and tested using competition experiments. The most effective ligand improved the IC50 of methyl-fucoside by 2 orders of magnitude, matching the affinity of the native H-type 1 trisaccharide. Control experiments confirmed the importance of both fucose anchor and salicylaldehyde moiety in the ligand's affinity. Mass analysis confirmed the covalent interaction with Lys108.
Collapse
Affiliation(s)
- Giulia Antonini
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Emilie Gillon
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| | | | - Sarah Mazzotta
- Dipartimento di Chimica, Università degli Studi di Milano, 20133 Milano, Italy
| |
Collapse
|
4
|
Zhang R, Zheng Y, Xiang F, Zhou J. Inducing or enhancing protein-protein interaction to develop drugs: Molecular glues with various biological activity. Eur J Med Chem 2024; 277:116756. [PMID: 39191033 DOI: 10.1016/j.ejmech.2024.116756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Over the past two decades, molecular glues (MGs) have gradually attracted the attention of the pharmaceutical community with the advent of MG degraders such as IMiDs and indisulam. Such molecules degrade the target protein by promoting the interaction between the target protein and E3 ligase. In addition, as a chemical inducer, MGs promote the dimerization of homologous proteins and heterologous proteins to form ternary complexes, which have great prospects in regulating biological activities. This review focuses on the application of MGs in the field of drug development including protein-protein interaction (PPI) stability and protein degradation. We thoroughly analyze the structure of various MGs and the interactions between MGs and various biologically active molecules, thus providing new perspectives for the development of PPI stabilizers and new degraders.
Collapse
Affiliation(s)
- Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Yirong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Fengjiao Xiang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
5
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Andlovic B, Valenti D, Centorrino F, Picarazzi F, Hristeva S, Hiltmann M, Wolf A, Cantrelle FX, Mori M, Landrieu I, Levy LM, Klebl B, Tzalis D, Genski T, Eickhoff J, Ottmann C. Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction. Biochemistry 2024; 63:2196-2206. [PMID: 39172504 PMCID: PMC11375770 DOI: 10.1021/acs.biochem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The identification of chemical starting points for the development of molecular glues is challenging. Here, we employed fragment screening and identified an allosteric stabilizer of the complex between 14-3-3 and a TAZ-derived peptide. The fragment binds preferentially to the 14-3-3/TAZ peptide complex and shows moderate stabilization in differential scanning fluorimetry and microscale thermophoresis. The binding site of the fragment was predicted by molecular dynamics calculations to be distant from the 14-3-3/TAZ peptide interface, located between helices 8 and 9 of the 14-3-3 protein. This site was confirmed by nuclear magnetic resonance and X-ray protein crystallography, revealing the first example of an allosteric stabilizer for 14-3-3 protein-protein interactions.
Collapse
Affiliation(s)
- Blaž Andlovic
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Federica Centorrino
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Francesca Picarazzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stanimira Hristeva
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | | | - Alexander Wolf
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - François-Xavier Cantrelle
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Isabelle Landrieu
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Laura M. Levy
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Dimitrios Tzalis
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Thorsten Genski
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Jan Eickhoff
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
7
|
Vickery HR, Virta JM, Konstantinidou M, Arkin MR. Development of a NanoBRET assay for evaluation of 14-3-3σ molecular glues. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100165. [PMID: 38797286 DOI: 10.1016/j.slasd.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
We report the development of a 384-well formatted NanoBRET assay to characterize molecular glues of 14-3-3/client interactions in living cells. The seven isoforms of 14-3-3 are dimeric hub proteins with diverse roles including transcription factor regulation and signal transduction. 14-3-3 interacts with hundreds of client proteins to regulate their function and is therefore an ideal therapeutic target when client selectivity can be achieved. We have developed the NanoBRET system for three 14-3-3σ client proteins CRAF, TAZ, and estrogen receptor α (ERα), which represent three specific binding modes. We have measured stabilization of 14-3-3σ/client complexes by molecular glues with EC50 values between 100 nM and 1 μM in cells, which align with the EC50 values calculated by fluorescence anisotropy in vitro. Developing this NanoBRET system for the hub protein 14-3-3σ allows for a streamlined approach, bypassing multiple optimization steps in the assay development process for other 14-3-3σ clients. The NanoBRET system allows for an assessment of PPI stabilization in a more physiologically relevant, cell-based environment using full-length proteins. The method is applicable to diverse protein-protein interactions (PPIs) and offers a robust platform to explore libraries of compounds for both PPI stabilizers and inhibitors.
Collapse
Affiliation(s)
- Holly R Vickery
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Johanna M Virta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco 94158, USA.
| |
Collapse
|
8
|
Konstantinidou M, Arkin MR. Molecular glues for protein-protein interactions: Progressing toward a new dream. Cell Chem Biol 2024; 31:1064-1088. [PMID: 38701786 PMCID: PMC11193649 DOI: 10.1016/j.chembiol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
The modulation of protein-protein interactions with small molecules is one of the most rapidly developing areas in drug discovery. In this review, we discuss advances over the past decade (2014-2023) focusing on molecular glues (MGs)-monovalent small molecules that induce proximity, either by stabilizing native interactions or by inducing neomorphic interactions. We include both serendipitous and rational discoveries and describe the different approaches that were used to identify them. We classify the compounds in three main categories: degradative MGs, non-degradative MGs or PPI stabilizers, and MGs that induce self-association. Diverse, illustrative examples with structural data are described in detail, emphasizing the elements of molecular recognition and cooperative binding at the interface that are fundamental for a MG mechanism of action.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Hillebrand L, Liang XJ, Serafim RAM, Gehringer M. Emerging and Re-emerging Warheads for Targeted Covalent Inhibitors: An Update. J Med Chem 2024; 67:7668-7758. [PMID: 38711345 DOI: 10.1021/acs.jmedchem.3c01825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Covalent inhibitors and other types of covalent modalities have seen a revival in the past two decades, with a variety of new targeted covalent drugs having been approved in recent years. A key feature of such molecules is an intrinsically reactive group, typically a weak electrophile, which enables the irreversible or reversible formation of a covalent bond with a specific amino acid of the target protein. This reactive group, often called the "warhead", is a critical determinant of the ligand's activity, selectivity, and general biological properties. In 2019, we summarized emerging and re-emerging warhead chemistries to target cysteine and other amino acids (Gehringer, M.; Laufer, S. A. J. Med. Chem. 2019, 62, 5673-5724; DOI: 10.1021/acs.jmedchem.8b01153). Since then, the field has rapidly evolved. Here we discuss the progress on covalent warheads made since our last Perspective and their application in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Laura Hillebrand
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Xiaojun Julia Liang
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Li L, Liu S, Luo Y. Application of covalent modality in proximity-induced drug pharmacology: Early development, current strategy, and feature directions. Eur J Med Chem 2024; 271:116394. [PMID: 38643668 DOI: 10.1016/j.ejmech.2024.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024]
Abstract
With a growing number of covalent drugs securing FDA approval as successful therapies across various indications, particularly in the realm of cancer treatment, the covalent modulating strategy is undergoing a resurgence. The renewed interest in covalent bioactive compounds has captured significant attention from both the academic and biopharmaceutical industry sectors. Covalent chemistry presents several advantages over traditional noncovalent proximity-induced drugs, including heightened potency, reduced molecular size, and the ability to target "undruggable" entities. Within this perspective, we have compiled a comprehensive overview of current covalent modalities applied to proximity-induced molecules, delving into their advantages and drawbacks. Our aim is to stimulate more profound insights and ideas within the scientific community, guiding future research endeavors in this dynamic field.
