1
|
Cerveri A, Russo G, Sparascio S, Merli D, Maggi R, Della Ca' N, Lanzi M, Maestri G. Late-Stage Functionalization Using a Popular Titrating Agent: Aryl-Chlorides and -Fluorides Activation by the Diphenylacetic Acid Dianion. Chemistry 2025; 31:e202403597. [PMID: 39462191 DOI: 10.1002/chem.202403597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Aryl-chlorides and -fluorides are common building blocks, but their use in synthesis is limited by the high stability of their Ar-X bonds. The generation of aryl radicals via activation of strong Ar-X bonds is possible through the irradiation of tailor-made organic anions, which become reductants stronger than lithium metal. We report that the combination of visible light with the cheap diphenylacetic acid dianion is an even better tool, showing excellent activity across a variety of complex substrates and providing opportunities for late-stage drug modification. Ar-X bonds are chemoselectively activated in the presence of more easily reducible functions, such as Alk-Cl ones and carbonyl groups. These results pave the way to original synthetic strategies that would be otherwise considered impossible.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Giulia Russo
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Daniele Merli
- Department of Chemistry, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Nicola Della Ca'
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Lanzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
2
|
Biswas A, Kolb S, Röttger SH, Das A, Patalag LJ, Dey PP, Sil S, Maji S, Chakraborty S, Wenger OS, Bhunia A, Werz DB, Mandal SK. A BOIMPY Dye Enables Multi-Photoinduced Electron Transfer Catalysis: Reaching Super-Reducing Properties. Angew Chem Int Ed Engl 2025; 64:e202416472. [PMID: 39655963 DOI: 10.1002/anie.202416472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/17/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
An established concept to create radical intermediates is photoexcitation of a catalyst to a higher energy intermediate, subsequently leading to a photoinduced electron transfer (PET) with a reaction partner. The known concept of consecutive photoinduced electron transfer (con-PET) leads to catalytically active species even higher in energy by the uptake of two photons. Generally speaking, increased photon uptake leads to a more potent reductant. Here, we report the concept of multi-photoinduced electron transfer catalysis (>2 photons), termed multi-PET, which is enabled by photoinduced one-electron reductions of an organic dye. Further irradiation of the doubly reduced species leads to a photoexcited dianionic super-reductant, which is more potent than Li metal - one of the strongest chemical reductants known. This multi-photon process which is enabled by 390 nm LEDs allows the cleavage of strong carbon-fluorine bonds and reduction of other halides even in very electron-rich substrates. The resulting radicals are quenched by hydrogen atoms or engaged in carbon-carbon and carbon-phosphorus bond formations, highlighting the utility of multi-PET for organic chemistry. In addition, multi-PET enabled Birch-type reductions. Spectroscopic, chemical and computational investigations are presented to gain mechanistic insights.
Collapse
Affiliation(s)
- Amit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Simon Kolb
- DFG Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Sebastian H Röttger
- DFG Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Lukas J Patalag
- DFG Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Partha P Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Swagata Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Soumi Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Anup Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Daniel B Werz
- DFG Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, 79110, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
3
|
Zeng C, Li Y, Chen T, Wu W, Chen Z. Unraveling the Mechanisms of the Formations and Transformations of Metal-Ligand Charge Transfer States in [Ru(tpy) 2] 2+*: Consequences of Jahn-Teller Conical Intersections and the Pseudo-Jahn-Teller Effect. J Phys Chem A 2024; 128:9846-9860. [PMID: 39513928 DOI: 10.1021/acs.jpca.4c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This work investigates Jahn-Teller conical intersections (CoIns) and the pseudo-Jahn-Teller effect on the formations and transformations of the low-lying singlet metal-ligand charge transfer (1MLCT) excited states during the ultrafast evolution process of photoexcited [Ru(tpy)2]2+* (tpy = 2,2':6',2″-terpyridine). Longuet-Higgins' geometric phase analyses indicate that the potential energy surface (PES) crossing between charge transfer states 1MLCT1 and 1MLCT2 is a CoIn, originating from the change in diabatic Hamiltonian matrix elements around the CoIn. Moreover, an E⊗(b1 + b2) Jahn-Teller distortion can occur around the Franck-Condon and minimal energy CoIn (MECI) configurations, causing the molecule to distort spontaneously from the high-symmetry D2d configuration to C2v symmetry configurations that are close to it. Furthermore, the pseudo-Jahn-Teller effect can cause the molecule to distort further from C2v to C1 geometries since the former is a second-order saddle point on the whole dimensional PES but the latter is a true minimum. Eight minima in total are symmetrically distributed around the MECI. These minima are connected by the interligand electron transfer, the charge transfer, and the butterfly-like conformational inversion reactions, all of which have extremely small energy barriers.
Collapse
Affiliation(s)
- Chenyu Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yaqi Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Tengwei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenhua Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
4
|
Zhang SR, Yue JP, Wang LF, Gui YY, Zhang W, Yu DG, Ye JH. Dearomative hydroamination of heteroarenes catalyzed by the phenolate photocatalyst. Chem Commun (Camb) 2024; 60:13083-13086. [PMID: 39440373 DOI: 10.1039/d4cc03879g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Dearomative functionalization of heteroarenes offers an attractive and sustainable approach for the rapid construction of complex 3D heterocyclic scaffolds from planar structures. Despite progress in this field, dearomative amination of heteroarenes via a radical anion intermediate remains a challenge. Here, we report a photoredox-catalyzed dearomative hydroamination of heteroarenes with hydrazodiformates under mild and transition-metal-free reaction conditions. Various benzofurans and benzothiophenes can efficiently participate in this transformation. A series of mechanistic experiments revealed that heteroaryl radical anions are the crucial intermediates, generated through photo-induced electron transfer between the excited phenolate photocatalyst and heteroarenes.
Collapse
Affiliation(s)
- Shu-Rong Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Long-Fu Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Yong-Yuan Gui
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Bao G, Wang Y, Xu W, Yu Z, Zhou W, Li J, Li L, Jiang X. Photocatalytic Diheteroarylation of [1.1.1]Propellane for the Construction of 1,3-Diheteroaryl Bicyclo[1.1.1]pentanes. Org Lett 2024; 26:9210-9214. [PMID: 39440712 DOI: 10.1021/acs.orglett.4c03198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Herein, we report a visible light-induced diheteroarylation reaction of [1.1.1]propellane to synthesize 1,3-diheteroaryl bicyclo[1.1.1]pentanes (BCPs). In this approach, heteroaryl radicals are generated from heteroaryl halides via photocatalysis and subsequently added to [1.1.1]propellane. The in situ generated BCP radicals are then trapped by various heterocycles to furnish 1,3-diheteroaryl BCPs. Notably, this strategy features metal-free, mild conditions and utilizes inexpensive catalyst. For the first time, the diheteroarylation of [1.1.1]propellane could be achieved via a radical strategy, allowing for the efficient synthesis of 1,3-diheteroaryl BCPs with various applications in organic and medicinal chemistry.
