1
|
Niharika Bhuyan N, Shankar S S, Jyoti Panda S, Shekhar Purohit C, Singhal R, Sharma GD, Mishra A. An Asymmetric Coumarin-Anthracene Conjugate as Efficient Fullerene-Free Acceptor for Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202406272. [PMID: 38739535 DOI: 10.1002/anie.202406272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Asymmetric wide-band gap fullerene-free acceptors (FFAs) play a crucial role in organic solar cells (OSCs). Here, we designed and synthesized a simple asymmetric coumarin-anthracene conjugate named CA-CN with optical band gap of 2.1 eV in a single-step condensation reaction. Single crystal X-ray structure analysis confirms various multiple intermolecular non-covalent interactions. The molecular orbital energy levels of CA-CN estimated from cyclic voltammetry were found to be suitable for its use as an acceptor for OSCs. Binary OSCs fabricated using CA-CN as acceptor and PTB7-Th as the donor achieve a power conversion efficiency (PCE) of 11.13 %. We further demonstrate that the insertion of 20 wt % of CA-CN as a third component in ternary OSCs with PTB7-Th : DICTF as the host material achieved an impressive PCE of 14.91 %, an improvement of ~43 % compared to the PTB7-Th : DICTF binary device (10.38 %). Importantly, the ternary blend enhances the absorption coverage from 400 to 800 nm and improves the morphology of the active layer. The findings highlight the efficacy of an asymmetric design approach for FFAs, which paves the way for developing high-efficiency OSCs at low cost.
Collapse
Affiliation(s)
| | - Shyam Shankar S
- Department of Physics, The LNM Institute of Information Technology, Deemed University), Rupa ki Nagal, Jamdoli, 302031, Jaipur, Rajasthan, India
| | - Subhra Jyoti Panda
- School of Chemical Sciences, National Institute of Science Education and Research, Jatni, 752050, Bhubaneswar, Orissa, India
| | - Chandra Shekhar Purohit
- School of Chemical Sciences, National Institute of Science Education and Research, Jatni, 752050, Bhubaneswar, Orissa, India
| | - Rahul Singhal
- Department of Physics, Malaviya National Institute of Technology, 302017, Jaipur, Rajasthan, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Deemed University), Rupa ki Nagal, Jamdoli, 302031, Jaipur, Rajasthan, India
| | - Amaresh Mishra
- School of Chemistry, Sambalpur University, 768019, Jyoti Vihar, Sambalpur, India
| |
Collapse
|
2
|
Gu X, Zeng R, Hou Y, Yu N, Qiao J, Li H, Wei Y, He T, Zhu J, Deng J, Tan S, Zhang C, Cai Y, Long G, Hao X, Tang Z, Liu F, Zhang X, Huang H. Precisely Regulating Intermolecular Interactions and Molecular Packing of Nonfused-Ring Electron Acceptors via Halogen Transposition for High-Performance Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202407355. [PMID: 38837587 DOI: 10.1002/anie.202407355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
The structure of molecular aggregates is crucial for charge transport and photovoltaic performance in organic solar cells (OSCs). Herein, the intermolecular interactions and aggregated structures of nonfused-ring electron acceptors (NFREAs) are precisely regulated through a halogen transposition strategy, resulting in a noteworthy transformation from a 2D-layered structure to a 3D-interconnected packing network. Based on the 3D electron transport pathway, the binary and ternary devices deliver outstanding power conversion efficiencies (PCEs) of 17.46 % and 18.24 %, respectively, marking the highest value for NFREA-based OSCs.
Collapse
Affiliation(s)
- Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Zeng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Hongxiang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610106, China
| | - Yanan Wei
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jinge Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Senke Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cai'e Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
3
|
Yang LJ, Wu Y, Murugan P, Liu P, Qiu ZY, Peng YL, Li ZF, Liu SY. Advancing Integration of Direct C-H Arylation-Derived Star-Shaped Oligomers as Second Acceptors for Ternary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26348-26359. [PMID: 38728664 DOI: 10.1021/acsami.4c05564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Organic solar cells (OSCs) could benefit from the ternary bulk heterojunction (BHJ), a method that allows for fine-tuning of light capture, cascade energy levels, and film shape, in order to increase their power conversion efficiency (PCE). In this work, the third components of PM6:Y6 and PM6:BTP-eC9 BHJs are a set of four star-shaped unfused ring electron acceptors (SSUFREAs), i.e., BD-IC, BFD-IC, BD-2FIC, and BFD-2FIC, that are facilely synthesized by direct C-H arylation. The four SSUFREAs all show complete complementary absorption with PM6, Y6, and BTP-eC9, which facilitates light harvesting and exciton collection. When BFD-2FIC is added as a third component, the PCEs of PM6:Y6 and PM6:BTP-eC9 binary BHJs are able to be improved from 15.31% to 16.85%, and from 16.23% to 17.23%, respectively, showing that BFD-2FIC is useful for most effective ternary OSCs in general, and increasing short circuit current (JSC) and better film morphology are two additional benefits. The ternary PM6:Y6:BFD-2FIC exhibits a 9.7% percentage of increase in PCE compared to the PM6:Y6 binary BHJ, which is one of the highest percentage increases among the reported ternary BHJs, showing the huge potential of BFD-2FIC for ternary BHJ OSCs.
Collapse
Affiliation(s)
- Ling-Jun Yang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Pachaiyappan Murugan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Peng Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zhi-Yong Qiu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yu-Long Peng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Zai-Fang Li
- China-Australia Institute for Advanced Materials and Manufacturing (IAMM), Jiaxing University, Jiaxing 314001, China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
4
|
Shoaee S, Luong HM, Song J, Zou Y, Nguyen TQ, Neher D. What We have Learnt from PM6:Y6. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302005. [PMID: 37623325 DOI: 10.1002/adma.202302005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/10/2023] [Indexed: 08/26/2023]
Abstract
Over the past three years, remarkable advancements in organic solar cells (OSCs) have emerged, propelled by the introduction of Y6-an innovative A-DA'D-A type small molecule non-fullerene acceptor (NFA). This review provides a critical discussion of the current knowledge about the structural and physical properties of the PM6:Y6 material combination in relation to its photovoltaic performance. The design principles of PM6 and Y6 are discussed, covering charge transfer, transport, and recombination mechanisms. Then, the authors delve into blend morphology and degradation mechanisms before considering commercialization. The current state of the art is presented, while also discussing unresolved contentious issues, such as the blend energetics, the pathways of free charge generation, and the role of triplet states in recombination. As such, this review aims to provide a comprehensive understanding of the PM6:Y6 material combination and its potential for further development in the field of organic solar cells. By addressing both the successes and challenges associated with this system, this review contributes to the ongoing research efforts toward achieving more efficient and stable organic solar cells.