Collapse
Affiliation(s)
- Linjie Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Mason M, Belvisi L, Pignataro L, Dal Corso A. A Tight Contact: The Expanding Application of Salicylaldehydes in Lysine-Targeting Covalent Drugs. Chembiochem 2024; 25:e202300743. [PMID: 37986243 DOI: 10.1002/cbic.202300743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
The installation of aldehydes into synthetic protein ligands is an efficient strategy to engage protein lysine residues in remarkably stable imine bonds and augment the compound affinity and selectivity for their biological targets. The high frequency of lysine residues in proteins and the reversibility of the covalent ligand-protein bond support the application of aldehyde-bearing ligands, holding promises for their future use as drugs. This review highlights the increasing exploitation of salicylaldehyde modules in various classes of protein binders, aimed at the reversible-covalent engagement of lysine residues.
Collapse
Affiliation(s)
- Mattia Mason
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, Via C. Golgi, 19, 20133, Milan, Italy
| |
Collapse
|
12
|
Jiang W, Jiang Y, Luo Y, Qiao W, Yang T. Facilitating the development of molecular glues: Opportunities from serendipity and rational design. Eur J Med Chem 2024; 263:115950. [PMID: 37984298 DOI: 10.1016/j.ejmech.2023.115950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Molecular glues can specifically induce interactions between two or more proteins to modulate biological functions and have been proven to be a powerful therapeutic modality in drug discovery. It plays a variety of vital roles in several biological processes, such as complex stabilization, interactome modulation and transporter inhibition, thus enabling challenging therapeutic targets to be druggable. Most known molecular glues were identified serendipitously, such as IMiDs, auxin, and rapamycin. In recent years, more rational strategies were explored with the development of chemical biology and a deep understanding of the interaction between molecular glues and proteins, which led to the rational discovery of several molecular glues. Thus, in this review, we aim to highlight the discovery strategies of molecular glues from three aspects: serendipitous discovery, screening methods and rational design principles. We expect that this review will provide a reasonable reference and insights for the discovery of molecular glues.
Collapse
Affiliation(s)
- Weiqing Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunhan Jiang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China; Cardiovascular Surgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Youfu Luo
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Wu Q, Centorrino F, Guillory X, Wolter M, Ottmann C, Cossar PJ, Brunsveld L. Discovery of 14-3-3 PPI Stabilizers by Extension of an Amidine-Substituted Thiophene Fragment. Chembiochem 2024; 25:e202300636. [PMID: 37902676 DOI: 10.1002/cbic.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Protein-protein interaction (PPI) modulation is a promising approach in drug discovery with the potential to expand the 'druggable' proteome and develop new therapeutic strategies. While there have been significant advancements in methodologies for developing PPI inhibitors, there is a relative scarcity of literature describing the 'bottom-up' development of PPI stabilizers (Molecular Glues). The hub protein 14-3-3 and its interactome provide an excellent platform for exploring conceptual approaches to PPI modulation, including evolution of chemical matter for Molecular Glues. In this study, we employed a fragment extension strategy to discover stabilizers for the complex of 14-3-3 protein and an Estrogen Receptor alpha-derived peptide (ERα). A focused library of analogues derived from an amidine-substituted thiophene fragment enhanced the affinity of the 14-3-3/ERα complex up to 6.2-fold. Structure-activity relationship (SAR) analysis underscored the importance of the newly added, aromatic side chain with a certain degree of rigidity. X-ray structural analysis revealed a unique intermolecular π-π stacking binding mode of the most active analogues, resulting in the simultaneous binding of two molecules to the PPI binding pocket. Notably, analogue 11 displayed selective stabilization of the 14-3-3/ERα complex.
Collapse
Affiliation(s)
- Qi Wu
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Federica Centorrino
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
14
|
Gabizon R, Tivon B, Reddi RN, van den Oetelaar MCM, Amartely H, Cossar PJ, Ottmann C, London N. A simple method for developing lysine targeted covalent protein reagents. Nat Commun 2023; 14:7933. [PMID: 38040731 PMCID: PMC10692228 DOI: 10.1038/s41467-023-42632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/16/2023] [Indexed: 12/03/2023] Open
Abstract
Peptide-based covalent probes can target shallow protein surfaces not typically addressable using small molecules, yet there is a need for versatile approaches to convert native peptide sequences into covalent binders that can target a broad range of residues. Here we report protein-based thio-methacrylate esters-electrophiles that can be installed easily on unprotected peptides and proteins via cysteine side chains, and react efficiently and selectively with cysteine and lysine side chains on the target. Methacrylate phosphopeptides derived from 14-3-3-binding proteins irreversibly label 14-3-3σ via either lysine or cysteine residues, depending on the position of the electrophile. Methacrylate peptides targeting a conserved lysine residue exhibit pan-isoform binding of 14-3-3 proteins both in lysates and in extracellular media. Finally, we apply this approach to develop protein-based covalent binders. A methacrylate-modified variant of the colicin E9 immunity protein irreversibly binds to the E9 DNAse, resulting in significantly higher thermal stability relative to the non-covalent complex. Our approach offers a simple and versatile route to convert peptides and proteins into potent covalent binders.
Collapse
Affiliation(s)
- Ronen Gabizon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Barr Tivon
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rambabu N Reddi
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maxime C M van den Oetelaar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Hadar Amartely
- Wolfson Centre for Applied Structural Biology, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, The Netherlands
| | - Nir London
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
15
|
Francisco K, Bruystens J, Varricchio C, McCurdy S, Wu J, Lopez-Ramirez MA, Ginsberg M, Caffrey CR, Brancale A, Gingras AR, Hixon MS, Ballatore C. Targeted Reversible Covalent Modification of a Noncatalytic Lysine of the Krev Interaction Trapped 1 Protein Enables Site-Directed Screening for Protein-Protein Interaction Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1651-1658. [PMID: 37974623 PMCID: PMC10644391 DOI: 10.1021/acsptsci.3c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Indexed: 11/19/2023]
Abstract
The covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys720) of the Krev interaction trapped 1 (KRIT1) protein. We show that the interaction of HNA with KRIT1 is highly specific, results in prolonged residence time of >8 h, and inhibits the Heart of glass 1 (HEG1)-KRIT1 protein-protein interaction (PPI). Screening of HNA derivatives identified analogs exhibiting similar binding modes as the parent fragment but faster target engagement and stronger inhibition activity. These results demonstrate that HNA is an efficient site-directing fragment with promise in developing HEG1-KRIT1 PPI inhibitors. Further, the aldimine chemistry, when coupled with templating effects that promote proximity, can produce a long-lasting reversible covalent modification of noncatalytic lysines.
Collapse
Affiliation(s)
- Karol
R. Francisco
- Department
of Chemistry and Biochemistry, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jessica Bruystens
- Department
of Pharmacology, University of California, San Diego, California 92161, United States
| | - Carmine Varricchio
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF103NB, U.K.
| | - Sara McCurdy
- Department
of Medicine, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jian Wu
- Department
of Pharmacology, University of California, San Diego, California 92161, United States
| | - Miguel A. Lopez-Ramirez
- Department
of Pharmacology, University of California, San Diego, California 92161, United States
- Department
of Medicine, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Mark Ginsberg
- Department
of Medicine, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Conor R. Caffrey
- Center for
Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy
and Pharmaceutical Sciences, University
of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Andrea Brancale
- School
of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF103NB, U.K.