Collapse
Affiliation(s)
- Guoxiang Bao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yue Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenhao Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhihao Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wei Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiacheng Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Longyi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinpeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
6
|
Calogero F, Wilczek L, Pinosa E, Gualandi A, Dorta R, Herrera A, Dai Y, Rossignol A, Negri F, Ziani Z, Fermi A, Ceroni P, Cozzi PG. Stable Meisenheimer Complexes as Powerful Photoreductants Readily Obtained from Aza-Hetero Aromatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202411074. [PMID: 39078744 DOI: 10.1002/anie.202411074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Indexed: 10/25/2024]
Abstract
Excited states of radical anions derived from the photoreduction of stable organic molecules are suggested to serve as potent reductants. However, excited states of these species are too short-lived to allow bimolecular quenching processes. Recently, the singlet excited state of Meisenheimer complexes, which possess a long-lived excited state, was identified as the competent species for the reduction of challenging organic substrates (-2.63 V vs. SCE, saturated calomel electrode). To produce reasonably stable and simply accessible different Meisenheimer complexes, the addition of nBuLi to readily available aromatic heterocycles was investigated, and the photoreactivity of the generated species was studied. In this paper, we present the straightforward preparation of a family of powerful photoreductants (*Eox<-3 V vs. SCE in their excited states, determined by DFT and time-dependent TD-DFT calculations; DFT, density functional theory) that can induce dehalogenation of electron-rich aryl chlorides and to form C-C bond through radical cyclization. Photophysical analyses and computational studies in combination with experimental mechanistic investigations demonstrate the ability of the adduct to act as a strong electron donor under visible light irradiation.
Collapse
Affiliation(s)
- Francesco Calogero
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Leonie Wilczek
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939, Köln, Germany
| | - Emanuele Pinosa
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Gualandi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Romano Dorta
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Alberto Herrera
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität, Egerlandstr. 1, 91058, Erlangen, Germany
| | - Yasi Dai
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Arthur Rossignol
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Fabrizia Negri
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Zakaria Ziani
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Andrea Fermi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Paola Ceroni
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica "Giacomo Ciamician" Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
- Center for Chemical Catalysis-C3 Alma Mater Studiorum-, Università di Bologna, Via Gobetti 85, 40129, Bologna, Italy
| |
Collapse
|
7
|
Arima Y, Okayasu Y, Yoshioka D, Nagai Y, Kobayashi Y. Multiphoton-Driven Photocatalytic Defluorination of Persistent Perfluoroalkyl Substances and Polymers by Visible Light. Angew Chem Int Ed Engl 2024; 63:e202408687. [PMID: 38896058 DOI: 10.1002/anie.202408687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Perfluoroalkyl substances (PFASs) and fluorinated polymers (FPs) have been extensively utilized in various industries, whereas their extremely high stability poses environmental persistence and difficulty in waste treatment. Current decomposition approaches of PFASs and FPs typically require harsh conditions such as heating over 400 °C. Thus, there is a pressing need to develop a new technique capable of decomposing them under mild conditions. Here, we demonstrated that perfluorooctanesulfonate (PFOS), known as a "persistent chemical," and Nafion, a widely utilized sulfonated FP for ion-exchange membranes, can be efficiently decomposed into fluorine ions under ambient conditions via the irradiation of visible LED light onto semiconductor nanocrystals (NCs). PFOS was completely defluorinated within 8-h irradiation of 405-nm LED light, and the turnover number of the C-F bond dissociation per NC was 17200. Furthermore, 81 % defluorination of Nafion was achieved for 24-h light irradiation, demonstrating the efficient photocatalytic properties under visible light. We revealed that this decomposition is driven by cooperative mechanisms involving light-induced ligand displacements and Auger-induced electron injections via hydrated electrons and higher excited states. This study not only demonstrates the feasibility of efficiently breaking down various PFASs and FPs under mild conditions but also paves the way for advancing toward a sustainable fluorine-recycling society.
Collapse
Affiliation(s)
- Yuzo Arima
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daisuke Yoshioka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuki Nagai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
8
|
Gao Y, Li Y, Yan W, Zhang K, Cai L. Photoinduced Deconstructive Alkylation Approach Enabled by Oxy-Radicals from Alcohols. J Org Chem 2024; 89:14436-14446. [PMID: 39270043 DOI: 10.1021/acs.joc.4c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Alcohols are the most commercially abundant, synthetically versatile and operationally convenient functional groups in organic chemistry. Therefore, a strategy that utilizes hydroxy-containing compounds to develop novel bond disconnection and formation process would achieve molecular diversity. Herein, a deconstructive strategy for the generation of quinoxalin-2(1H)-one derivatives has been developed from alcohol precursors via oxy-radical-induced β-fragmentation. Additionally, 1,5-HAT and deoxygenation by P(III) along with oxy-radical were demonstrated as alternative pathways for this transformation. Furthermore, with the deep-seated reorganization of a few terpenes carbon framework, a unique activity with inhibition against the growth of pathogenic fungi was observed.
Collapse
Affiliation(s)
- Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenxuan Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass Based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Liu Q, Ren Y, Zhang B, Tang W, Wang Z, He L, Chen X. Photoinduced Single Electron Reduction of the 4-O-5 Linkage in Lignin Models for C-P Coupling Catalyzed by Bifunctional N-Heterocyclic Carbenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406095. [PMID: 39099408 PMCID: PMC11481192 DOI: 10.1002/advs.202406095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Indexed: 08/06/2024]
Abstract
Catalytic activation of Caryl-O bonds is considered as a powerful strategy for the production of aromatics from lignin. However, due to the high reduction potentials of diaryl ether 4-O-5 linkage models, their single electron reduction remains a daunting challenge. This study presents the blue light-induced bifunctional N-heterocyclic carbene (NHC)-catalyzed one-electron reduction of diaryl ether 4-O-5 linkage models for the synthesis of trivalent phosphines. The H-bond between the newly devised bifunctional NHC and diaryl ethers is responsible for the success of the single electron transfer. Furthermore, this approach demonstrates selective one-electron reduction of unsymmetric diaryl ethers, oligomeric phenylene oxide, and lignin model.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Ying‐Zheng Ren
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringSchool of Chemistry and Chemical EngineeringShihezi UniversityXinjiang832000China
| | - Bei‐Bei Zhang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Wen‐Xin Tang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
| | - Zhi‐Xiang Wang
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- Binzhou Institute of TechnologyWeiqiao‐UCAS Science and Technology ParkBinzhouShandong256606China
| | - Lin He