Collapse
Affiliation(s)
- Safa Shoaee
- Optoelectronics of Disordered Semiconductors, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., 10117, Berlin, Germany
| | - Hoang M Luong
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Jiage Song
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Thuc-Quyen Nguyen
- Centre for Polymers and Organic Solids, University of California, Santa Barbara, CA, 93106, USA
| | - Dieter Neher
- Soft Matter Physics and Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
5
|
Zhang X, Gu X, Huang H. Low-Cost Nonfused-Ring Electron Acceptors Enabled by Noncovalent Conformational Locks. Acc Chem Res 2024; 57:981-991. [PMID: 38431881 DOI: 10.1021/acs.accounts.3c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
ConspectusSince the first bilayer-structured organic solar cells (OSCs) in 1986, fullerenes and their derivatives have dominated the landscape for two decades due to their unique properties. In recent years, the breakthrough in nonfullerene acceptors (NFAs) was mainly attributed to the development of fused-ring electron acceptors (FREAs), whose photovoltaic performance surpassed that of fullerene derivatives. Through the unremitting efforts of the whole community, the power conversion efficiencies (PCEs) have surpassed 19% in FREA-based OSCs. However, FREAs generally suffered from complex synthetic approaches and high product costs, which hindered large-scale production. Therefore, many researchers are seeking a new type of NFA to achieve cost-effective, highly efficient OSCs.In collaboration with Marks and Facchetti in 2012, Huang et al. (Huang, H. J. Am. Chem. Soc. 2012, 134, 10966-10973, 10.1021/ja303401s) proposed the concept of "noncovalent conformational locks" (NoCLs). In the following years, our group has been focusing on the theoretical and experimental exploration of NoCLs, revealing their fundamental nature, formulating a simple descriptor for quantifying their strength, and employing this approach to achieve high-performance organic/polymeric semiconductors for optoelectronics, such as OSCs, thin-film transistors, room-temperature phosphorescence, and photodetectors. The NoCLs strategy has been proven to be a simple and effective approach for enhancing molecular rigidity and planarity, thus improving the charge transport mobilities of organic/polymeric semiconductors, attributed to reduced reorganization energy and suppressed nonradiative decay.In 2018, Chen et al. (Li, S. Adv. Mater. 2018, 30, 1705208, 10.1002/adma.201705208) reported the first example of nonfused-ring electron acceptors (NFREAs) with intramolecular noncovalent F···H interactions. The NoCLs strategy is essential in NFREAs, as it simplifies the conjugated structures while maintaining high coplanarity comparable to that of FREAs. Due to their simple structures and concise synthesis routes, NFREAs show great potential for achieving cost-effective and highly efficient OSCs. In this Account, we provide an overview of our efforts in developing NFREAs with the NoCLs strategy. We begin with a discussion on the distinct features of NFREAs compared with FREAs, and the structural simplification from FREAs to NFREAs to completely NFREAs. Next, we examine several selected typical examples of NFREAs with remarkable photovoltaic performance, aiming to provide an in-depth exploration of the molecular design principle and structure-property-performance relationships. Then, we discuss how to achieve a balance among efficiency, stability, and cost through a two-in-one strategy of polymerized NFREAs (PNFREAs). Finally, we offer our views on the current challenges and future prospects of NFREAs. We hope this Account will trigger intensive research interest in this field, thus propelling OSCs into a new stage.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaobin Gu
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Huang
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Yu R, Li S, Yuan H, Yang Z, Jin S, Tan Z. Research Advances of Nonfused Ring Acceptors for Organic Solar Cells. J Phys Chem Lett 2024:2781-2803. [PMID: 38441058 DOI: 10.1021/acs.jpclett.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The last few decades have witnessed the rapid development of organic solar cells (OSCs). High power conversion efficiencies (PCEs) of over 19% have been successfully achieved due to the emergence of fused-ring acceptors (FRAs). However, the high complexity and low yield for the material synthesis result in high production costs of FRAs, limiting the further commercial application of OSCs. In contrast, nonfused ring acceptors (NFRAs) with the merits of facile synthesis, high yield, and preferable stability can promote the development of low-cost OSCs. Currently, the PCEs of NFRAs-based OSCs have exceeded 17%, which is expected to reach efficiency comparable to that of the FRAs-based OSCs. This review describes the advantages of the recent advances in NFRAs, which emphasizes exploring how the chemical structures of NFRAs influence molecular conformation, aggregation, and packing modes. In addition, the further development of NFRA materials is prospected from molecular design, morphological control, and stability perspectives.
Collapse
Affiliation(s)
- Runnan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shuang Li
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haoyu Yuan
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zongzhi Yang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shengli Jin
- Zhejiang Baima Lake Laboratory Co. Ltd., Hangzhou 310051, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Gu X, Zeng R, He T, Zhou G, Li C, Yu N, Han F, Hou Y, Lv J, Zhang M, Zhang J, Wei Z, Tang Z, Zhu H, Cai Y, Long G, Liu F, Zhang X, Huang H. Simple-Structured Acceptor with Highly Interconnected Electron-Transport Pathway Enables High-Efficiency Organic Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401370. [PMID: 38373399 DOI: 10.1002/adma.202401370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Indexed: 02/21/2024]
Abstract
Achieving desirable charge-transport highway is of vital importance for high-performance organic solar cells (OSCs). Here, it is shown how molecular packing arrangements can be regulated via tuning the alkyl-chain topology, thus resulting in a 3D network stacking and highly interconnected pathway for electron transport in a simple-structured nonfused-ring electron acceptor (NFREA) with branched alkyl side-chains. As a result, a record-breaking power conversion efficiency of 17.38% (certificated 16.59%) is achieved for NFREA-based devices, thus providing an opportunity for constructing low-cost and high-efficiency OSCs.