- Vysoká
Sk̆ola Chemicko-Technologická v Praze, Department of
Organic ChemistryTechnická 5, Prague 16628, Czech Republic
| | - Alexandre R. Gingras
- Department
of Medicine, University of California, San
Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Mark S. Hixon
- Mark
S. Hixon Consulting LLC, 11273Spitfire Road, San Diegom California 92126, United States
| | - Carlo Ballatore
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Zeng Y, Shi W, Liu Z, Xu H, Liu L, Hang J, Wang Y, Lu M, Zhou W, Huang W, Tang F. C-terminal modification and functionalization of proteins via a self-cleavage tag triggered by a small molecule. Nat Commun 2023; 14:7169. [PMID: 37935692 PMCID: PMC10630284 DOI: 10.1038/s41467-023-42977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
The precise modification or functionalization of the protein C-terminus is essential but full of challenges. Herein, a chemical approach to modify the C-terminus is developed by fusing a cysteine protease domain on the C-terminus of the protein of interest, which could achieve the non-enzymatic C-terminal functionalization by InsP6-triggered cysteine protease domain self-cleavage. This method demonstrates a highly efficient way to achieve protein C-terminal functionalization and is compatible with a wide range of amine-containing molecules and proteins. Additionally, a reversible C-terminal de-functionalization is found by incubating the C-terminal modified proteins with cysteine protease domain and InsP6, providing a tool for protein functionalization and de-functionalization. Last, various applications of protein C-terminal functionalization are provided in this work, as demonstrated by the site-specific assembly of nanobody drug conjugates, the construction of a bifunctional antibody, the C-terminal fluorescent labeling, and the C-terminal transpeptidation and glycosylation.
Collapse
Affiliation(s)
- Yue Zeng
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Wei Shi
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Zhi Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Hao Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
| | - Liya Liu
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Jiaying Hang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
| | - Yongqin Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Mengru Lu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Zhou
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Huang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Rd, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Feng Tang
- State Key Laboratory of Drug Research, Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No.555 Zuchongzhi Rd, Pudong, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China.
| |
Collapse
|
17
|
Csorba N, Ábrányi-Balogh P, Keserű GM. Covalent fragment approaches targeting non-cysteine residues. Trends Pharmacol Sci 2023; 44:802-816. [PMID: 37770315 DOI: 10.1016/j.tips.2023.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023]
Abstract
Covalent fragment approaches combine advantages of covalent binders and fragment-based drug discovery (FBDD) for target identification and validation. Although early applications focused mostly on cysteine labeling, the chemistries of available warheads that target other orthosteric and allosteric protein nucleophiles has recently been extended. The range of different warheads and labeling chemistries provide unique opportunities for screening and optimizing warheads necessary for targeting non-cysteine residues. In this review, we discuss these recently developed amino-acid-specific and promiscuous warheads, as well as emerging labeling chemistries, which includes novel transition metal catalyzed, photoactive, electroactive, and noncatalytic methodologies. We also highlight recent applications of covalent fragments for the development of molecular glues and proteolysis-targeting chimeras (PROTACs), and their utility in chemical proteomics-based target identification and validation.
Collapse
Affiliation(s)
- Noémi Csorba
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - Péter Ábrányi-Balogh
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary
| | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; National Laboratory for Drug Research and Development, Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117, Budapest, Hungary; Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4, 1111 Budapest, Hungary.
| |
Collapse
|
18
|
Konstantinidou M, Visser EJ, Vandenboorn E, Chen S, Jaishankar P, Overmans M, Dutta S, Neitz RJ, Renslo AR, Ottmann C, Brunsveld L, Arkin MR. Structure-Based Optimization of Covalent, Small-Molecule Stabilizers of the 14-3-3σ/ERα Protein-Protein Interaction from Nonselective Fragments. J Am Chem Soc 2023; 145:20328-20343. [PMID: 37676236 PMCID: PMC10515640 DOI: 10.1021/jacs.3c05161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 09/08/2023]
Abstract
The stabilization of protein-protein interactions (PPIs) has emerged as a promising strategy in chemical biology and drug discovery. The identification of suitable starting points for stabilizing native PPIs and their subsequent elaboration into selective and potent molecular glues lacks structure-guided optimization strategies. We have previously identified a disulfide fragment that stabilized the hub protein 14-3-3σ bound to several of its clients, including ERα and C-RAF. Here, we show the structure-based optimization of the nonselective fragment toward selective and highly potent small-molecule stabilizers of the 14-3-3σ/ERα complex. The more elaborated molecular glues, for example, show no stabilization of 14-3-3σ/C-RAF up to 150 μM compound. Orthogonal biophysical assays, including mass spectrometry and fluorescence anisotropy, were used to establish structure-activity relationships. The binding modes of 37 compounds were elucidated with X-ray crystallography, which further assisted the concomitant structure-guided optimization. By targeting specific amino acids in the 14-3-3σ/ERα interface and locking the conformation with a spirocycle, the optimized covalent stabilizer 181 achieved potency, cooperativity, and selectivity similar to the natural product Fusicoccin-A. This case study showcases the value of addressing the structure, kinetics, and cooperativity for molecular glue development.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Emira J. Visser
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Edmee Vandenboorn
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sheng Chen
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Priyadarshini Jaishankar
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Maurits Overmans
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Shubhankar Dutta
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - R. Jeffrey Neitz
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Adam R. Renslo
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems (ICMS), Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Center (SMDC), University of California, San Francisco, California 94143, United States
| |
Collapse
|
19
|
Visser EJ, Jaishankar P, Sijbesma E, Pennings MAM, Vandenboorn EMF, Guillory X, Neitz RJ, Morrow J, Dutta S, Renslo AR, Brunsveld L, Arkin MR, Ottmann C. From Tethered to Freestanding Stabilizers of 14-3-3 Protein-Protein Interactions through Fragment Linking. Angew Chem Int Ed Engl 2023; 62:e202308004. [PMID: 37455289 DOI: 10.1002/anie.202308004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.
Collapse
Affiliation(s)
- Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Eline Sijbesma
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Edmee M F Vandenboorn
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Xavier Guillory
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - R Jeffrey Neitz
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - John Morrow
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Shubhankar Dutta
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Den Dolech 2, 5612, AZ Eindhoven, The Netherlands
| |
Collapse
|
20
|
Dewey JA, Delalande C, Azizi SA, Lu V, Antonopoulos D, Babnigg G. Molecular Glue Discovery: Current and Future Approaches. J Med Chem 2023; 66:9278-9296. [PMID: 37437222 PMCID: PMC10805529 DOI: 10.1021/acs.jmedchem.3c00449] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The intracellular interactions of biomolecules can be maneuvered to redirect signaling, reprogram the cell cycle, or decrease infectivity using only a few dozen atoms. Such "molecular glues," which can drive both novel and known interactions between protein partners, represent an enticing therapeutic strategy. Here, we review the methods and approaches that have led to the identification of small-molecule molecular glues. We first classify current FDA-approved molecular glues to facilitate the selection of discovery methods. We then survey two broad discovery method strategies, where we highlight the importance of factors such as experimental conditions, software packages, and genetic tools for success. We hope that this curation of methodologies for directed discovery will inspire diverse research efforts targeting a multitude of human diseases.