- State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringSchool of Chemistry and Chemical EngineeringShihezi UniversityXinjiang832000China
| | - Xiang‐Yu Chen
- School of Chemical SciencesUniversity of the Chinese Academy of SciencesBeijing National Laboratory for Molecular SciencesBeijing100049China
- Binzhou Institute of TechnologyWeiqiao‐UCAS Science and Technology ParkBinzhouShandong256606China
| |
Collapse
|
10
|
Guo HM, Wang JJ, Xiong Y, Wu X. Visible-Light-Driven Multicomponent Reactions for the Versatile Synthesis of Thioamides by Radical Thiocarbamoylation. Angew Chem Int Ed Engl 2024; 63:e202409605. [PMID: 38975961 DOI: 10.1002/anie.202409605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Thioamides are widely used structures in pharmaceuticals and agrochemicals, as well as important synthons for the construction of sulfur-containing heterocycles. This report presents a series of visible-light-driven multicomponent reactions of amines, carbon disulfide, and olefins for the mild and versatile synthesis of linear thioamides and cyclic thiolactams. The use of inexpensive and readily available carbon disulfide as the thiocarbonyl source in a radical pathway enables the facile assembly of structurally diverse amine moieties with non-nucleophilic carbon-based reaction partners. Radical thiocarbamoylative cyclization provides a practical protocol that complements traditional approaches to thiolactams relying on deoxythionation. Mechanistic studies reveal that direct photoexcitation of in situ formed dithiocarbamate anions as well as versatile photoinduced electron transfer with diverse electron acceptors are key to the reactions.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jia-Jin Wang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yanjiao Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Thomas ME, Schmitt LD, Lees AJ. A New, Rapid, Colorimetric Chemodosimeter, 4-(Pyrrol-1-yl)pyridine, for Nitrite Detection in Aqueous Solution. ACS OMEGA 2024; 9:37278-37287. [PMID: 39246479 PMCID: PMC11375707 DOI: 10.1021/acsomega.4c05026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 09/10/2024]
Abstract
With increasing concerns over environmental impact and overall health of both the environment and its people, a need to quantify contaminants is of the utmost importance. Chemosensors with low detection limits and a relative ease of application can address this challenge. Nitrite ions are known to be detrimental to both the environment and human health. A new colorimetric chemodosimeter has been prepared from the homolytic photochemical cleavage of a reaction between pyrrole and pyridine. The product, 4-(pyrrol-1-yl)pyridine, yields a limit of detection of 0.330 (±0.09) ppm for the detection of nitrite in aqueous solution, employing a colorimetric change from yellow to pink. It is also highly selective for nitrite when various competitive anions such as SO3 2-, NO3 -, PO4 3-, SO4 -2, Cl-, F-, I-, Br-, AcO-, and CN- are present in great excess. The molecule's especially high sensitivity to nitrite is apparently the result of a complex supramolecular mechanism, characterized by both dynamic light scattering of the aggregate and the Tyndall effect. Consequently, this new sensor provides a simple, low-cost way to rapidly detect nitrite anions in aqueous solution.
Collapse
Affiliation(s)
- Mallory E Thomas
- Department of Chemistry, Binghamton University, Binghamton, New York 13902-6000, United States
| | - Lynn D Schmitt
- Department of Chemistry, SUNY Cortland, Cortland, New York 13045, United States
| | - Alistair J Lees
- Department of Chemistry, Binghamton University, Binghamton, New York 13902-6000, United States
| |
Collapse
|
12
|
Janaagal A, Kushwaha A, Jhaldiyal P, Dhilip Kumar TJ, Gupta I. Photoredox Catalysis by 21-Thiaporphyrins: A Green and Efficient Approach for C-N Borylation and C-H Arylation. Chemistry 2024; 30:e202401623. [PMID: 38825798 DOI: 10.1002/chem.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Photoredox catalysis provides a green and sustainable alternative for C-H activation of organic molecules that eludes harsh conditions and use of transition metals. The photocatalytic C-N borylation and C-H arylation mostly depend on the ruthenium and iridium complexes or eosin Y and the use of porphyrin catalysts is still in infancy. A series of novel 21-thiaporphyrins (A2B2 and A3B type) were synthesized having carbazole/phenothiazine moieties at their meso-positions and screened as catalysts for C-N borylation and C-H arylation. This paper demonstrates the 21-thiaporphyrin catalyzed C-N borylation and het-arylation of anilines under visible light. The method utilizes only 0.1 mol % of 21-thiaporphyrin catalyst under blue light for the direct C-N borylation and het-arylation reactions. A variety of substituted anilines were used as source for expensive and unstable aryl diazonium salts in the reactions. The heterobiaryls and aryl boronic esters were obtained in decent yields (up to 88 %). Versatility of the 21-thiaporphyrin catalyst was tested by thiolation and selenylation of anilines under similar conditions. Mechanistic insight was obtained from DFT studies, suggesting that 21-thiaporphyrin undergo an oxidative quenching pathway. The photoredox process catalyzed by 21-thiaporphyrins offers a mild, efficient and metal-free alternative for the formation of C-C, C-S, and C-Se bonds in aryl compounds; it can also be extended to borylation reaction.
Collapse
Affiliation(s)
- Anu Janaagal
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - Apoorv Kushwaha
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, 140001, India
| | - Pranjali Jhaldiyal
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| | - T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology, Ropar, Rupnagar, 140001, India
| | - Iti Gupta
- Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, 382055, India
| |
Collapse
|
13
|
Uchikura T, Akutsu F, Tani H, Akiyama T. Photoreduction of Trifluoromethyl Group: Lithium Ion Assisted Fluoride-Coupled Electron Transfer from EDA Complex. Chemistry 2024; 30:e202400658. [PMID: 38600038 DOI: 10.1002/chem.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Photoinduced single-electron reduction is an efficient method for the mono-selective activation of the C-F bond on a trifluoromethyl group to construct a difluoroalkyl group. We have developed an electron-donor-acceptor (EDA) complex mediated single-electron transfer (EDA-SET) of α,α,α-trifluoromethyl arenes in the presence of lithium salt to give α,α-difluoroalkylarenes. The C-F bond reduction was realized by lithium iodide and triethylamine, two common feedstock reagents. Mechanistic studies revealed the generation of a α,α-difluoromethyl radical by single-electron reduction and defluorination, followed by the radical addition to alkenes. Lithium salt interacted with the fluorine atom to promote the photoinduced reduction mediated by the EDA complex. Computational studies indicated that the lithium-assisted defluorination and the single-electron reduction occurred concertedly. We call this phenomenon fluoride-coupled electron transfer (FCET). FCET is a novel approach to C-F bond activation for the synthesis of organofluorine compounds.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Fua Akutsu
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Haruna Tani
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 171-8588, 1-5-1, Mejiro, Toshima-ku, Tokyo, Japan
| |
Collapse
|
14
|
Gallage PC, McKee MG, Pitre SP. 1,4-Dihydropyridine Anions as Potent Single-Electron Photoreductants. Org Lett 2024; 26:1975-1979. [PMID: 38412434 DOI: 10.1021/acs.orglett.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
We report the use of simple 1,4-dihydropyridine anions as a general platform for promoting single-electron photoreductions. In the presence of a mild base, 1,4-dihydropyridines were shown to effectively promote the hydrodechlorination and borylation of aryl chlorides and the photodetosylation of N-tosyl aromatic amines under visible light irradiation. Our studies also demonstrate that the C4 substituent can influence the reactivity of these anions, reducing unwanted side reactions like hydrogen atom transfer and back-electron transfer.