Collapse
Affiliation(s)
- Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Rui Zeng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tengfei He
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Guanqing Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Congqi Li
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fei Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianqi Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
8
|
Xiao Y, Yao H, Chen Z, Yang N, Song CE, Wang J, Li Z, Yu Y, Ryu DH, Shin WS, Hao X, Hou J. Morphology Control for Efficient Nonfused Acceptor-Based Organic Photovoltaic Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305631. [PMID: 37752745 DOI: 10.1002/smll.202305631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Non-fused electron acceptors have huge advantages in fabricating low-cost organic photovoltaic (OPV) cells. However, morphology control is a challenge as non-fused C─C single bonds bring more molecular conformations. Here, by selecting two typical polymer donors, PBDB-TF and PBQx-TF, the blend morphologies and its impacts on the power conversion efficiencies (PCEs) of non-fused acceptor-based OPV cells are studied. A selenium-containing non-fused acceptor named ASe-5 is designed. The results suggest that PBQx-TF has a lower miscibility with ASe-5 when compared with PBDB-TF. Additionally, the polymer networks may form earlier in the PBQx-TF:ASe-5 blend film due to stronger preaggregation performance, leading to a more obvious phase separation. The PBQx-TF:ASe-5 blend film shows faster charge transfer and suppressed charge recombination. As a result, the PBQx-TF:ASe-5-based device records a good PCE of 14.7% with a higher fill factor (FF) of 0.744, while the PBDB-TF:ASe-5-based device only obtains a moderate PCE of 12.3% with a relatively low FF of 0.662. The work demonstrates that the selection of donors plays a crucial role in controlling the blend morphology and thus improving the PCEs of non-fused acceptor-based OPV cells.
Collapse
Affiliation(s)
- Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huifeng Yao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ni Yang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Eun Song
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Du Hyeon Ryu
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Won Suk Shin
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Lu H, Liu W, Ran G, Li J, Li D, Liu Y, Xu X, Zhang W, Bo Z. High-Efficiency Binary and Ternary Organic Solar Cells Based on Novel Nonfused-Ring Electron Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307292. [PMID: 37811717 DOI: 10.1002/adma.202307292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Indexed: 10/10/2023]
Abstract
In this study, three nonfused-ring electron acceptors (2TT, 2TT-C6-F, and 2TT-C11-F) with the same steric hindrance groups (2,4,6-tripropylbenzene) are designed and synthesized and the impact of electron-withdrawing and lateral alkyl side chains on the performance of binary and ternary organic solar cells (OSCs) is explored. For the binary OSCs, 2TT-C11-F with IC-2F terminal groups and lateral undecyl side chains display a red shifted absorption spectrum and suitable energy levels, and the corresponding blend film exhibits appropriate phase separation and crystallinity. Thus, binary OSCs based on 2TT-C11-F achieve an impressive power conversion efficiency of 13.03%, much higher than the efficiencies of those based on 2TT (9.68%) and 2TT-C6-F (12.11%). In the ternary OSCs, 2TT with CC terminal groups and lateral hexyl side chains exhibit complementary absorption and cascade energy levels with a host binary system (D18:BTP-eC9-4F). Hence, the ternary OSCs based on 2TT achieve a remarkable efficiency of 19.39%, ranking among the highest reported values. The research yields comprehensive 2TT-series nonfused-ring electron acceptors, demonstrating their great potential for the fabrication of high-performance binary and ternary OSCs.
Collapse
Affiliation(s)
- Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Jingyi Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
- College of Textiles & Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Li D, Zhang H, Cui X, Chen YN, Wei N, Ran G, Lu H, Chen S, Zhang W, Li C, Liu Y, Liu Y, Bo Z. Halogenated Nonfused Ring Electron Acceptor for Organic Solar Cells with a Record Efficiency of over 17. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310362. [PMID: 37994270 DOI: 10.1002/adma.202310362] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Three nonfused ring electron acceptors (NFREAs), namely, 3TT-C2-F, 3TT-C2-Cl, and 3TT-C2, are purposefully designed and synthesized with the concept of halogenation. The incorporation of F or/and Cl atoms into the molecular structure (3TT-C2-F and 3TT-C2-Cl) enhances the π-π stacking, improves electron mobility, and regulates the nanofiber morphology of blend films, thus facilitating the exciton dissociation and charge transport. In particular, blend films based on D18:3TT-C2-F demonstrate a high charge mobility, an extended exciton diffusion distance, and a well-formed nanofiber network. These factors contribute to devices with a remarkable power conversion efficiency of 17.19%, surpassing that of 3TT-C2-Cl (16.17%) and 3TT-C2 (15.42%). To the best of knowledge, this represents the highest efficiency achieved in NFREA-based devices up to now. These results highlight the potential of halogenation in NFREAs as a promising approach to enhance the performance of organic solar cells.
Collapse
Affiliation(s)
- Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Huarui Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinyue Cui
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Ya-Nan Chen
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Nan Wei
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Hao Lu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Shenhua Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Cuihong Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yahui Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Yuqiang Liu
- College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
11
|
Xu M, Wei C, Zhang Y, Chen J, Li H, Zhang J, Sun L, Liu B, Lin J, Yu M, Xie L, Huang W. Coplanar Conformational Structure of π-Conjugated Polymers for Optoelectronic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301671. [PMID: 37364981 DOI: 10.1002/adma.202301671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Hierarchical structure of conjugated polymers is critical to dominating their optoelectronic properties and applications. Compared to nonplanar conformational segments, coplanar conformational segments of conjugated polymers (CPs) demonstrate favorable properties for applications as a semiconductor. Herein, recent developments in the coplanar conformational structure of CPs for optoelectronic devices are summarized. First, this review comprehensively summarizes the unique properties of planar conformational structures. Second, the characteristics of the coplanar conformation in terms of optoelectrical properties and other polymer physics characteristics are emphasized. Five primary characterization methods for investigating the complanate backbone structures are illustrated, providing a systematical toolbox for studying this specific conformation. Third, internal and external conditions for inducing the coplanar conformational structure are presented, offering guidelines for designing this conformation. Fourth, the optoelectronic applications of this segment, such as light-emitting diodes, solar cells, and field-effect transistors, are briefly summarized. Finally, a conclusion and outlook for the coplanar conformational segment regarding molecular design and applications are provided.