Collapse
Affiliation(s)
- Jeffrey A Dewey
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Clémence Delalande
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Saara-Anne Azizi
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois 60637, United States
| | - Vivian Lu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Dionysios Antonopoulos
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gyorgy Babnigg
- Biosciences Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
21
|
Lucero B, Francisco KR, Liu LJ, Caffrey CR, Ballatore C. Protein-protein interactions: developing small-molecule inhibitors/stabilizers through covalent strategies. Trends Pharmacol Sci 2023; 44:474-488. [PMID: 37263826 PMCID: PMC11003449 DOI: 10.1016/j.tips.2023.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
The development of small-molecule inhibitors or stabilizers of selected protein-protein interactions (PPIs) of interest holds considerable promise for the development of research tools as well as candidate therapeutics. In this context, the covalent modification of selected residues within the target protein has emerged as a promising mechanism of action to obtain small-molecule modulators of PPIs with appropriate selectivity and duration of action. Different covalent labeling strategies are now available that can potentially allow for a rational, ground-up discovery and optimization of ligands as PPI inhibitors or stabilizers. This review article provides a synopsis of recent developments and applications of such tactics, with a particular focus on site-directed fragment tethering and proximity-enabled approaches.
Collapse
Affiliation(s)
- Bobby Lucero
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karol R Francisco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Carlo Ballatore
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
22
|
Chen SY, Zacharias M. What Makes a Good Protein-Protein Interaction Stabilizer: Analysis and Application of the Dual-Binding Mechanism. ACS CENTRAL SCIENCE 2023; 9:969-979. [PMID: 37252344 PMCID: PMC10214505 DOI: 10.1021/acscentsci.3c00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 05/31/2023]
Abstract
Protein-protein interactions (PPIs) are essential for biological processes including immune reactions and diseases. Inhibition of PPIs by drug-like compounds is a common basis for therapeutic approaches. In many cases the flat interface of PP complexes prevents discovery of specific compound binding to cavities on one partner and PPI inhibition. However, frequently new pockets are formed at the PP interface that allow accommodation of stabilizers which is often as desirable as inhibition but a much less explored alternative strategy. Herein, we employ molecular dynamics simulations and pocket detection to investigate 18 known stabilizers and associated PP complexes. For most cases, we find that a dual-binding mechanism, a similar stabilizer interaction strength with each protein partner, is an important prerequisite for effective stabilization. A few stabilizers follow an allosteric mechanism by stabilizing the protein bound structure and/or increase the PPI indirectly. On 226 protein-protein complexes, we find in >75% of the cases interface cavities suitable for binding of drug-like compounds. We propose a computational compound identification workflow that exploits new PP interface cavities and optimizes the dual-binding mechanism and apply it to 5 PP complexes. Our study demonstrates a great potential for in silico PPI stabilizers discovery with a wide range of therapeutic applications.
Collapse
|
23
|
Somsen B, Schellekens RJ, Verhoef CJ, Arkin MR, Ottmann C, Cossar PJ, Brunsveld L. Reversible Dual-Covalent Molecular Locking of the 14-3-3/ERRγ Protein-Protein Interaction as a Molecular Glue Drug Discovery Approach. J Am Chem Soc 2023; 145:6741-6752. [PMID: 36926879 PMCID: PMC10064330 DOI: 10.1021/jacs.2c12781] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 03/18/2023]
Abstract
Molecules that stabilize protein-protein interactions (PPIs) are invaluable as tool compounds for biophysics and (structural) biology, and as starting points for molecular glue drug discovery. However, identifying initial starting points for PPI stabilizing matter is highly challenging, and chemical optimization is labor-intensive. Inspired by chemical crosslinking and reversible covalent fragment-based drug discovery, we developed an approach that we term "molecular locks" to rapidly access molecular glue-like tool compounds. These dual-covalent small molecules reversibly react with a nucleophilic amino acid on each of the partner proteins to dynamically crosslink the protein complex. The PPI between the hub protein 14-3-3 and estrogen-related receptor γ (ERRγ) was used as a pharmacologically relevant case study. Based on a focused library of dual-reactive small molecules, a molecular glue tool compound was rapidly developed. Biochemical assays and X-ray crystallographic studies validated the ternary covalent complex formation and overall PPI stabilization via dynamic covalent crosslinking. The molecular lock approach is highly selective for the specific 14-3-3/ERRγ complex, over other 14-3-3 complexes. This selectivity is driven by the interplay of molecular reactivity and molecular recognition of the composite PPI binding interface. The long lifetime of the dual-covalent locks enabled the selective stabilization of the 14-3-3/ERRγ complex even in the presence of several other competing 14-3-3 clients with higher intrinsic binding affinities. The molecular lock approach enables systematic, selective, and potent stabilization of protein complexes to support molecular glue drug discovery.
Collapse
Affiliation(s)
- Bente
A. Somsen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Rick J.C. Schellekens
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Carlo J.A. Verhoef
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michelle R. Arkin
- Department
of Pharmaceutical Chemistry and Small Molecule Discovery Centre (SMDC), University of California, San Francisco, California 94143, United States
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter J. Cossar
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
24
|
Wang ZZ, Shi XX, Huang GY, Hao GF, Yang GF. Fragment-based drug discovery supports drugging 'undruggable' protein-protein interactions. Trends Biochem Sci 2023; 48:539-552. [PMID: 36841635 DOI: 10.1016/j.tibs.2023.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Protein-protein interactions (PPIs) have important roles in various cellular processes, but are commonly described as 'undruggable' therapeutic targets due to their large, flat, featureless interfaces. Fragment-based drug discovery (FBDD) has achieved great success in modulating PPIs, with more than ten compounds in clinical trials. Here, we highlight the progress of FBDD in modulating PPIs for therapeutic development. Targeting hot spots that have essential roles in both fragment binding and PPIs provides a shortcut for the development of PPI modulators via FBDD. We highlight successful cases of cracking the 'undruggable' problems of PPIs using fragment-based approaches. We also introduce new technologies and future trends. Thus, we hope that this review will provide useful guidance for drug discovery targeting PPIs.
Collapse
Affiliation(s)
- Zhi-Zheng Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, PR China
| | - Xing-Xing Shi
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, PR China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, PR China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, PR China; National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
25
|
Sacco G, Arosio D, Paolillo M, Gloger A, Scheuermann J, Pignataro L, Belvisi L, Dal Corso A, Gennari C. RGD Cyclopeptide Equipped with a Lysine-Engaging Salicylaldehyde Showing Enhanced Integrin Affinity and Cell Detachment Potency. Chemistry 2023; 29:e202203768. [PMID: 36594507 DOI: 10.1002/chem.202203768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Salicylaldehyde (SA) derivatives are emerging as useful fragments to obtain reversible-covalent inhibitors interacting with the lysine residues of the target protein. Here the SA installation at the C terminus of an integrin-binding cyclopeptide, leading to enhanced ligand affinity for the receptor as well as stronger biological activity in cultured glioblastoma cells is reported.
Collapse
Affiliation(s)
- Giovanni Sacco
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Daniela Arosio
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Consiglio Nazionale delle Ricerche, Via Golgi 19, I-20133, Milan, Italy
| | - Mayra Paolillo
- Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 6, 27100, Pavia, Italy
| | - Andreas Gloger
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Luca Pignataro
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Laura Belvisi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| | - Cesare Gennari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi, 19, I-20133, Milan, Italy
| |
Collapse
|
26
|
Abstract
Covalent drugs have been used to treat diseases for more than a century, but tools that facilitate the rational design of covalent drugs have emerged more recently. The purposeful addition of reactive functional groups to existing ligands can enable potent and selective inhibition of target proteins, as demonstrated by the covalent epidermal growth factor receptor (EGFR) and Bruton's tyrosine kinase (BTK) inhibitors used to treat various cancers. Moreover, the identification of covalent ligands through 'electrophile-first' approaches has also led to the discovery of covalent drugs, such as covalent inhibitors for KRAS(G12C) and SARS-CoV-2 main protease. In particular, the discovery of KRAS(G12C) inhibitors validates the use of covalent screening technologies, which have become more powerful and widespread over the past decade. Chemoproteomics platforms have emerged to complement covalent ligand screening and assist in ligand discovery, selectivity profiling and target identification. This Review showcases covalent drug discovery milestones with emphasis on the lessons learned from these programmes and how an evolving toolbox of covalent drug discovery techniques facilitates success in this field.