Collapse
Affiliation(s)
- Prasadi C Gallage
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| | - Mary G McKee
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| | - Spencer P Pitre
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
15
|
Komogortsev AN, Melekhina VG, Lichitskii BV. Anionic photochemical rearrangement of 3-hydroxypyran-4-ones bearing oxazol-2-one fragment. Org Biomol Chem 2024; 22:1686-1692. [PMID: 38304927 DOI: 10.1039/d3ob01957h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The photochemical behavior of in situ generated anions of 3-hydroxypyran-4-ones containing an oxazol-2-one moiety was studied. For the first time, it was demonstrated that blue LED light irradiation (450 nm) of substituted 3-hydroxypyran-4-ones in the presence of a base leads regiospecifically to the formation of isomeric 3-hydroxypyran-2-ones. Transformation of the starting 3-hydroxypyran-4-ones into the corresponding anions is necessary for the presented photoprocess. Based on the considered visible light induced rearrangement, a general method for the synthesis of 3-hydroxypyran-2-ones with an oxazol-2-one moiety was elaborated. The structure of one of the synthesized compounds was confirmed by X-ray diffraction.
Collapse
Affiliation(s)
- Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| | - Valeriya G Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| | - Boris V Lichitskii
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Pr., 47, Moscow 119991, Russian Federation.
| |
Collapse
|
16
|
Guo R, Zhang S, Xiao X, Liang Y, Wang Z, Qu R. Potassium permanganate oxidation enhanced by infrared light and its application to natural water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133012. [PMID: 37984145 DOI: 10.1016/j.jhazmat.2023.133012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Photocoupled permanganate (PM) is an effective way to enhance the oxidation efficiency of PM, however, the activation of PM by infrared has received little attention. This study aimed to investigate the ability of infrared light to activate PM. When coupled with infrared, the degradation rate of 4-chlorophenol (4-CP) is increased to 3.54 times of PM oxidation alone. The accelerated reaction was due to the formation of vibrationally excited PM by absorbing 3.1 kJ mol-1 infrared energy, which also leads to the primary reactive intermediates Mn(V/IV) in the reaction system. The infrared coupled PM system also showed 1.14-2.34 times promotion effect on other organic pollutants. Furthermore, solar composed of 45% infrared, coupled PM system showed excellent degradation performance, where the degradation of 4-CP in 10 L of tap water and river water was 68 and 23 times faster than in ultrapure water, respectively. The faster-increased degradation rate in natural waters is mainly due to the abundant inorganic ions, which can stabilize the manganese species, and then has a positive effect on 4-CP degradation. In summary, this work develops a energy-efficient photoactivated PM technology that utilizes infrared and provides new insights into the design of novel sunlight-powered oxidation processes for water treatment.
Collapse
Affiliation(s)
- Ruixue Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Shengnan Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Xuejing Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yeping Liang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China.
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| |
Collapse
|
17
|
Kang WJ, Zhang Y, Li B, Guo H. Electrophotocatalytic hydrogenation of imines and reductive functionalization of aryl halides. Nat Commun 2024; 15:655. [PMID: 38253534 PMCID: PMC10803379 DOI: 10.1038/s41467-024-45015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The open-shell catalytically active species, like radical cations or radical anions, generated by one-electron transfer of precatalysts are widely used in energy-consuming redox reactions, but their excited-state lifetimes are usually short. Here, a closed-shell thioxanthone-hydrogen anion species (3), which can be photochemically converted to a potent and long-lived reductant, is generated under electrochemical conditions, enabling the electrophotocatalytic hydrogenation. Notably, TfOH can regulate the redox potential of the active species in this system. In the presence of TfOH, precatalyst (1) reduction can occur at low potential, so that competitive H2 evolution can be inhibited, thus effectively promoting the hydrogenation of imines. In the absence of TfOH, the reducing ability of the system can reach a potency even comparable to that of Na0 or Li0, thereby allowing the hydrogenation, borylation, stannylation and (hetero)arylation of aryl halides to construct C-H, C-B, C-Sn, and C-C bonds.
Collapse
Affiliation(s)
- Wen-Jie Kang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| | - Bo Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91106, USA.
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P.R. China.
| |
Collapse
|
18
|
Gentile G, Bartolomei B, Dosso J, Demitri N, Filippini G, Prato M. Synthesis of a novel tetra-phenol π-extended phenazine and its application as an organo-photocatalyst. Chem Commun (Camb) 2024; 60:602-605. [PMID: 38099872 DOI: 10.1039/d3cc05176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, the synthesis of a novel tetra-phenol π-extended dihydrophenazine is reported. The obtained derivative presents marked reducing properties in the excited state and was exploited as an organo-photocatalyst in dehalogenation and C-C bond formation reactions. These results underline the great potential of functionalized π-extended dihydrophenazines as organo-photocatalysts.
Collapse
Affiliation(s)
- Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone, Trieste S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
19
|
Baris N, Dračínský M, Tarábek J, Filgas J, Slavíček P, Ludvíková L, Boháčová S, Slanina T, Klepetářová B, Beier P. Photocatalytic Generation of Trifluoromethyl Nitrene for Alkene Aziridination. Angew Chem Int Ed Engl 2024; 63:e202315162. [PMID: 38081132 DOI: 10.1002/anie.202315162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 01/06/2024]
Abstract
N-Trifluoromethylated organics may be applied in drug design, agrochemical synthesis, and materials science, among other areas. Yet, despite recent advances in the synthesis of aliphatic, cyclic and heterocyclic N-trifluoromethyl compounds, no strategy based on trifluoromethyl nitrene has hitherto been explored. Here we describe the formation of triplet trifluoromethyl nitrene from azidotrifluoromethane, a stable and safe-to-use precursor, by visible light photocatalysis. The addition of CF3 N to alkenes via biradical intermediates afforded previously unknown aziridines substituted with trifluoromethyl group on the nitrogen atom. The obtained aziridines were converted into either N-trifluoromethylimidazolines, via formal [3+2] cycloaddition with nitriles, mediated by a Lewis acid, or into N-trifluoromethylaldimines, via ring opening and aryl group migration mediated by a strong Brønsted acid. Our findings open new opportunities for the development of novel classes of N-CF3 compounds with possible applications in the life sciences.
Collapse
Affiliation(s)
- Norbert Baris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Josef Filgas
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28, Prague, Czech Republic
| | - Lucie Ludvíková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Soňa Boháčová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Blanka Klepetářová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 00, Prague 6, Czech Republic
| |
Collapse
|
20
|
Deng YH, Li Q, Li M, Wang L, Sun TY. Rational design of super reductive EDA photocatalyst for challenging reactions: a theoretical and experimental study. RSC Adv 2024; 14:1902-1908. [PMID: 38192317 PMCID: PMC10772736 DOI: 10.1039/d3ra07558c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
We reported a novel electron-donor-acceptor (EDA) photocatalyst formed in situ from isoquinoline, a diboron reagent, and a weak base. To further optimize the efficiency of this photocatalyst, Density Functional Theory (DFT) calculations were conducted to investigate the substituent effects on the properties of vertical excitation energy and redox potential. Subsequently, we experimentally validated these effects using a broader range of substituents and varying substitution positions. Notably, the 4-NH2 EDA complex derived from 4-NH2-isoquinoline exhibits the highest photocatalytic efficiency, enabling feasible metal free borylation of aromatic C-H bond and detosylaion of Ts-anilines under green and super mild conditions. These experimental results demonstrate the effectiveness of our strategy for photocatalyst optimization.