Collapse
Affiliation(s)
- Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Chuanxin Wei
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yunlong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jiefeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Lili Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Bin Liu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Mengna Yu
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & School of Chemistry and Life Sciences & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
12
|
Shen S, Mi Y, Ouyang Y, Lin Y, Deng J, Zhang W, Zhang J, Ma Z, Zhang C, Song J, Bo Z. Macrocyclic Encapsulation in a Non-fused Tetrathiophene Acceptor for Efficient Organic Solar Cells with High Short-Circuit Current Density. Angew Chem Int Ed Engl 2023; 62:e202316495. [PMID: 37948070 DOI: 10.1002/anie.202316495] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
Non-fullerene acceptors have shown great promise for organic solar cells (OSCs). However, challenges in achieving high efficiency molecular system with conformational unicity and effective molecular stacking remain. In this study, we present a new design of non-fused tetrathiophene acceptor R4T-1 via employing the encapsulation of tetrathiophene with macrocyclic ring. The single crystal structure analysis reveals that cyclic alkyl side chains can perfectly encapsulate the central part of molecule and generate a conformational stable and planar molecular backbone. Whereas, the control 4T-5 without the encapsulation restriction displays cis- and twisted conformation. As a result, R4T-1 based OSCs achieved an outstanding power conversion efficiency (PCE) exceeding 15.10 % with a high short-circuit current density (Jsc ) of 25.48 mA/cm2 , which is significantly improved by ≈30 % in relative to that of the control. Our findings demonstrate that the macrocyclic encapsulation strategy could assist fully non-fused electron acceptors (FNEAs) to achieve a high photovoltaic performance and pave a new way for FNEAs design.
Collapse
Affiliation(s)
- Shuaishuai Shen
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yu Mi
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingjing Deng
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Wenjun Zhang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Jianqi Zhang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zaifei Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material, Center for Advanced Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinsheng Song
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Fang Y, Deng X, Lu J, Huang B, Chen S, Liu K, Zhang J, Jeong S, Yang C, Liu J. Constructing High-Performance Ternary Device Using Analogous Polymer Donors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304996. [PMID: 37635097 DOI: 10.1002/smll.202304996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/22/2023] [Indexed: 08/29/2023]
Abstract
Both ternary copolymerization and ternary blending are effective methods to fine-tune polymer structure and manipulate thin-film morphology to improve device performance. In this work, three D-A-A-A (D: donor, A: acceptor) terpolymer donors (FY1, FY2, and FY3) are synthesized by introducing BDD (1,3-bis(2-ethylhexyl)-5,7-di(thiophen-2-yl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione) units into the D-A alternating copolymer PM6 backbone. Owing to the promoted conjugated planarity and excellent absorption of BDD, the obtained terpolymers display an extended absorption range and enhanced π-π stacking orientation, which is a promising third component in ternary device. As a result, the optimal FY1:PM6:BTP-eC9-based ternary device afforded an impressive power conversion efficiency (PCE) as high as 18.52%, owing to the efficient charge transport, negligible energy loss, and suitable domain size. The result provides an efficient method to obtain high-performance polymer solar cells by using analogous polymer donors in ternary device.
Collapse
Affiliation(s)
- Yu Fang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xiangmeng Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jiayong Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Shanshan Chen
- Department of New Energy, School of Energy & Power Engineering, MOE Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, CQU-NUS Renewable Energy Materials & Devices Joint Laboratory, Chongqing University, Chongqing, 400044, P. R. China
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Seonghun Jeong
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Jinbiao Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Faculty of Materials Metallurgy and Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
14
|
Guijarro F, de la Cruz P, Khandelwal K, Singhal R, Langa F, Sharma GD. Effects of Halogenation on Cyclopentadithiophenevinylene-Based Acceptors with Excellent Responses in Binary Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21296-21305. [PMID: 37073988 PMCID: PMC11165453 DOI: 10.1021/acsami.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
In recent years, non-fused non-fullerene acceptors (NFAs) have attracted increasing consideration due to several advantages, which include simple preparation, superior yield, and low cost. In the work reported here, we designed and synthesized three new NFAs with the same cyclopentadithiophenevinylene (CPDTV) trimer as the electron-donating unit and different terminal units (IC for FG10, IC-4F for FG8, and IC-4Cl for FG6). Both halogenated NFAs, i.e., FG6 and FG8, show red-shifted absorption spectra and higher electron mobilities (more pronounced for FG6) in comparison with FG10. Moreover, the dielectric constants of these materials also increased upon halogenation of the IC terminal units, thus leading to a reduction in the exciton binding energy, which is favorable for dissociation of excitons and subsequent charge transfer despite the driving force (highest occupied molecular orbital and lowest unoccupied molecular orbital offsets) being very small. The organic solar cells (OSCs) constructed using these acceptors and PBDB-T, as the donor, showed PCE values of 15.08, 12.56, and 9.04% for FG6, FG8, and FG10, respectively. The energy loss for the FG6-based device was the lowest (0.45 eV) of all the devices, and this may be attributed to it having the highest dielectric constant, which leads to a reduction in the binding energy of exciton and a small driving force for hole transfer from FG6 to PBDB-T. The results indicate that the NFA containing the CPDTV oligomer core and halogenated terminal units can efficiently spread the absorption spectrum to the NIR zone. Non-fused NFAs have a bright future in the quest to obtain efficient OSCs with low cost for marketable purposes.