Collapse
Affiliation(s)
- Lydia Boike
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Nathaniel J Henning
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, CA, USA.
- Innovative Genomics Institute, Berkeley, CA, USA.
| |
Collapse
|
27
|
Somsen BA, Craenmehr FWB, Liu WHW, Koops AA, Pennings MAM, Visser EJ, Ottmann C, Cossar PJ, Brunsveld L. Functional mapping of the 14-3-3 hub protein as a guide to design 14-3-3 molecular glues. Chem Sci 2022; 13:13122-13131. [PMID: 36425501 PMCID: PMC9667936 DOI: 10.1039/d2sc04662h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
Molecular glues represent an evolution in drug discovery, however, targeted stabilization of protein complexes remains challenging, owing to a paucity of drug design rules. The functional mapping of hotspots has been critical to protein-protein interaction (PPI) inhibitor research, however, the orthogonal approach to stabilize PPIs has not exploited this information. Utilizing the hub protein 14-3-3 as a case study we demonstrate that functional mapping of hotspots provides a triage map for 14-3-3 molecular glue development. Truncation and mutation studies allowed deconvoluting the energetic contributions of sidechain and backbone interactions of a 14-3-3-binding non-natural peptide. Three central 14-3-3 hotspots were identified and their thermodynamic characteristics profiled. In addition to the phospho-binding pocket; (i) Asn226, (ii) Lys122 and (iii) the hydrophobic patch formed by Leu218, Ile219 and Leu222 were critical for protein complex formation. Exploiting this hotspot information allowed a peptide-based molecular glue that elicits high cooperativity (α = 36) and selectively stabilizes the 14-3-3/ChREBP PPI to be uniquely developed.
Collapse
Affiliation(s)
- Bente A Somsen
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Fenna W B Craenmehr
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Wei-Hong W Liu
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Auke A Koops
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Marloes A M Pennings
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Emira J Visser
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology P.O. Box 513 Eindhoven 5600 MB The Netherlands
| |
Collapse
|
28
|
Luo Z, Xu L, Tang X, Zhao X, He T, Lubell WD, Zhang J. Synthesis and biological evaluation of novel all-hydrocarbon cross-linked aza-stapled peptides. Org Biomol Chem 2022; 20:7963-7971. [PMID: 36190455 DOI: 10.1039/d2ob01496c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel all-hydrocarbon cross-linked aza-stapled peptides were designed and synthesized for the first time by ring-closing metathesis between two aza-alkenylglycine residues. Three aza-stapled peptidic analogues based on the peptide dual inhibitor of p53-MDM2/MDMX interactions were synthesized and screened for biological activities. Among the three aza-stapled peptides, aSPDI-411 displayed increased anti-tumor activity, binding affinities to both MDM2 and MDMX, and cell membrane permeability compared to its linear peptide counterpart.
Collapse
Affiliation(s)
- Zhihong Luo
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Lei Xu
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Xiaomin Tang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Xuejun Zhao
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Tong He
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - William D Lubell
- Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada.
| | - Jinqiang Zhang
- Innovative Drug Research Centre (IDRC), Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China. .,Chongqing University Industrial Technology Research Institute, Chongqing 401329, People's Republic of China
| |
Collapse
|
29
|
Liu J, Guo C, Wang Y, Su M, Huang W, Lai KP. Preclinical insights into fucoidan as a nutraceutical compound against perfluorooctanoic acid-associated obesity via targeting endoplasmic reticulum stress. Front Nutr 2022; 9:950130. [PMID: 36034923 PMCID: PMC9413161 DOI: 10.3389/fnut.2022.950130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity is a growing global health problem; it has been forecasted that over half of the global population will be obese by 2030. Obesity is complicated with many diseases, such as diabetes and cardiovascular diseases, leading to an economic impact on society. Other than diet, exposure to environmental pollutants is considered a risk factor for obesity. Exposure to perfluorooctanoic acid (PFOA) was found to impair hepatic lipid metabolism, resulting in obesity. In this study, we applied network pharmacology and systematic bioinformatics analysis, such as gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, together with molecular docking, to investigate the targets of fucoidan for treating PFOA-associated obesity through the regulation of endoplasmic reticulum stress (ERS). Our results identified ten targets of fucoidan, such as glucosylceramidase beta (GBA), glutathione-disulfide reductase (GSR), melanocortin 4 receptor (MC4R), matrix metallopeptidase (MMP)2, MMP9, nuclear factor kappa B subunit 1 (NFKB1), RELA Proto-Oncogene, NF-KB Subunit (RELA), nuclear receptor subfamily 1 group I member 2 (NR1I2), proliferation-activated receptor delta (PPARD), and cellular retinoic acid binding protein 2 (CRABP2). GO and KEGG enrichment analyses highlighted their involvement in the pathogenesis of obesity, such as lipid and fat metabolisms. More importantly, the gene cluster is responsible for obesity-associated diseases and disorders, such as insulin resistance (IR), non-alcoholic fatty liver disease, and diabetic cardiomyopathy, via the control of signaling pathways. The findings of this report provide evidence that fucoidan is a potential nutraceutical product against PFOA-associated obesity through the regulation of ERS.
Collapse
Affiliation(s)
- Jiaqi Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Chao Guo
- Department of Clinical Pharmacy, Guigang City People's Hospital, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Min Su
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Wenjun Huang
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin, China
| |
Collapse
|
30
|
Yelland T, Garcia E, Parry C, Kowalczyk D, Wojnowska M, Gohlke A, Zalar M, Cameron K, Goodwin G, Yu Q, Zhu PC, ElMaghloob Y, Pugliese A, Archibald L, Jamieson A, Chen YX, McArthur D, Bower J, Ismail S. Stabilization of the RAS:PDE6D Complex Is a Novel Strategy to Inhibit RAS Signaling. J Med Chem 2022; 65:1898-1914. [PMID: 35104933 PMCID: PMC8842248 DOI: 10.1021/acs.jmedchem.1c01265] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
RAS is a major anticancer
drug target which requires membrane localization
to activate downstream signal transduction. The direct inhibition
of RAS has proven to be challenging. Here, we present a novel strategy
for targeting RAS by stabilizing its interaction with the prenyl-binding
protein PDE6D and disrupting its localization. Using rationally designed
RAS point mutations, we were able to stabilize the RAS:PDE6D complex
by increasing the affinity of RAS for PDE6D, which resulted in the
redirection of RAS to the cytoplasm and the primary cilium and inhibition
of oncogenic RAS/ERK signaling. We developed an SPR fragment screening
and identified fragments that bind at the KRAS:PDE6D interface, as
shown through cocrystal structures. Finally, we show that the stoichiometric
ratios of KRAS:PDE6D vary in different cell lines, suggesting that
the impact of this strategy might be cell-type-dependent. This study
forms the foundation from which a potential anticancer small-molecule
RAS:PDE6D complex stabilizer could be developed.