Collapse
Affiliation(s)
- Yi-Hui Deng
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No.66, Gongchang Road Shenzhen 518107 P. R. China
| | - Manhong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No.66, Gongchang Road Shenzhen 518107 P. R. China
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No.66, Gongchang Road Shenzhen 518107 P. R. China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| |
Collapse
|
21
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
22
|
Li M, Zhang T, Shi Y, Duan C. Harnessing Radicals in Confined Supramolecular Environments Made Possible by MOFs. CHEM REC 2023; 23:e202300158. [PMID: 37310416 DOI: 10.1002/tcr.202300158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Indexed: 06/14/2023]
Abstract
Researching and utilizing radical intermediates in organic synthetic chemistry have innovated discoveries in methodology and theory. Reactions concerning free radical species opened new pathways beyond the frame of the two-electron mechanism while commonly characterized as rampant processes lacking selectivity. As a result, research in this field has always focused on the controllable generation of radical species and determining factors of selectivity. Metal-organic frameworks (MOFs) have emerged as compelling candidates as catalysts in radical chemistry. From a catalytic point of view, the porous nature of MOFs entails an inner phase for the reaction that could offer possibilities for the regulation of reactivity and selectivity. From a material science perspecti ve, MOFs are organic-inorganic hybrid materials that integrate functional units in organic compounds and complex forms in the tunable long-ranged periodic structure. In this account, we summarized our progress in the application of MOFs in radical chemistry in three parts: (1) The generation of radical species; (2) The weak interactions and site selectivity; (3) Regio- and stereo-selectivity. The unique role of MOFs play in these paradigms is demonstrated in a supramolecular narrative through the analyses of the multi-constituent collaboration within the MOF and the interactions between MOFs and the intermediates during the reactions.
Collapse
Affiliation(s)
- Mochen Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Tiexin Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yusheng Shi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
23
|
Lai Y, Halder A, Kim J, Hicks TJ, Milner PJ. Electroreductive Radical Borylation of Unactivated (Hetero)Aryl Chlorides Without Light by Using Cumulene-Based Redox Mediators. Angew Chem Int Ed Engl 2023; 62:e202310246. [PMID: 37559156 PMCID: PMC10529720 DOI: 10.1002/anie.202310246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023]
Abstract
Single-electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2 <-2 V vs Fc/Fc+ ), such as ubiquitous electron-neutral and electron-rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes-organic molecules with multiple consecutive double bonds-can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately -1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step-wise electron transfer from reduced cumulenes to electron-neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.
Collapse
Affiliation(s)
- Yihuan Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Arjun Halder
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jaehwan Kim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Thomas J Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Phillip J Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
24
|
Han BH, Sun Y, Cai XP, Qu JP, Kang YB. Salicylaldehyde as an SET-HAT Bifunctional Photocatalyst for the Intermolecular Transalkylation of Phthalimide. J Org Chem 2023; 88:13327-13330. [PMID: 37615542 DOI: 10.1021/acs.joc.3c01141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Salicylaldehyde works as an efficient photocatalyst for the intermolecular transalkylation of phthalimide. The well-designed dimethyl N-hydroxyphthalimide ester proves to be a good alkylation reagent. It inhibits the competing intramolecular alkylation of alkylating reagent, enabling the site-specific synthesis of N-substituted phthalimide.
Collapse
Affiliation(s)
- Bin-Hong Han
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xian-Peng Cai
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
de Castro Silva Junior H, Antunes U, Dos Santos AJRWA, Moreira EC. Tweaking the conjugation effects on a pair of new triazene compounds by targeted deprotonation: a spectroscopic and theoretical overview. J Mol Model 2023; 29:298. [PMID: 37642802 DOI: 10.1007/s00894-023-05685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
CONTEXT Triazene compounds (-NNN(H)-) exhibit versatility in biological, physical, and chemical applications. In their anionic form (-NNN-)(-), they can act as coordinating sites for metals, forming metallic complexes. In this study, two new isomeric triazene compounds with meta- and para-substituents in their neutral and anionic forms were investigated. A combination of detailed experimental spectroscopic characterization and computational chemistry analyses were employed. The new compounds, 1-(2-benzamide)-3-(3-nitrophenyl) triazene (m-TZN) and 1-(2-benzamide)-3-(4-nitrophenyl) triazene (p-TZN), were compared to 1,3-diphenyltriazene (dph-TZN) to understand the effects of functionalization and targeted triazene deprotonation. The anionic forms are stable, and our investigation suggests that these new compounds are suitable tridentate ligands that can act as chelating agents for metallic cations in stable complexes, similar to those found in vitamin B12. METHODS The absorption, vibrational, and electronic properties of the newly synthesized triazene compounds were extensively characterized using FT-IR/FT-Raman and UV-Vis spectroscopy. Their distinct molecular properties, intramolecular hydrogen bond effects, stability, and electronic transitions were investigated using the ORCA software. These analyses involved DFT and TD-DFT calculations at the ωB97X-D3/Def2-TZVP level of theory with THF CPCM implicit solvation to determine the molecular topology and electronic structure. The advanced STEOM-DLPNO-CCSD method for excited states was employed, enabling an in-depth analysis of ground and excited-state chemistry, accounting for precise electronic correlation and solvation effects. Explicit THF solvation was tested on the full TD-DFT ωB97X-D3/Def2-TZVP level and using ONIOM on the STEOM calculation. Reactivity was studied using Fukui functions, and action as chelating agents was investigated using GFN-xTB2 and DFT.