Collapse
Affiliation(s)
- Fernando
G. Guijarro
- Instituto de Nanociencia, Universidad de Castilla-La Mancha, Nanotecnología
y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071 Toledo, Spain
| | - Pilar de la Cruz
- Instituto de Nanociencia, Universidad de Castilla-La Mancha, Nanotecnología
y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071 Toledo, Spain
| | - Kanupriya Khandelwal
- Department of Physics, The LNM Institute
of Information Technology, Jamdoli, 302031 Jaipur, (Rai), India
| | - Rahul Singhal
- Department of Physics, Malviya National
Institute of Technology, JLN Marg, 302017 Jaipur, (Raj.), India
| | - Fernando Langa
- Instituto de Nanociencia, Universidad de Castilla-La Mancha, Nanotecnología
y Materiales Moleculares (INAMOL), Campus de la Fábrica de Armas, 45071 Toledo, Spain
| | - Ganesh D. Sharma
- Department of Physics, The LNM Institute
of Information Technology, Jamdoli, 302031 Jaipur, (Rai), India
- Department
of Electronics and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, 302031 Jaipur, (Rai), India
| |
Collapse
|
15
|
Liang S, Xiao C, Xie C, Liu B, Fang H, Li W. 13% Single-Component Organic Solar Cells based on Double-Cable Conjugated Polymers with Pendent Y-Series Acceptors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300629. [PMID: 36814317 DOI: 10.1002/adma.202300629] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Indexed: 05/05/2023]
Abstract
Double-cable conjugated polymers with pendent electron acceptors, including fullerene, rylene diimides, and nonfused acceptors, have been developed for application in single-component organic solar cells (SCOSCs) with efficiencies approaching 10%. In this work, Y-series electron acceptors have been firstly incorporated into double-cable polymers in order to further improve the efficiencies of SCOSCs. A highly crystalline Y-series acceptor based on quinoxaline core and the random copolymerized strategy are used to optimize the ambipolar charge transport and the nanophase separation of the double-cable polymers. As a result, an efficiency of 13.02% is obtained in the random double-cable polymer, representing the highest performance in SCOSCs, while the regular double-cable polymer only provides a low efficiency of 2.75%. The significantly enhanced efficiencies are attributed to higher charge carrier mobilities, better ordering conjugated backbones and Y-series acceptors in random double-cable polymers.
Collapse
Affiliation(s)
- Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengcheng Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Baiqiao Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Haisheng Fang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
Li Z, Yao H, Wang W, Song CE, Ryu DH, Xiao Y, Wang J, Ma L, Zhang T, Ren J, An C, Shin WS, Hou J. Large Steric Hindrance Enhanced Molecular Planarity for Low-Cost Non-Fused Electron Acceptors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16801-16808. [PMID: 36971203 DOI: 10.1021/acsami.3c01194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Designing efficient non-fused ring electron acceptors is of great importance in decreasing the material cost of organic photovoltaic cells (OPVs). It is a challenge to construct a planar molecular skeleton in non-fused molecules as there are many torsions between adjacent units. Here, we design two non-fused electron acceptors based on bithieno[3,2-b]thiophene units as core structures and study the impact of steric hindrance of substituents on molecular planarity. We use 2,4,6-triisopropylphenyl and 4-hexylphenyl groups to prepare ATTP-1 and ATTP-2, respectively. Our results suggest that the enhanced steric hindrance is beneficial for obtaining a more planar molecular configuration, which significantly increases the optical absorption and charge transport properties. The power conversion efficiency (PCE) of PBDB-TF:ATTP-1 combination (11.3%) is superior to that of PBDB-TF:ATTP-2 combination (3.7%). In addition, an impressive PCE of 10.7% is recorded in ATTP-1-based devices when a low-cost polythiophene donor PDCBT is used, which is an outstanding value in OPVs fabricated by non-fused donor/acceptor combinations. Our work demonstrates that modulation of the steric hindrance effect is of great significance to control the molecular planarity and thus obtain excellent photovoltaic performance of low-cost non-fused electron acceptors.
Collapse
Affiliation(s)
- Zi Li
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huifeng Yao
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenxuan Wang
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Eun Song
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Du Hyeon Ryu
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Yang Xiao
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingwen Wang
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijiao Ma
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tao Zhang
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junzhen Ren
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cunbin An
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Won Suk Shin
- Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong, Daejeon 34114, Republic of Korea
| | - Jianhui Hou
- University State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Shao Y, Sun R, Wang W, Yang X, Sun C, Li Y, Min J. Low-cost organic photovoltaic materials with great application potentials enabled by developing isomerized non-fused ring acceptors. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1502-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Ma L, Zhang S, Ren J, Wang G, Li J, Chen Z, Yao H, Hou J. Design of a Fully Non-Fused Bulk Heterojunction toward Efficient and Low-Cost Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202214088. [PMID: 36448216 DOI: 10.1002/anie.202214088] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
To modulate the miscibility between donor and acceptor materials both possessing fully non-fused ring structures, a series of electron acceptors (A4T-16, A4T-31 and A4T-32) with different polar functional substituents were synthesized and investigated. The three acceptors show good planarity, high conformational stability, complementary absorption and energy levels with the non-fused polymer donor (PTVT-BT). Among them, A4T-32 possesses the strongest polar functional group and shows the highest surface energy, which facilitates morphological modulation in the bulk heterojunction (BHJ) blend. Benefiting from the proper morphology control method, an impressive power conversion efficiency (PCE) of approaching 16.0 % and a superior fill factor over 0.795 are achieved in the PTVT-BT : A4T-32-based organic photovoltaic cells with superior photoactive materials price advantage, which represent the highest value for the cells based on the non-fused blend films. Notably, this cell maintains ≈84 % of its initial PCE after nearly 2000 h under the continuous simulated 1-sun-illumination. In addition, the flexible PTVT-BT : A4T-32-based cells were fabricated and delivered a decent PCE of 14.6 %. This work provides an effective molecular design strategy for the non-fused non-fullerene acceptors (NFAs) from the aspect of bulk morphology control in fully non-fused BHJ layers, which is crucial for their practical applications.