Collapse
Affiliation(s)
- Tamas Yelland
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Esther Garcia
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Charles Parry
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | | | - Marta Wojnowska
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom
| | - Andrea Gohlke
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Matja Zalar
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,School of Chemical Engineering and Analytical Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Kenneth Cameron
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Gillian Goodwin
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Qing Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | | | - Angelo Pugliese
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Lewis Archibald
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Jamieson
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yong Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Duncan McArthur
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,BioAscent Discovery Ltd, Biocity, Motherwell ML1 5UH, United Kingdom
| | - Justin Bower
- Drug Discovery Program, CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Shehab Ismail
- CRUK Beatson Institute, Glasgow G61 1BD, United Kingdom.,Department of Chemistry, KU Leuven, Celestijnenlaan 200G, Heverlee 3001, Belgium
| |
Collapse
|
31
|
de Esch IJP, Erlanson DA, Jahnke W, Johnson CN, Walsh L. Fragment-to-Lead Medicinal Chemistry Publications in 2020. J Med Chem 2022; 65:84-99. [PMID: 34928151 PMCID: PMC8762670 DOI: 10.1021/acs.jmedchem.1c01803] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 12/28/2022]
Abstract
Fragment-based drug discovery (FBDD) continues to evolve and make an impact in the pharmaceutical sciences. We summarize successful fragment-to-lead studies that were published in 2020. Having systematically analyzed annual scientific outputs since 2015, we discuss trends and best practices in terms of fragment libraries, target proteins, screening technologies, hit-optimization strategies, and the properties of hit fragments and the leads resulting from them. As well as the tabulated Fragment-to-Lead (F2L) programs, our 2020 literature review identifies several trends and innovations that promise to further increase the success of FBDD. These include developing structurally novel screening fragments, improving fragment-screening technologies, using new computer-aided design and virtual screening approaches, and combining FBDD with other innovative drug-discovery technologies.
Collapse
Affiliation(s)
- Iwan J. P. de Esch
- Division
of Medicinal Chemistry, Amsterdam Institute of Molecular and Life
Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel A. Erlanson
- Frontier
Medicines, 151 Oyster
Point Blvd., South San Francisco, California 94080, United States
| | - Wolfgang Jahnke
- Novartis
Institutes for Biomedical Research, Chemical
Biology and Therapeutics, 4002 Basel, Switzerland
| | - Christopher N. Johnson
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| | - Louise Walsh
- Astex
Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
32
|
Srdanović S, Hegedüs Z, Warriner SL, Wilson AJ. Towards Identification of Protein-Protein Interaction Stabilizers via Inhibitory Peptide-Fragment Hybrids Using Templated Fragment Ligation. RSC Chem Biol 2022; 3:546-550. [PMID: 35656480 PMCID: PMC9092428 DOI: 10.1039/d2cb00025c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022] Open
Abstract
Using the hDMX/14-3-3 interaction, acylhydrazone-based ligand-directed fragment ligation was used to identify protein-protein interaction (PPI) inhibitory peptide-fragment hybrids. Separation of the peptide-fragment hybrids into the components yielded fragments that stabilized...
Collapse
Affiliation(s)
- Sonja Srdanović
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Zsofia Hegedüs
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- Department of Medical Chemistry, University of Szeged Dóm tér 8 H-6720 Szeged Hungary
| | - Stuart L Warriner
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Leeds, Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
33
|
Falcicchio M, Ward JA, Chothia SY, Basran J, Mohindra A, Macip S, Roversi P, Doveston RG. Cooperative stabilisation of 14-3-3σ protein-protein interactions via covalent protein modification. Chem Sci 2021; 12:12985-12992. [PMID: 34745529 PMCID: PMC8513901 DOI: 10.1039/d1sc02120f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/05/2021] [Indexed: 12/19/2022] Open
Abstract
14-3-3 proteins are an important family of hub proteins that play important roles in many cellular processes via a large network of interactions with partner proteins. Many of these protein-protein interactions (PPI) are implicated in human diseases such as cancer and neurodegeneration. The stabilisation of selected 14-3-3 PPIs using drug-like 'molecular glues' is a novel therapeutic strategy with high potential. However, the examples reported to date have a number of drawbacks in terms of selectivity and potency. Here, we report that WR-1065, the active species of the approved drug amifostine, covalently modifies 14-3-3σ at an isoform-unique cysteine residue, Cys38. This modification leads to isoform-specific stabilisation of two 14-3-3σ PPIs in a manner that is cooperative with a well characterised molecular glue, fusicoccin A. Our findings reveal a novel stabilisation mechanism for 14-3-3σ, an isoform with particular involvement in cancer pathways. This mechanism can be exploited to harness the enhanced potency conveyed by covalent drug molecules and dual ligand cooperativity. This is demonstrated in two cancer cell lines whereby the cooperative behaviour of fusicoccin A and WR-1065 leads to enhanced efficacy for inducing cell death and attenuating cell growth.
Collapse
Affiliation(s)
- Marta Falcicchio
- Leicester Institute for Structural and Chemical Biology, University of Leicester University Road Leicester LE1 7RH UK .,School of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Jake A Ward
- Leicester Institute for Structural and Chemical Biology, University of Leicester University Road Leicester LE1 7RH UK .,Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester University Road Leicester LE1 7RH UK
| | - Sara Y Chothia
- Leicester Institute for Structural and Chemical Biology, University of Leicester University Road Leicester LE1 7RH UK .,School of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Jaswir Basran
- Department of Molecular and Cell Biology, University of Leicester University Road Leicester LE1 7RH UK
| | - Alisha Mohindra
- Leicester Institute for Structural and Chemical Biology, University of Leicester University Road Leicester LE1 7RH UK .,School of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester University Road Leicester LE1 7RH UK.,FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya Barcelona Spain
| | - Pietro Roversi
- Leicester Institute for Structural and Chemical Biology, University of Leicester University Road Leicester LE1 7RH UK .,Department of Molecular and Cell Biology, University of Leicester University Road Leicester LE1 7RH UK.,Institute of Agricultural Biology and Biotechnology, IBBA-CNR Unit of Milano Via Bassini 15 I-20133 Milan Italy
| | - Richard G Doveston
- Leicester Institute for Structural and Chemical Biology, University of Leicester University Road Leicester LE1 7RH UK .,School of Chemistry, University of Leicester University Road Leicester LE1 7RH UK
| |
Collapse
|
34
|
Soini L, Redhead M, Westwood M, Leysen S, Davis J, Ottmann C. Identification of molecular glues of the SLP76/14-3-3 protein-protein interaction. RSC Med Chem 2021; 12:1555-1564. [PMID: 34667951 PMCID: PMC8459327 DOI: 10.1039/d1md00172h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
The stabilisation of protein-protein interactions (PPIs) through molecular glues is a novel and promising approach in drug discovery. In stark contrast to research in protein-protein inhibition the field of stabilisation remains underdeveloped with comparatively few examples of small-molecule stabilisers of PPIs reported to date. At the same time identifying molecular glues has received recent sustained interest, especially in the fields of targeted protein degradation and 14-3-3 PPIs. The hub-protein 14-3-3 has a broad interactome with more than 500 known protein partners which presents a great opportunity for therapeutic intervention. In this study we have developed an HTRF assay suitable for HTS of the 14-3-3/SLP76 PPI and have completed a proof of concept screen against a chemically diverse library of 20 K molecules. The adaptor protein SLP76 has been reported to interact with 14-3-3 proteins downstream of the TCR playing an important role in mediating its own proteasomal degradation. We believe that stabilisation of this PPI could be exploited to potentiate degradation of SLP76 and therefore inhibit TCR signalling. This would represent an interesting alternative to other approaches in the field of targeted protein degradation. Here we disclose 16 novel stabilisers of the 14-3-3/SLP76 PPI across multiple different chemotypes. Based on the early results presented here we would recommend this approach to find molecular glues with broad applicability in the field of 14-3-3 PPIs.