Collapse
Affiliation(s)
| | - Uhil Antunes
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Pampa, Campus Bagé, Bagé, RS, Brazil
| | | | - Eduardo Ceretta Moreira
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Pampa, Campus Bagé, Bagé, RS, Brazil
| |
Collapse
|
26
|
Uchikura T, Nakamura H, Sakai H, Akiyama T. 2-Silylated Dihydroquinazolinone as a Photocatalytic Energy Transfer Enabled Radical Hydrosilylation Reagent. Chemistry 2023; 29:e202301090. [PMID: 37269182 DOI: 10.1002/chem.202301090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
The hydrosilylation of alkenes is one of the most important methods for the synthesis of organosilicon compounds. In addition to the platinum-catalyzed hydrosilylation, silyl radical addition reactions are notable as economic reactions. An efficient and widely applicable silyl radical addition reaction was developed by using 2-silylated dihydroquinazolinone derivatives under photocatalytic conditions. Electron-deficient alkenes and styrene derivatives underwent hydrosilylation to give addition products in good to high yields. Mechanistic studies indicated that the photocatalyst functioned not as a photoredox catalyst but as an energy transfer catalyst. DFT calculations clarified that the triplet excited state of 2-silylated dihydroquinazolinone derivatives released a silyl radical through the homolytic cleavage of a carbon-silicon bond, and this was followed by the hydrogen atom transfer pathway, not the redox pathway.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| | - Haruka Nakamura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| | - Hinata Sakai
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| |
Collapse
|
27
|
Davison N, Waddell PG, Lu E. Reduction of K + or Li + in the Heterobimetallic Electride K +[LiN(SiMe 3) 2]e . J Am Chem Soc 2023; 145:17007-17012. [PMID: 37478322 PMCID: PMC10416298 DOI: 10.1021/jacs.3c06066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 07/23/2023]
Abstract
Given their very negative redox potential (e.g., Li+ → Li(0), -3.04 V; K+ → K(0), -2.93 V), chemical reduction of Group-1 metal cations is one of the biggest challenges in inorganic chemistry: they are widely accepted as irreducible in the synthetic chemistry regime. Their reduction usually requires harsh electrochemical conditions. Herein we suggest a new strategy: via a heterobimetallic electride intermediate and using the nonbinding "free" electron as reductant. Based on our previously reported K+[LiN(SiMe3)2]e- heterobimetallic electride, we demonstrate the reducibility of both K+ and Li+ cations. Moreover, we find that external Lewis base ligands, namely tris[2-(dimethylamino)ethyl]amine (Me6Tren) or 2,2,2-cryptand, can exert a level of reducing selectivity by preferably binding to Li+ (Me6Tren) or K+ (2,2,2-cryptand), hence pushing the electron to the other cation.
Collapse
Affiliation(s)
- Nathan Davison
- Chemistry−School of Natural
and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - Paul G. Waddell
- Chemistry−School of Natural
and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| | - Erli Lu
- Chemistry−School of Natural
and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1
7RU, U.K.
| |
Collapse
|
28
|
Hou SJ, Yang YF, Cui ZH, Cederbaum LS. Can anions possess bound doubly-excited electronic states? Chem Sci 2023; 14:7230-7236. [PMID: 37416703 PMCID: PMC10321500 DOI: 10.1039/d3sc00370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/27/2023] [Indexed: 07/08/2023] Open
Abstract
Anions play an important role in many fields of chemistry. Many molecules possess stable anions, but these anions often do not have stable electronic excited states and the anion loses its excess electron once excited. All the known stable valence excited states of anions are singly-excited states, i.e., valence doubly-excited states have not been reported. As excited states are relevant for numerous applications, and constitute basic properties, we searched for valence doubly-excited states which are stable, i.e., exhibit energies below that of the ground state of the respective neutral molecule. We concentrated on two promising prototype candidates, the anions of the smallest endocircular carbon ring Li@C12 and of the smallest endohedral fullerene Li@C20. By employing accurate state-of-the-art many-electron quantum chemistry methods, we investigated the low-lying excited states of these anions and found that they possess several low-lying stable singly-excited states and, in particular, a stable doubly-excited state each. It is noteworthy that the found doubly-excited state of Li@C12- possesses a cumulenic carbon ring in sharp contrast to the ground and singly-excited states. The findings shed light on how to design anions with stable valence singly- and doubly-excited states. Possible applications are mentioned.
Collapse
Affiliation(s)
- Shi-Jie Hou
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Yi-Fan Yang
- Quantum Theory Project, Departments of Physics and Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, Universität Heidelberg Im Neuenheimer Feld 229 D-69120 Heidelberg Germany
| |
Collapse
|
29
|
Miyajima R, Ooe Y, Miura T, Ikoma T, Iwamoto H, Takizawa SY, Hasegawa E. Triarylamine-Substituted Benzimidazoliums as Electron Donor-Acceptor Dyad-Type Photocatalysts for Reductive Organic Transformations. J Am Chem Soc 2023; 145:10236-10248. [PMID: 37127911 DOI: 10.1021/jacs.3c01264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 μs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.
Collapse
Affiliation(s)
- Ryo Miyajima
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
30
|
Wu D, Shiozuka A, Kawashima K, Mori T, Sekine K, Kuninobu Y. Bifunctional 1-Hydroxypyrene Photocatalyst for Hydrodesulfurization via Reductive C(Aryl)-S Bond Cleavage. Org Lett 2023; 25:3293-3297. [PMID: 37114776 DOI: 10.1021/acs.orglett.3c01061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We developed the visible-light-induced hydrodesulfurization of alkyl aryl thioethers via the reductive cleavage of the C(aryl)-S bond using 1-hydroxypyrene as a Brønsted acid-reductant bifunctional photocatalyst. The hydrodesulfurization reaction proceeded under simple reaction conditions (1-hydroxypyrene and Et3N in THF under purple LED illumination); this reaction did not require chemicals commonly used for hydrodesulfurization, such as hydrosilanes, transition metal catalysts, and/or stoichiometric amounts of metal reagents. Detailed mechanistic studies based on control experiments, spectroscopic measurements, and computational studies revealed that the cleavage of the C(aryl)-S bond and the formation of the C(aryl)-H bond proceeded via the formation of the ion pair between the radical anion of alkyl aryl thioether and Et3N+H, resulting in the generation of a sulfur radical. In addition, the 1-hydroxypyrene catalyst was regenerated via hydrogen atom transfer (HAT) from Et3N.
Collapse
Affiliation(s)
- Di Wu
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Akira Shiozuka
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
31
|
Sheng H, Liu Q, Zhang BB, Wang ZX, Chen XY. Visible-Light-Induced N-Heterocyclic Carbene-Catalyzed Single Electron Reduction of Mono-Fluoroarenes. Angew Chem Int Ed Engl 2023; 62:e202218468. [PMID: 36633173 DOI: 10.1002/anie.202218468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/13/2023]
Abstract
Fluoroarenes are abundant and readily available feedstocks. However, due to the high reduction potentials of mono-fluoroarenes, their photoreduction remains a continuing challenge, motivating the development of efficient activation modes to address this issue. This report presents the blue light-induced N-heterocyclic carbene (NHC)-catalyzed single electron reduction of mono-fluoroarenes for biaryl cross-couplings. We discovered that under blue light irradiation, NHC/tBuOK combination could construct powerful photoactive architectures to promote single electron transfer for Caryl -F bond reduction via forming highly reducing NHC radical anion. Notably, the strategy was also successful to reduce Caryl -O, Caryl -N, and Caryl -S bonds for biaryl cross-couplings.
