1
|
Tu C, Yang Y, Jiang Y, Hao Y, Wang Z, Fu S, Qin S, Liu B. Asymmetric Total Synthesis of Euphordraculoate A and Pedrolide. Angew Chem Int Ed Engl 2024; 63:e202409997. [PMID: 39085985 DOI: 10.1002/anie.202409997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
Here we report the asymmetric total syntheses of two rearranged tigliane diterpenoids, euphordraculoate A and pedrolide. A reductive dihydroxylation cascade and Nazarov cyclization were performed to generate euphordraculoate A, which was subjected to a cascade of Eu-promoted dienyl enolization, intramolecular Diels-Alder reaction and enol-ketone tautomerization to afford pedrolide, a pathway consistent with our proposal for the biogenesis of pedrolide.
Collapse
Affiliation(s)
- Canhui Tu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Yunlong Yang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Yuzhi Jiang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Yan Hao
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Zhen Wang
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Shaomin Fu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Song Qin
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| | - Bo Liu
- College of Chemistry, Sichuan University, 29 Wangjiang Rd., Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Kurihara Y, Yagi M, Noguchi T, Yasufuku H, Okita A, Yoshimura S, Oishi T, Chida N, Okamura T, Sato T. Total Synthesis of Keramaphidin B and Ingenamine by Base-Catalyzed Diels-Alder Reaction Using Dynamic Regioselective Crystallization. J Am Chem Soc 2024. [PMID: 38592076 DOI: 10.1021/jacs.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The control of the selectivity is a central issue in the total synthesis of complex natural products. In this paper, we report the total synthesis of (±)-keramaphidin B and (±)-ingenamine. The key reaction is a DMAP-catalyzed Diels-Alder reaction in which the regioselectivity is completely controlled by dynamic crystallization. Our synthesis successfully demonstrates that dynamic crystallization can be an alternative when the selectivity is not controlled by either kinetic or thermodynamic approaches in solution.
Collapse
Affiliation(s)
- Yuki Kurihara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Minori Yagi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takashi Noguchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Haruka Yasufuku
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Ayane Okita
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Sho Yoshimura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takeshi Oishi
- School of Medicine, Keio University, 4-1-1, Hiyoshi, Kohoku-ku, Yokohama 223-8521, Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Toshitaka Okamura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
3
|
Wanner DM, Becker PM, Suhr S, Wannenmacher N, Ziegler S, Herrmann J, Willig F, Gabler J, Jangid K, Schmid J, Hans AC, Frey W, Sarkar B, Kästner J, Peters R. Cooperative Lewis Acid-1,2,3-Triazolium-Aryloxide Catalysis: Pyrazolone Addition to Nitroolefins as Entry to Diaminoamides. Angew Chem Int Ed Engl 2023; 62:e202307317. [PMID: 37358186 DOI: 10.1002/anie.202307317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward β,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.
Collapse
Affiliation(s)
- Daniel M Wanner
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Patrick M Becker
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Simon Suhr
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Nick Wannenmacher
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Justin Herrmann
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Felix Willig
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Julia Gabler
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Khushbu Jangid
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Juliane Schmid
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Andreas C Hans
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Wolfgang Frey
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Johannes Kästner
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - René Peters
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Hans AC, Becker PM, Haußmann J, Suhr S, Wanner DM, Lederer V, Willig F, Frey W, Sarkar B, Kästner J, Peters R. A Practical and Robust Zwitterionic Cooperative Lewis Acid/Acetate/Benzimidazolium Catalyst for Direct 1,4-Additions. Angew Chem Int Ed Engl 2023; 62:e202217519. [PMID: 36651714 DOI: 10.1002/anie.202217519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
A catalyst type is disclosed allowing for exceptional efficiency in direct 1,4-additions. The catalyst is a zwitterionic entity, in which acetate binds to CuII , which is formally negatively charged and serving as counterion for benzimidazolium. All 3 functionalities are involved in the catalytic activation. For maleimides productivity was increased by a factor >300 compared to literature (TONs up to 6700). High stereoselectivity and productivity was attained for a broad range of other Michael acceptors as well. The polyfunctional catalyst is accessible in only 4 steps from N-Ph-benzimidazole with an overall yield of 96 % and robust during catalysis. This allowed to reuse the same catalyst multiple times with nearly constant efficiency. Mechanistic studies, in particular by DFT, give a detailed picture how the catalyst operates. The benzimidazolium unit stabilizes the coordinated enolate nucleophile and prevents that acetate/acetic acid dissociate from the catalyst.