Collapse
Affiliation(s)
- Lorenzo Soini
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands .,Department of Chemistry, UCB Celltech Slough UK
| | - Martin Redhead
- Exscientia Ltd, Schrodinger Building, Oxford Science Park Oxford OX44GE UK
| | - Marta Westwood
- Structural Biology, Discovery, Charles River, Chesterford Research Park UK
| | - Seppe Leysen
- Department of Structural Biology and Biophysics, UCB Celltech Slough UK
| | | | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
35
|
Dewey JA, Azizi SA, Lu V, Dickinson BC. A System for the Evolution of Protein-Protein Interaction Inducers. ACS Synth Biol 2021; 10:2096-2110. [PMID: 34319091 DOI: 10.1021/acssynbio.1c00276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecules that induce interactions between proteins, often referred to as "molecular glues", are increasingly recognized as important therapeutic modalities and as entry points for rewiring cellular signaling networks. Here, we report a new PACE-based method to rapidly select and evolve molecules that mediate interactions between otherwise noninteracting proteins: rapid evolution of protein-protein interaction glues (rePPI-G). By leveraging proximity-dependent split RNA polymerase-based biosensors, we developed E. coli-based detection and selection systems that drive gene expression outputs only when interactions between target proteins are induced. We then validated the system using engineered bivalent molecular glues, showing that rePPI-G robustly selects for molecules that induce the target interaction. Proof-of-concept evolutions demonstrated that rePPI-G reduces the "hook effect" of the engineered molecular glues, due at least in part to tuning the interaction affinities of each individual component of the bifunctional molecule. Altogether, this work validates rePPI-G as a continuous, phage-based evolutionary technology for optimizing molecular glues, providing a strategy for developing molecules that reprogram protein-protein interactions.
Collapse
Affiliation(s)
- Jeffrey A. Dewey
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Vivian Lu
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| | - Bryan C. Dickinson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60615, United States
| |
Collapse
|
36
|
Adakkattil R, Thakur K, Rai V. Reactivity and Selectivity Principles in Native Protein Bioconjugation. CHEM REC 2021; 21:1941-1956. [PMID: 34184826 DOI: 10.1002/tcr.202100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Indexed: 12/24/2022]
Abstract
Are chemical methods capable of precisely engineering the native proteins? Is it possible to develop platforms that can empower the regulation of chemoselectivity, site-selectivity, modularity, protein-specificity, and site-specificity? This account delineates our research journey in the last ten years on the developments revolving around these questions. It will range from the realization of chemoselective and site-selective labeling of reactivity hotspots to modular linchpin directed modification (LDM®) platform and site-specific Gly-tag® technology. Also, we outline a few biotechnology tools, including Maspecter®, that accelerated the detailed analysis of the bioconjugates and rendered a powerful toolbox for homogeneous antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Ramesh Adakkattil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| | - Kalyani Thakur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, 462 066, Bhopal, Madhya Pradesh, India
| |
Collapse
|
37
|
On the specificity of protein-protein interactions in the context of disorder. Biochem J 2021; 478:2035-2050. [PMID: 34101805 PMCID: PMC8203207 DOI: 10.1042/bcj20200828] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
With the increased focus on intrinsically disordered proteins (IDPs) and their large interactomes, the question about their specificity — or more so on their multispecificity — arise. Here we recapitulate how specificity and multispecificity are quantified and address through examples if IDPs in this respect differ from globular proteins. The conclusion is that quantitatively, globular proteins and IDPs are similar when it comes to specificity. However, compared with globular proteins, IDPs have larger interactome sizes, a phenomenon that is further enabled by their flexibility, repetitive binding motifs and propensity to adapt to different binding partners. For IDPs, this adaptability, interactome size and a higher degree of multivalency opens for new interaction mechanisms such as facilitated exchange through trimer formation and ultra-sensitivity via threshold effects and ensemble redistribution. IDPs and their interactions, thus, do not compromise the definition of specificity. Instead, it is the sheer size of their interactomes that complicates its calculation. More importantly, it is this size that challenges how we conceptually envision, interpret and speak about their specificity.
Collapse
|
38
|
Cossar PJ, Wolter M, van Dijck L, Valenti D, Levy LM, Ottmann C, Brunsveld L. Reversible Covalent Imine-Tethering for Selective Stabilization of 14-3-3 Hub Protein Interactions. J Am Chem Soc 2021; 143:8454-8464. [PMID: 34047554 PMCID: PMC8193639 DOI: 10.1021/jacs.1c03035] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The stabilization
of protein complexes has emerged as a promising
modality, expanding the number of entry points for novel therapeutic
intervention. Targeting proteins that mediate protein–protein
interactions (PPIs), such as hub proteins, is equally challenging
and rewarding as they offer an intervention platform for a variety
of diseases, due to their large interactome. 14-3-3 hub proteins bind
phosphorylated motifs of their interaction partners in a conserved
binding channel. The 14-3-3 PPI interface is consequently only diversified
by its different interaction partners. Therefore, it is essential
to consider, additionally to the potency, also the selectivity of
stabilizer molecules. Targeting a lysine residue at the interface
of the composite 14-3-3 complex, which can be targeted explicitly
via aldimine-forming fragments, we studied the de novo design of PPI stabilizers under consideration of potential selectivity.
By applying cooperativity analysis of ternary complex formation, we
developed a reversible covalent molecular glue for the 14-3-3/Pin1
interaction. This small fragment led to a more than 250-fold stabilization
of the 14-3-3/Pin1 interaction by selective interfacing with a unique
tryptophan in Pin1. This study illustrates how cooperative complex
formation drives selective PPI stabilization. Further, it highlights
how specific interactions within a hub proteins interactome can be
stabilized over other interactions with a common binding motif.
Collapse
Affiliation(s)
- Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lars van Dijck
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Laura M Levy
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
39
|
Wolter M, Valenti D, Cossar PJ, Hristeva S, Levy LM, Genski T, Hoffmann T, Brunsveld L, Tzalis D, Ottmann C. An Exploration of Chemical Properties Required for Cooperative Stabilization of the 14-3-3 Interaction with NF-κB-Utilizing a Reversible Covalent Tethering Approach. J Med Chem 2021; 64:8423-8436. [PMID: 34076416 PMCID: PMC8237268 DOI: 10.1021/acs.jmedchem.1c00401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Protein–protein
modulation has emerged as a proven approach
to drug discovery. While significant progress has been gained in developing
protein–protein interaction (PPI) inhibitors, the orthogonal
approach of PPI stabilization lacks established methodologies for
drug design. Here, we report the systematic ″bottom-up″
development of a reversible covalent PPI stabilizer. An imine bond
was employed to anchor the stabilizer at the interface of the 14-3-3/p65
complex, leading to a molecular glue that elicited an 81-fold increase
in complex stabilization. Utilizing protein crystallography and biophysical
assays, we deconvoluted how chemical properties of a stabilizer translate
to structural changes in the ternary 14-3-3/p65/molecular glue complex.