Collapse
Affiliation(s)
- Lijiao Ma
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junzhen Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanlin Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayao Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huifeng Yao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Liu B, Liang S, Karuthedath S, He Y, Wang J, Tan WL, Li H, Xu Y, Laquai F, Brabec CJ, McNeill CR, Xiao C, Tang Z, Hou J, Yang F, Li W. Double-Cable Conjugated Polymers Based on Simple Non-Fused Electron Acceptors for Single-Component Organic Solar Cells. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Baiqiao Liu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Safakath Karuthedath
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Yakun He
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Jing Wang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Hao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Yunhua Xu
- School of Physical Science and Engineering, Beijing Jiaotong University, Beijing100044, P. R. China
| | - Frédéric Laquai
- KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Christoph J. Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058Erlangen, Germany
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Wellington Road, Clayton, Victoria3800, Australia
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Fan Yang
- College of Chemistry, Chemical
Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan250014, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
20
|
Ma DL, Zhang QQ, Li CZ. Unsymmetrically Chlorinated Non-Fused Electron Acceptor Leads to High-Efficiency and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202214931. [PMID: 36433656 DOI: 10.1002/anie.202214931] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.
Collapse
Affiliation(s)
- De-Li Ma
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qian-Qian Zhang
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
21
|
Zheng R, Zhang C, Zhang A, Xue J, Xu X, Liu Y, Su CJ, Ma W, Yang C, Bo Z. Effect of Steric Hindrance at the Anthracene Core on the Photovoltaic Performance of Simple Nonfused Ring Electron Acceptors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4275-4283. [PMID: 36645327 DOI: 10.1021/acsami.2c22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solving the contradiction between good solubility and dense packing is a challenge in designing high-performance nonfullerene acceptors. Herein, two simple nonfused ring electron acceptors (o-AT-2Cl and m-AT-2Cl) carrying ortho- or meta-substituted hexyloxy side chains can be facilely synthesized in only three steps. The two ortho-substituted phenyl side chains in o-AT-2Cl cannot freely rotate due to a big steric hindrance, which endows the acceptor with good solubility. Moreover, o-AT-2Cl displays a more ordered packing than m-AT-2Cl as revealed by the absorption measurement. When blended with polymer donor D18 for the fabrication of organic solar cells (OSCs), o-AT-2Cl-based devices exhibit a favorable morphology, more efficient exciton dissociation, and better charge transport. Consequently, the optimal OSCs based on D18:o-AT-2Cl exhibit a power conversion efficiency (PCE) of 12.8%, which is significantly higher than the moderate PCE (7.66%) for D18:m-AT-2Cl-based devices. Remarkably, o-AT-2Cl shows a higher figure-of-merit value compared with classic high-efficiency fused ring electron acceptors. As a result, our research succeeds in obtaining nonfused ring acceptors with cost-effective photovoltaic performance and provides a valuable experience for simultaneously improving solubility as well as ensuring ordered packing of acceptors through regulating the steric hindrance via changing the position of substituents.
Collapse
Affiliation(s)
- Rui Zheng
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Cai'e Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinjun Xu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
22
|
Li J, Li H, Ma L, Zhang S, Hou J. Design and Synthesis of
N
‐Alkylaniline‐Substituted
Low
Band‐Gap
Electron Acceptors for Photovoltaic Application. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Li
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
23
|
Reduced energetic disorder enables over 14% efficiency in organic solar cells based on completely non-fused-ring donors and acceptors. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Gao J, Zhu X, Bao H, Feng J, Gao X, Liu Z, Ge Z. Latest progress on fully non-fused electron acceptors for high-performance organic solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
25
|
Yao H, Hou J. Recent Advances in Single‐Junction Organic Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202209021. [DOI: 10.1002/anie.202209021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Huifeng Yao
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jianhui Hou
- Beijing National Laboratory for Molecular Sciences State Key Laboratory of Polymer Physics and Chemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
26
|
Li J, Zhang Z, Ran G, Xu X, Zhang C, Liu W, Zheng X, Li D, Xu X, Liu Y, Tang Z, Zhang W, Bo Z. High-Performance Nonfused Ring Electron Acceptors with V-Shaped Side Chains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203454. [PMID: 35934890 DOI: 10.1002/smll.202203454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Motivated by simplifying the synthesis of nonfullerene acceptor and establishing the relation between molecular structure and photovoltaic performance, two isomeric nonfused ring electron acceptors (o-TT-Cl and m-TT-Cl), whose properties can be adjusted by changing the side chains, are designed and synthesized with several high-yield steps. o-TT-Cl with V-shaped side chain induces a dominated J-aggregation and displays much better solubility and more ordered packing than m-TT-Cl with linear side chain. Thus, the o-TT-Cl-based blend film generates better phase morphology and charge transport than m-TT-Cl-based one. Finally, the power conversion efficiency of o-TT-Cl-based devices is 12.84%, which is much higher than that of m-TT-Cl-based ones (6.54%). This work highlights the importance of side chains engineering on improving photovoltaic performance of nonfused ring electron acceptors.
Collapse
Affiliation(s)
- Jingyi Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenyu Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoyun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenlong Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xinming Zheng
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dawei Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, P. R. China
| | - Zheng Tang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
27
|
Development of non-fullerene electron acceptors for efficient organic photovoltaics. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractCompared to fullerene based electron acceptors, n-type organic semiconductors, so-called non-fullerene acceptors (NFAs), possess some distinct advantages, such as readily tuning of optical absorption and electronic energy levels, strong absorption in the visible region and good morphological stability for flexible electronic devices. The design and synthesis of new NFAs have enabled the power conversion efficiencies (PCEs) of organic photovoltaic (OPV) devices to increase to around 19%. This review summarises the important breakthroughs that have contributed to this progress, focusing on three classes of NFAs, i.e. perylene diimide (PDI), diketopyrrolopyrrole (DPP) and acceptor–donor–acceptor (A-D-A) based NFAs. Specifically, the PCEs of PDI, DPP, and A-D-A series based non-fullerene OPVs have been reported up to 11%, 13% and 19%, respectively. Structure–property relationships of representative NFAs and their impact on OPV performances are discussed. Finally, we consider the remaining challenges and promising directions for achieving high-performing NFAs.