Collapse
Affiliation(s)
- Andreas C Hans
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Patrick M Becker
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Johanna Haußmann
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Simon Suhr
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel M Wanner
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Vera Lederer
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Felix Willig
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Wolfgang Frey
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Biprajit Sarkar
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Johannes Kästner
- Universität Stuttgart, Institut für Theoretische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - René Peters
- Universität Stuttgart, Institut für Organische Chemie, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Li L, Liu Y, Zhou S, Li J, Qi C, Zhang F. Synthesis of 4-hydroxy-3-benzoylpyridin-2(1 H)-one derivatives using pyrrolidine as catalyst. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2177872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Affiliation(s)
- Linbo Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuxiao Liu
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shujing Zhou
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Jinjing Li
- School of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chenze Qi
- School of Pharmacy, Jiamusi University, Jiamusi, China
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| | - Furen Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing, China
| |
Collapse
|
6
|
Chen Y, He J, Zhuang C, Liu Z, Xiao K, Su Z, Ren X, Wang T. Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metal‐Based Lewis Acid for Asymmetric Synthesis of
N
‐Bridged [3.2.1] Ring Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
7
|
Chen Y, He J, Zhuang C, Liu Z, Xiao K, Su Z, Ren X, Wang T. Synergistic Catalysis between a Dipeptide Phosphonium Salt and a Metal-Based Lewis Acid for Asymmetric Synthesis of N-Bridged [3.2.1] Ring Systems. Angew Chem Int Ed Engl 2022; 61:e202207334. [PMID: 35766480 DOI: 10.1002/anie.202207334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 02/05/2023]
Abstract
We present an unprecedented synergic catalytic route for the asymmetric construction of fluorinated N-bridged [3.2.1] cyclic members of tropane family via a bifunctional phosphonium salt/silver co-catalyzed cyclization process. A broad variety of substrates bearing an assortment of functional groups are compatible with this method, providing targeted compounds bearing seven-membered ring and four contiguous stereocenters in high yields with excellent stereoselectivities. The gram-scale preparations, facile elaborations and preliminary biological activities of the products demonstrate the application potential. Moreover, both experimental and computational mechanistic studies revealed that the cyclization proceeded via a "sandwich" reaction model with multiple weak-bond cooperative activations. Insights gained from our studies are expected to advance general efforts towards the catalytic synthesis of challenging chiral heterocyclic molecules.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jiajia He
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Cheng Zhuang
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
8
|
Vastakaite G, Grünenfelder CE, Wennemers H. Peptide-Catalyzed Stereoselective Conjugate Addition Reaction of Aldehydes to C-Substituted Maleimides. Chemistry 2022; 28:e202200215. [PMID: 35089626 PMCID: PMC9306895 DOI: 10.1002/chem.202200215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Catalytic stereoselective additions with maleimides are useful one-step reactions to yield chiral succinimides, molecules that are widespread among therapeutically active compounds but challenging to prepare when the maleimide is C-substituted. We present the tripeptide H-Pro-Pro-Asp-NHC12 H25 as a catalyst for conjugate addition reactions between aldehydes and C-substituted maleimides to form succinimides with three contiguous stereogenic centers in high yields and stereoselectivities. The peptidic catalyst is so chemoselective that no protecting group is needed at the imide nitrogen of the maleimides. Derivatization of the succinimides was straightforward and provided access to chiral pyrrolidines, lactones, and lactams. Kinetic studies, including a Hammett plot, provided detailed insight into the reaction mechanism.
Collapse
Affiliation(s)
- Greta Vastakaite
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 38093ZürichSwitzerland
| | | | - Helma Wennemers
- Laboratory of Organic ChemistryETH ZürichVladimir-Prelog-Weg 38093ZürichSwitzerland
| |
Collapse
|
9
|
Tsutsumi R, Taguchi R, Yamanaka M. Chiral Bipyridine Ligand with Flexible Molecular Recognition Site: Development and Application to Copper‐Catalyzed Asymmetric Borylation of α,β‐Unsaturated Ketones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryosuke Tsutsumi
- Department of Chemistry and Research Center for Smart Molecules Faculty of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501 Japan
| | - Rika Taguchi
- Department of Chemistry and Research Center for Smart Molecules Faculty of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501 Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules Faculty of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501 Japan
| |
Collapse
|
10
|
Dobler D, Leitner M, Moor N, Reiser O. 2‐Pyrone – A Privileged Heterocycle and Widespread Motif in Nature. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Daniel Dobler
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Michael Leitner
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Natalija Moor
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institut für Organische Chemie Universität Regensburg Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|
11
|
Zhang J, Liu M, Huang M, Li W, Zhang X. Enantioselective Dearomative [3+2] Annulation of 3‐Hydroxymaleimides with Azonaphthalenes. ChemistrySelect 2021. [DOI: 10.1002/slct.202100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Wenzhe Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
- University of Chinese Academy of Sciences Beijing China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province Chengdu Institute of Organic Chemistry Chinese Academy of Sciences Chengdu China
| |
Collapse
|
12
|
Junge T, Titze M, Frey W, Peters R. Asymmetric Hydrocyanation of
N
‐Phosphinoyl Aldimines with Acetone Cyanohydrin by Cooperative Lewis Acid/Onium Salt/Brønsted Base Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thorsten Junge
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Marvin Titze
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Wolfgang Frey
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
13
|
Titze M, Heitkämper J, Junge T, Kästner J, Peters R. Highly Active Cooperative Lewis Acid-Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew Chem Int Ed Engl 2021; 60:5544-5553. [PMID: 33210781 PMCID: PMC7986937 DOI: 10.1002/anie.202012796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Indexed: 11/25/2022]
Abstract
Enantiopure secondary alcohols are fundamental high-value synthetic building blocks. One of the most attractive ways to get access to this compound class is the catalytic hydroboration. We describe a new concept for this reaction type that allowed for exceptional catalytic turnover numbers (up to 15 400), which were increased by around 1.5-3 orders of magnitude compared to the most active catalysts previously reported. In our concept an aprotic ammonium halide moiety cooperates with an oxophilic Lewis acid within the same catalyst molecule. Control experiments reveal that both catalytic centers are essential for the observed activity. Kinetic, spectroscopic and computational studies show that the hydride transfer is rate limiting and proceeds via a concerted mechanism, in which hydride at Boron is continuously displaced by iodide, reminiscent to an SN 2 reaction. The catalyst, which is accessible in high yields in few steps, was found to be stable during catalysis, readily recyclable and could be reused 10 times still efficiently working.