Furthermore, we explore how this leads to high cooperativity and increased
stability of the complex.
Collapse
Affiliation(s)
- Madita Wolter
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dario Valenti
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.,Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Peter J Cossar
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stanimira Hristeva
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Laura M Levy
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Thorsten Genski
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Torsten Hoffmann
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Luc Brunsveld
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dimitrios Tzalis
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
40
|
Liu J, Cao S, Ding G, Wang B, Li Y, Zhao Y, Shao Q, Feng J, Liu S, Qin L, Xiao Y. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J Cell Mol Med 2021; 25:4173-4182. [PMID: 33793048 PMCID: PMC8093981 DOI: 10.1111/jcmm.16490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3-binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Shengliang Cao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Guofei Ding
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Bin Wang
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yingchao Li
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yuzhong Zhao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Qingyuan Shao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Jian Feng
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Sidang Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd.QingdaoChina
- Qingdao Jiazhi Biotechnology Co., Ltd.QingdaoChina
| | - Yihong Xiao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| |
Collapse
|
41
|
Sacco G, Stammwitz S, Belvisi L, Pignataro L, Dal Corso A, Gennari C. Functionalized 2‐Hydroxybenzaldehyde‐PEG Modules as Portable Tags for the Engagement of Protein Lysine ϵ‐Amino Groups. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Giovanni Sacco
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Simon Stammwitz
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Laura Belvisi
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Luca Pignataro
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Alberto Dal Corso
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| | - Cesare Gennari
- Dipartimento di Chimica Università degli Studi di Milano Via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|
42
|
Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. Fragment-based covalent ligand discovery. RSC Chem Biol 2021; 2:354-367. [PMID: 34458789 PMCID: PMC8341086 DOI: 10.1039/d0cb00222d] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Targeted covalent inhibitors have regained widespread attention in drug discovery and have emerged as powerful tools for basic biomedical research. Fueled by considerable improvements in mass spectrometry sensitivity and sample processing, chemoproteomic strategies have revealed thousands of proteins that can be covalently modified by reactive small molecules. Fragment-based drug discovery, which has traditionally been used in a target-centric fashion, is now being deployed on a proteome-wide scale thereby expanding its utility to both the discovery of novel covalent ligands and their cognate protein targets. This powerful approach is allowing ‘high-throughput’ serendipitous discovery of cryptic pockets leading to the identification of pharmacological modulators of proteins previously viewed as “undruggable”. The reactive fragment toolkit has been enabled by recent advances in the development of new chemistries that target residues other than cysteine including lysine and tyrosine. Here, we review the emerging area of covalent fragment-based ligand discovery, which integrates the benefits of covalent targeting and fragment-based medicinal chemistry. We discuss how the two strategies synergize to facilitate the efficient discovery of new pharmacological modulators of established and new therapeutic target proteins. Covalent fragment-based ligand discovery greatly facilitates the discovery of useful fragments for drug discovery and helps unveil chemical-tractable biological targets in native biological systems.![]()
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Milka Kostic
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA.,Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | | | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Cell Biology, Harvard Medical School Boston MA 02215 USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA .,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
43
|
Aljabal G, Yap BK. 14-3-3σ and Its Modulators in Cancer. Pharmaceuticals (Basel) 2020; 13:ph13120441. [PMID: 33287252 PMCID: PMC7761676 DOI: 10.3390/ph13120441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023] Open
Abstract
14-3-3σ is an acidic homodimer protein with more than one hundred different protein partners associated with oncogenic signaling and cell cycle regulation. This review aims to highlight the crucial role of 14-3-3σ in controlling tumor growth and apoptosis and provide a detailed discussion on the structure-activity relationship and binding interactions of the most recent 14-3-3σ protein-protein interaction (PPI) modulators reported to date, which has not been reviewed previously. This includes the new fusicoccanes stabilizers (FC-NAc, DP-005), fragment stabilizers (TCF521-123, TCF521-129, AZ-003, AZ-008), phosphate-based inhibitors (IMP, PLP), peptide inhibitors (2a-d), as well as inhibitors from natural sources (85531185, 95911592). Additionally, this review will also include the discussions of the recent efforts by a different group of researchers for understanding the binding mechanisms of existing 14-3-3σ PPI modulators. The strategies and state-of-the-art techniques applied by various group of researchers in the discovery of a different chemical class of 14-3-3σ modulators for cancer are also briefly discussed in this review, which can be used as a guide in the development of new 14-3-3σ modulators in the near future.
Collapse
|
44
|
Soini L, Leysen S, Davis J, Westwood M, Ottmann C. The 14-3-3/SLP76 protein-protein interaction in T-cell receptor signalling: a structural and biophysical characterization. FEBS Lett 2020; 595:404-414. [PMID: 33159816 DOI: 10.1002/1873-3468.13993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022]
Abstract
The SH2 domain-containing protein of 76 kDa, SLP76, is an important adaptor protein that coordinates a complex protein network downstream of T-cell receptors (TCR), ultimately regulating the immune response. Upon phosphorylation on Ser376, SLP76 interacts with 14-3-3 adaptor proteins, which leads to its proteolytic degradation. This provides a negative feedback mechanism by which TCR signalling can be controlled. To gain insight into the 14-3-3/SLP76 protein-protein interaction (PPI), we have determined a high-resolution crystal structure of a SLP76 synthetic peptide containing Ser376 with 14-3-3σ. We then characterized its binding to 14-3-3 proteins biophysically by means of fluorescence polarization and isothermal titration calorimetry. Furthermore, we generated two recombinant SLP76 protein constructs and characterized their binding to 14-3-3. Our work lays the foundation for drug design efforts aimed at targeting the 14-3-3/SLP76 interaction and, thereby, TCR signalling.
Collapse
Affiliation(s)
- Lorenzo Soini
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.,Department of Chemistry, UCB Celltech, Slough, UK
| | - Seppe Leysen
- Department of Structural Biology and Biophysics, UCB Celltech, Slough, UK
| | - Jeremy Davis
- Department of Chemistry, UCB Celltech, Slough, UK
| | | | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
45
|
Wolter M, Valenti D, Cossar PJ, Levy LM, Hristeva S, Genski T, Hoffmann T, Brunsveld L, Tzalis D, Ottmann C. Fragment-Based Stabilizers of Protein-Protein Interactions through Imine-Based Tethering. Angew Chem Int Ed Engl 2020; 59:21520-21524. [PMID: 32816380 PMCID: PMC7756862 DOI: 10.1002/anie.202008585] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/16/2020] [Indexed: 12/22/2022]
Abstract
Small‐molecule stabilization of protein–protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a “bottom‐up” approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine‐forming fragments. The imine bond offers a covalent anchor for site‐directed fragment targeting, whereas its transient nature enables efficient analysis of structure–activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65‐subunit‐derived peptide of NF‐κB with the adapter protein 14‐3‐3. Those fragments that subsequently establish contacts with the p65‐derived peptide, rather than with 14‐3‐3, efficiently stabilize the 14‐3‐3/p65 complex and offer novel starting points for molecular glues.
Collapse
Affiliation(s)
- Madita Wolter
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Peter J Cossar
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Laura M Levy
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Stanimira Hristeva
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Thorsten Genski
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Torsten Hoffmann
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Luc Brunsveld
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Dimitrios Tzalis
- Taros Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227, Dortmund, Germany
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical, Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Chemistry, University of Duisburg-Essen, Universitätsstrasse 7, 45117, Essen, Germany
| |
Collapse
|