Collapse
|
28
|
Luo M, Chen Y, Liang J, Zhou J, Yuan D, Zhang Z, Liu X, Zhang L, Xie Z, Chen J. Three Isomeric Non-Fullerene Acceptors Comprising a Mono-Brominated End-Group for Efficient Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35985-35996. [PMID: 35900128 DOI: 10.1021/acsami.2c09323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Non-fullerene acceptors (NFAs) carrying a 1,1-dicyanomethylene-3-indanone (IC) end-group are the most powerful ones to boost the power conversion efficiency of organic solar cells (OSCs). However, the well-known Knoevenagel condensation of the mono-halogenated IC end-group will result in an NFA isomeric effect, a chemical issue that needs to be addressed. Herein, facile preparations and separations of three well-defined mono-brominated isomers BTzIC-2Br-δ, BTzIC-2Br-γ, and BTzIC-2Br-δγ via column chromatography with a well-chosen mixing solvent were demonstrated for Knoevenagel condensation, and their structures were verified by NMR spectra and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) mass spectra. It is the first time that an asymmetric isomer BTzIC-2Br-δγ is reported, and the regioisomeric effect on optoelectronic properties can be investigated based on all three isomers. Moreover, the single-crystal structure was successfully achieved for the symmetric molecule BTzIC-2Br-γ. With benzodithiophene (BDT)-free PFBT4T-T20 as an easily accessible and low-cost polymer donor, the three isomers could show differentiated device performances, with a power conversion efficiency order of BTzIC-2Br-γ (16.00%) > BTzIC-2Br-δγ (15.81%) > BTzIC-2Br-δ (15.29%). The best efficiency of 16.00% achieved with BTzIC-2Br-γ is among the highest ones for binary OSCs based on the low-cost BDT-free donors. The facile and complete synthesis of isomeric NFAs with mono-halogenated IC end-groups would promote the elucidation of the structure-property relationship.
Collapse
Affiliation(s)
- Mei Luo
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yinchu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiahao Liang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiadong Zhou
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Dong Yuan
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zesheng Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuanchen Liu
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Lianjie Zhang
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Junwu Chen
- Institute of Polymer Optoelectronic Materials & Devices, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
29
|
Li Y, Yu J, Zhou Y, Li Z. Molecular Insights of Non‐fused Ring Acceptors for High‐Performance Non‐fullerene Organic Solar Cells. Chemistry 2022; 28:e202201675. [DOI: 10.1002/chem.202201675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yibin Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser School of Electronic and Optical Engineering Nanjing University of Science and Technology 200 Xiaolingwei Street, Xuanwu District Nanjing P. R. China
| | - Yinhua Zhou
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology 1037 Luoyu Road Wuhan P. R. China
| |
Collapse
|
30
|
Han D, Lim C, Phan TNL, Kim Y, Kim BJ. Benzotriazole-Based Non-Fused Ring Acceptors for Efficient and Thermally Stable Organic Solar Cells. Macromol Rapid Commun 2022; 43:e2200530. [PMID: 35866445 DOI: 10.1002/marc.202200530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Indexed: 11/11/2022]
Abstract
Non-fused ring acceptors (NFRAs) have attracted significant attention for non-fullerene organic solar cells (OSCs) owing to their chemical tunability and facile synthesis. In this study, a benzotriazole-based NFRA with chlorinated end groups (Triazole-4Cl) is developed to realize highly efficient and thermally stable NFRA-based OSCs; an analogous NFRA with non-chlorinated end groups (Triazole-H) is synthesized for comparison. Triazole-4Cl film exhibits the high-order packing structure and the near-infrared absorption capability, which are advantageous in charge transport and light harvesting of the resulting OSCs. In particular, the strong crystalline behavior of Triazole-4Cl results in enhanced self-aggregation, leading to high charge carrier mobility. Owing to these properties, a PBDB-T(polymer donor):Triazole-4Cl OSC demonstrates a high short-circuit current, fill factor, and power conversion efficiency (PCE = 10.46%), outperforming a PBDB-T:Triazole-H OSC (PCE = 7.65%). In addition, the thermal stability of a PBDB-T:Triazole-4Cl OSC at an elevated temperature of 120°C exceeds that of a PBDB-T:Triazole-H OSC. This is mainly attributed to the significantly higher cold crystallization temperature of Triazole-4Cl (205.9°C). This work provides useful guidelines for the design of NFRAs to achieve efficient and thermally stable NFRA-based OSCs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Daehee Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Chulhee Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tan Ngoc-Lan Phan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Youngkwon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Bumjoon J Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
31
|
Yao H, Hou J. Recent Advances in Single‐Junction Organic Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Huifeng Yao
- Institute of Chemistry Chinese Academy of Sciences State Key Laboratory of Polymer Physics and Chemistry 100190 CHINA
| | - Jianhui Hou
- Institute of Chemistry Chinese Academy of Sciences Institute of chemistry, Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
32
|
Oligothiophene-based photovoltaic materials for organic solar cells: rise, plateau, and revival. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Ran G, Zeb J, Lu H, Liu Y, Zhang A, Wang L, Bo Z, Zhang W. Ultrafast Carrier Dynamics of Non-fullerene Acceptors with Different Planarity: Impact of Steric Hindrance. J Phys Chem Lett 2022; 13:5860-5866. [PMID: 35727229 DOI: 10.1021/acs.jpclett.2c01281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Most high-performance non-fullerene acceptors are of the acceptor-donor-acceptor (A-D-A)-type structure. Under photoexcitation, the intramolecular charge transfer effect on the A-D-A framework results in a large dipole moment change, facilitating the efficient generation of charge carriers. Achieving more efficient intramolecular charge transfer by adjusting the molecular structure is one of the current research ideas. Recently, we found that the power conversion efficiency can be improved from 4.41 to 13.13% by tuning the planarity of the non-fused ring electron acceptor backbone through steric hindrance of lateral substituents. We found that the planar backbone can effectively improve the intramolecular charge transfer, which has a great influence on the power conversion efficiency of the device. Our results demonstrate that charge transfer dynamics can be controlled by optimizing steric hindrance, which plays a crucial role in the photovoltaic performance of organic solar cells.