Collapse
Affiliation(s)
- He Sheng
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, China
| |
Collapse
|
32
|
Noto N, Saito S. Arylamines as More Strongly Reducing Organic Photoredox Catalysts than fac-[Ir(ppy) 3]. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Naoki Noto
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Susumu Saito
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
33
|
Pathania V, Roy VJ, Roy SR. Transforming Non-innocent Phenalenyl to a Potent Photoreductant: Captivating Reductive Functionalization of Aryl Halides through Visible-Light-Induced Electron Transfer Processes. J Org Chem 2022; 87:16550-16566. [DOI: 10.1021/acs.joc.2c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
34
|
Uchikura T, Tsubono K, Hara Y, Akiyama T. Dual-Role Halogen-Bonding-Assisted EDA-SET/HAT Photoreaction System with Phenol Catalyst and Aryl Iodide: Visible-Light-Driven Carbon–Carbon Bond Formation. J Org Chem 2022; 87:15499-15510. [DOI: 10.1021/acs.joc.2c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Kazushi Tsubono
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Yurina Hara
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro,
Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
35
|
Wang H, Wang S, George V, Llorente G, König B. Photo‐Induced Homologation of Carbonyl Compounds for Iterative Syntheses. Angew Chem Int Ed Engl 2022; 61:e202211578. [PMID: 36226924 PMCID: PMC10099875 DOI: 10.1002/anie.202211578] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Indexed: 11/12/2022]
Abstract
We describe a photo-induced reaction for the in situ generation of highly reactive alkyl diazo species from carbonyl precursors via photo-excitation of N-tosylhydrazone anions. The diazo intermediates undergo efficient C-H insertion of aldehydes, leading to the productive synthesis of aldehydes and ketones. The method is applicable to the iterative synthesis of densely functionalized carbonyl compounds through sequential trapping of the diazo species with various aldehydes. The reaction proceeds without the need of any catalyst by light irradiation and features high functional group tolerance. More than 70 examples, some performed on a gram-scale, demonstrate the broad applicability of this reaction sequence in synthesis.
Collapse
Affiliation(s)
- Hua Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
- Department of Chemistry, School of Pharmacy The Fourth Military Medical University Xi'an 710032 P. R. China
| | - Shun Wang
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Vincent George
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Galder Llorente
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University Regensburg 93040 Regensburg Germany
| |
Collapse
|
36
|
Chen R, Jiang S, Zhang Q, Luo Y. Intermediate Complex-Mediated Interfacial Electron Transfer in a Radical Dianion/TiO 2 Dye-Sensitized Photocatalytic System. J Phys Chem Lett 2022; 13:8091-8096. [PMID: 35997532 DOI: 10.1021/acs.jpclett.2c02026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We present a mechanistic study of a PTCDA2-/TiO2 dye-sensitized photocatalytic system, in which the stable radical dianion PTCDA2- is formed via a two-step consecutive photoinduced electron transfer from its neutral precursor PTCDA (i.e., perylenetetracarboxylic dianhydride). Photoexcitation of PTCDA2- brings forth an interesting behavior known as vibrationally excited-state-selective, visible-light photocatalytic hydrogen evolution reaction (HER). In conjunction with the information gleaned from optical spectroscopy and ultrafast dynamics, we reveal that an intermediate complex (IC) state with a lifetime of ∼12 ps exists in the vicinity of a certain vibrationally excited state of PTCDA2-. Such a unique IC state mediates the interfacial electron transfer (IET) channel from the specific excited state of PTCDA2- to the conduction band continuum of TiO2. As an outcome, the effective IC-mediated IET process in this photocatalytic system leads to a remarkable HER rate that reaches ∼4660 μmol g-1 h-1.
Collapse
Affiliation(s)
- Renli Chen
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Qun Zhang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
37
|
Dixit SJN, Chacko S, Manna B, Agarwal N. Ultrafast Dynamics of Photoinduced Electron Transfer in Bay-Aryl-Substituted Perylene Diimide Derivatives. J Phys Chem B 2022; 126:5908-5919. [PMID: 35894852 DOI: 10.1021/acs.jpcb.2c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blends of donors and acceptors have been widely used in bulk-heterojunction solar cells to have exciton formation and charge separation by photoinduced electron transfer (PET). In this work, we have synthesized perylene diimide (PDI)-based materials having different aryl substituents at the bay positions (4-Anisyl-PDI, CBZ-N-Ph-PDI, and 4-Pyridyl-PDI) to understand the excited-state dynamics of electron transfer. The detailed photophysics was studied using steady-state as well as ultrafast dynamics of the excited states in different solvents. CBZ-N-Ph-PDI showed tremendous effects of the solvent on the electronic properties compared with the other two derivatives. The emission quantum yield of CBZ-N-Ph-PDI decreases drastically in dichloromethane and other polar solvents, indicating strong electron transfer. DFT calculations showed that in CBZ-N-Ph-PDI the HOMO is centered mostly on the N-phenylcarbazole and the LUMO is on the electron-poor PDI moieties. In addition, the energy levels of the HOMO and HOMO-1 in CBZ-N-Ph-PDI are estimated to be identical. The free energy change for charge separation (ΔGCS) was calculated using electrochemical and photophysical data and found to be negative for CBZ-N-Ph-PDI. The ground- and excited-state dipole moment ratios suggest that the excited state of 4-Pyridyl-PDI (1.90) is less polar than that of 4-Anisyl-PDI (3.67), which provides an idea of the lower possibility of charge separation in 4-Anisyl-PDI and 4-Pyridyl-PDI. Ultrafast photodynamics studies of 4-Anisyl-PDI, CBZ-N-Ph-PDI, and 4-Pyridyl-PDI showed fast electron transfer only in CBZ-N-Ph-PDI and not in the other PDI derivatives. It was also observed that electron transfer is faster in DCM and THF than in toluene. Ultrafast dynamics studies showed the presence of an equilibrium between electron transfer and decay from the singlet excited state. Ultrafast studies also showed the features of the N-phenylcarbazole cation and PDI anion, further confirming the intramolecular electron transfer in CBZ-N-Ph-PDI.
Collapse
Affiliation(s)
- Swati J N Dixit
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Sajeev Chacko
- Department of Physics, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| | - Biswajit Manna
- Radiation and Photochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai 400085, India
| | - Neeraj Agarwal
- School of Chemical Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098, India
| |
Collapse
|
38
|
Liu MT, Liu DG, Qin ZW, Wang GZ. Visible light‐induced decarboxylative alkylations enabled by electron‐donnor acceptor complex. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meng-Ting Liu
- USTC: University of Science and Technology of China institute of advanced technology, CHINA
| | - De-Guang Liu
- USTC: University of Science and Technology of China Department of Chemistry CHINA
| | - Zhi-Wei Qin
- USTC: University of Science and Technology of China institute of advanced technology, CHINA
| | - Guang-Zu Wang
- USTC: University of Science and Technology of China Department of Chemistry ustc 230026 HEFEI CHINA
| |
Collapse
|
39
|
Wang H, Ni J, Wang H, Zhang Y. An efficient free radical ester synthesis through a visible light-induced hydrogen atom transfer process. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Jeong DY, Lee DS, Lee HL, Nah S, Lee JY, Cho EJ, You Y. Evidence and Governing Factors of the Radical-Ion Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Da Seul Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ha Lim Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghee Nah
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 02841, Republic of Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
41
|
Guo HM, He BQ, Wu X. Direct Photoexcitation of Xanthate Anions for Deoxygenative Alkenylation of Alcohols. Org Lett 2022; 24:3199-3204. [PMID: 35467887 DOI: 10.1021/acs.orglett.2c00889] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this report, we identify xanthate salts as a unique class of visible-light-excitable alkyl radical precursors that act simultaneously as strong photoreductants and alkyl radical sources. Upon direct photoexcitation of xanthate anions, efficient deoxygenative alkenylation and alkylation of a wide range of primary, secondary, and tertiary alcohols have been achieved via a one-pot protocol, avoiding any photocatalysts. This method exhibits a broad substrate scope and good functional group tolerance, enabling late-stage functionalization of complex molecules.