Collapse
Affiliation(s)
- Marvin Titze
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Juliane Heitkämper
- Universität StuttgartInstitut für Theoretische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Thorsten Junge
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Johannes Kästner
- Universität StuttgartInstitut für Theoretische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - René Peters
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
14
|
Titze M, Heitkämper J, Junge T, Kästner J, Peters R. Highly Active Cooperative Lewis Acid—Ammonium Salt Catalyst for the Enantioselective Hydroboration of Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Marvin Titze
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Juliane Heitkämper
- Universität Stuttgart Institut für Theoretische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Thorsten Junge
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Kästner
- Universität Stuttgart Institut für Theoretische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
15
|
Wang YH, Zhang DH, Cao ZH, Li WL, Huang YY. A formal [3 + 3] cycloaddition of allenyl imide and activated ketones for the synthesis of tetrasubstituted 2-pyrones. RSC Adv 2021; 11:8867-8870. [PMID: 35423364 PMCID: PMC8695344 DOI: 10.1039/d0ra10686k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/19/2021] [Indexed: 01/03/2023] Open
Abstract
CsOH·H2O-catalyzed formal [3 + 3] cycloadditions of allenyl imide with β-ketoesters, 1,3-diketones or β-ketonitriles for the synthesis of tetrasubstituted 2-pyrone derivatives have been demonstrated. The allenyl imide was utilized as a C3-synthon, and a ketenyl intermediate was proposed via the process of 1,4-addition of carbon anion to allene followed by elimination of the 2-oxazolidinyl group. CsOH·H2O-catalyzed formal [3 + 3] cycloadditions of allenyl imide with β-ketoesters, 1,3-diketones or β-ketonitriles for the synthesis of tetrasubstituted 2-pyrone derivatives were reported.![]()
Collapse
Affiliation(s)
- Yu-Hao Wang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - De-Hua Zhang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Ze-Hun Cao
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Wang-Lai Li
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| | - Yi-Yong Huang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology Wuhan 430070 China
| |
Collapse
|
16
|
Zhang J, Liu M, Huang M, Liu H, Yan Y, Zhang X. Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines. Org Chem Front 2021. [DOI: 10.1039/d1qo00128k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enantioselective [3 + 2] annulation of 3-hydroxymaleimides with quinone monoimines provided a large variety of succinimide fused indolines in moderate to good yields with moderate to good enantioselectivities.
Collapse
Affiliation(s)
- Jiayan Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Min Huang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Hui Liu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Yingkun Yan
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|
17
|
Abstract
Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation catalysis and organometallic catalysis. Thus far, three strategies have been revealed: ligand scaffolds incorporated on chiral cations, chiral cations paired with transition metal ‘ate’-type complexes, and ligand scaffolds incorporated on achiral anions. Chiral cation ion-pair catalysis has been successfully applied to alkylation, cycloaddition, dihydroxylation, oxohydroxylation, sulfoxidation, epoxidation and C–H borylation. This development represents an effective approach to promote the cooperation between chiral cations and transition metals, increasing the versatility and capability of both these forms of catalysts. In this review, we present current examples of the three strategies and suggest possible inclusions for the future. Enantioselective transition metal catalysis directed by chiral cations is the amalgamation of chiral cation catalysis and organometallic catalysis.![]()
Collapse
Affiliation(s)
- Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology 18 Chaowang Road Hangzhou 310014 P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, Nanyang Technological University 21 Nanyang Link Singapore 637371
| |
Collapse
|