Collapse
Affiliation(s)
- Hong-Mei Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bin-Qing He
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuesong Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
42
|
Liao LL, Song L, Yan SS, Ye JH, Yu DG. Highly reductive photocatalytic systems in organic synthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Rosso C, Cuadros S, Barison G, Costa P, Kurbasic M, Bonchio M, Prato M, Dell’Amico L, Filippini G. Unveiling the Synthetic Potential of Substituted Phenols as Fully Recyclable Organophotoredox Catalysts for the Iodosulfonylation of Olefins. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giorgia Barison
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Paolo Costa
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marina Kurbasic
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, INSTM UdR, Padova, University of Padova, Via Marzolo 1, 35131 Padova, Italy
- Istituto per la Tecnologia delle Membrane, ITM-CNR, UoS di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014 Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| | - Luca Dell’Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence for Nanostructured Materials, INSTM UdR, Trieste, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
44
|
Kobayashi Y, Abe J. Recent advances in low-power-threshold nonlinear photochromic materials. Chem Soc Rev 2022; 51:2397-2415. [PMID: 35262107 DOI: 10.1039/d1cs01144h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Incoherent nonlinear photophysical and photochemical processes based on stepwise two-photon absorption (2PA) processes have been recently used in materials science owing to their unique photoresponses beyond one-photon processes and lower power thresholds to induce the processes than those of coherent nonlinear optical processes. Among them, nonlinear photochromic materials have received considerable attention because they exhibit unconventional photoresponses compared with other incoherent nonlinear processes such as low-power-threshold nonlinear photoresponses with unimolecular systems, gated photochemical reactions and oxygen-insensitive nonlinear photoresponses. Nonlinear photochromic materials are important not only for colorimetric materials, but also for emergent materials that can enrich the next-generation society such as dynamic holographic materials, which are promising for three-dimensional displays. In this tutorial review, we introduce low-power-threshold nonlinear photochromic materials using stepwise 2PA processes. First, we explain the fundamental concepts of photochemistry as well as photochromic reactions. We attempt to provide an intuitive understanding of incoherent nonlinear optical processes using these fundamental concepts. Then, we introduce several recent examples and potential applications of nonlinear photochromic materials. This tutorial review is important for understanding the scientific progress related to these fields and provides a simple unified picture of the incoherent nonlinear optical properties of different types of photofunctional materials.
Collapse
Affiliation(s)
- Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Jiro Abe
- Department of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan.
| |
Collapse
|
45
|
Yan DM, Xu SH, Qian H, Gao PP, Bi MH, Xiao WJ, Chen JR. Photoredox-Catalyzed and Copper(II) Salt-Assisted Radical Addition/Hydroxylation Reaction of Alkenes, Sulfur Ylides, and Water. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Dong-Mei Yan
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Shuang-Hua Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Hao Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Pan-Pan Gao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ming-Hang Bi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
46
|
Visible-light-induced, autopromoted nickel-catalyzed three-component arylsulfonation of 1,3-enynes and mechanistic in-sights. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Tetramethylammonium Fluoride: Fundamental Properties and Applications in C-F Bond-Forming Reactions and as a Base. Catalysts 2022. [DOI: 10.3390/catal12020233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nucleophilic ionic sources of fluoride are essential reagents in the synthetic toolbox to access high added-value fluorinated building blocks unattainable by other means. In this review, we provide a concise description and rationale of the outstanding features of one of these reagents, tetramethylammonium fluoride (TMAF), as well as disclosing the different methods for its preparation, and how its physicochemical properties and solvation effects in different solvents are intimately associated with its reactivity. Furthermore, herein we also comprehensively describe its historic and recent utilization, up to December 2021, in C-F bond-forming reactions with special emphasis on nucleophilic aromatic substitution fluorinations with a potential sustainable application in industrial settings, as well as its use as a base capable of rendering unprecedented transformations.
Collapse
|
48
|
Shen N, Li R, Liu C, Shen X, Guan W, Shang R. Photocatalytic Cross-Couplings of Aryl Halides Enabled by o-Phosphinophenolate and o-Phosphinothiophenolate. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ni Shen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Runhan Li
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Can Liu
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xuzhong Shen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Rui Shang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
49
|
Tanaka T, Kiuchi T, Ooe Y, Iwamoto H, Takizawa SY, Murata S, Hasegawa E. A Photocatalytic System Composed of Benzimidazolium Aryloxide and Tetramethylpiperidine 1-Oxyl to Promote Desulfonylative α-Oxyamination Reactions of α-Sulfonylketones. ACS OMEGA 2022; 7:4655-4666. [PMID: 35155957 PMCID: PMC8829864 DOI: 10.1021/acsomega.1c06857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/14/2022] [Indexed: 05/19/2023]
Abstract
A new photocatalytic system was developed for carrying out desulfonylative α-oxyamination reactions of α-sulfonylketones in which α-ketoalkyl radicals are generated. The catalytic system is composed of benzimidazolium aryloxide betaines (BI+-ArO-), serving as visible light-absorbing electron donor photocatalysts, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), playing dual roles as an electron donor for catalyst recycling and a reagent to capture the generated radical intermediates. Information about the detailed nature of BI+-ArO- and the photocatalytic processes with TEMPO was gained using absorption spectroscopy, electrochemical measurements, and density functional theory calculations.
Collapse
Affiliation(s)
- Tsukasa Tanaka
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Takehiro Kiuchi
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-ya Takizawa
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Shigeru Murata
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department
of Chemistry, Faculty of Science, Niigata
University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
50
|
Li H, Wenger OS. Photophysics of Perylene Diimide Dianions and Their Application in Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202110491. [PMID: 34787359 PMCID: PMC9299816 DOI: 10.1002/anie.202110491] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/16/2021] [Indexed: 12/25/2022]
Abstract
The two-electron reduced forms of perylene diimides (PDIs) are luminescent closed-shell species whose photochemical properties seem underexplored. Our proof-of-concept study demonstrates that straightforward (single) excitation of PDI dianions with green photons provides an excited state that is similarly or more reducing than the much shorter-lived excited states of PDI radical monoanions, which are typically accessible after biphotonic excitation with blue photons. Thermodynamically demanding photocatalytic reductive dehalogenations and reductive C-O bond cleavage reactions of lignin model compounds have been performed using sodium dithionite acts as a reductant, either in aqueous solution or in biphasic water-acetonitrile mixtures in the presence of a phase transfer reagent. Our work illustrates the concept of multi-electron reduction of a photocatalyst by a sacrificial reagent prior to irradiation with low-energy photons as a means of generating very reactive excited states.
Collapse
Affiliation(s)
- Han Li
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| | - Oliver S. Wenger
- Department of ChemistryUniversity of BaselSt. Johanns-Ring 194056BaselSwitzerland
| |
Collapse
|