Collapse
Affiliation(s)
- Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Johar Zeb
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hao Lu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yahui Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Andong Zhang
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Lexuan Wang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
- College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
34
|
Wang X, Lu H, Zhang A, Yu N, Ran G, Bi Z, Yu X, Xu X, Liu Y, Tang Z, Zhang W, Ma W, Bo Z. Molecular-Shape-Controlled Nonfused Ring Electron Acceptors for High-Performance Organic Solar Cells with Tunable Phase Morphology. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28807-28815. [PMID: 35696637 DOI: 10.1021/acsami.2c04530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Two nonfused ring electron acceptors (NFREAs), BTh-OC8-2F and DTh-OC8-2F, with different molecular shapes are designed and synthesized. Both acceptors can form planar molecular shapes by the assistance of S···O intramolecular interactions. Differently, BTh-OC8-2F, with a linear molecular backbone and two trans-arranged side chains at the core unit, exhibits much stronger crystallinity than DTh-OC8-2, with a C-shape molecular shape and two cis-arranged steric side chains at the core unit. Thus, the DTh-OC8-2F based blend film displays a better nanoscale phase separation, more suppressed charge recombination, more efficient exciton dissociation, and lower nonradiative energy loss. Organic solar cells based on DTh-OC8-2F can deliver a power conversion efficiency of 14.13%, which is much higher than BTh-OC8-2F based ones (11.95%) and is also one of the highest values reported for organic solar cells based on NFREAs.
Collapse
Affiliation(s)
- Xiaodong Wang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hao Lu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaodi Yu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhishan Bo
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
35
|
Liu SY, Wang D, Wen TJ, Zhou GQ, Zhu HM, Chen HZ, Li CZ. Unaxisymmetric Non-Fused Electron Acceptors for Efficient Polymer Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Liu H, Tao YD, Wang LH, Ye DN, Huang XM, Chen N, Li CZ, Liu SY. C-H Direct Arylation: A Robust Tool to Tailor the π-Conjugation Lengths of Non-Fullerene Acceptors. CHEMSUSCHEM 2022; 15:e202200034. [PMID: 35344269 DOI: 10.1002/cssc.202200034] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Facile synthesis without involvement of toxic reagents is of great significance in the practical application of photovoltaic materials. In this work, four acceptor-donor-acceptor (A-D-A) type unfused-ring acceptors (UFRAs) with stepwise extension in π-conjugation, i. e., CPFB-IC-n (n=1-4), involving cyclopentadithiophene (CPDT) and 1,4-difluorobenzene (DFB) as cores, are facilely synthesized by an atom-, step-economic and labor-saving method through direct arylation of C-H bond (DACH). Among them, CPFB-IC-4 has the longest conjugation lengths among the molecular UFRA ever reported. The dependence of optoelectronic properties and photovoltaic performances of CPFB-IC-n (n=1-4) on conjugation length were systematically investigated. CPFB-IC-2 with near zero highest occupied molecular orbital (HOMO) offsets (ΔEHOMO =0.06 eV) achieves the highest power conversion efficiency (PCE), due to the significantly enhanced open voltage (VOC ) and short current (JSC ) caused by the balanced frontier molecular orbitals (FMOs) and complementary light absorption. Our work demonstrates that the optical properties and FMOs of UFRAs can be finely tuned by the stepwise elongation of conjugation lengths. Meanwhile, DACH coupling as a powerful tool here established will be a promising candidate for synthesizing high-performance oligomeric UFRAs.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Yang-Dan Tao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Li-Hong Wang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Dong-Nai Ye
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Xu-Min Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Na Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chang-Zhi Li
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shi-Yong Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| |
Collapse
|
37
|
Liu Y, Lin Z, Cao J, Du F, Wang H, He S, Tang W. Unfused Acceptors Matching π-Bridge Blocks with Proper Frameworks Enable Over 12% As-Cast Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201209. [PMID: 35607794 DOI: 10.1002/smll.202201209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Emerging unfused-ring acceptors (UFAs) have been explored in pursuit of low-cost high-efficient organic solar cells (OSCs). Assembling unfused building blocks into proper frameworks are challenging for the molecular design of UFAs. The authors report herein four UFAs adopting either dithiophene cyclopentadiene (DTC) or dithieno[3,2-b:2',3'-d]pyrrole (DTP) as π-bridge units with different molecular frameworks for high-efficient as-cast OSCs. All these acceptors exhibit strong near-infrared absorption and narrow optical band gap (Eg opt < 1.50 eV). DTC-bridged symmetric and DTP-bridged asymmetric UFAs exhibit higher planar conformation as well as suitable miscibility and homogeneous phase separation when blending with polymer donor PBDB-T to promote efficient charge transport in the blends. Their blends with PBDB-T contribute optimal PCE of 12.17% and 11.92% in as-cast OSCs, among the highest values for UFAs based as-cast devices in the literature. Experimental and theoretical simulations systematically reveal the impact of manipulating the molecular framework of UFAs on their conformation, optoelectronic, and photovoltaic performance. The results indicate the matching π-bridge units with molecular frameworks as an attractive approach to design UFAs for high-performance as-cast OSCs.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, P. R. China
| | - Zhijie Lin
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, P. R. China
| | - Jinru Cao
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuqiang Du
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Hongtao Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Shi He
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Weihua Tang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
38
|
Zhang Y, Zhang C, Zhang A, Wu H, Ran G, Zhou Y, Wang X, Li C, Liu Y, Yang C, Tang Z, Zhang W, Bo Z. Designing High-Performance Nonfused Ring Electron Acceptors via Synergistically Adjusting Side Chains and Electron-Withdrawing End-Groups. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21287-21294. [PMID: 35484865 DOI: 10.1021/acsami.2c01190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Three nonfused ring electron acceptors, Hexyl-0F, Isopropyl-0F, and Isopropyl-2F, are designed and synthesized. Unlike Hexyl-0F, Isopropyl-0F with two sterically hindered 2,4,6-triisopropyl-phenyl groups is highly soluble, which provides a good opportunity for solution processability. Compared with Isopropyl-0F, Isopropyl-2F with fluorinated end-groups exhibits red-shifted absorption. Due to these synergistic adjustment, Isopropyl-2F-based devices displayed a high power conversion efficiency of 12.55%, higher than that of Isopropyl-0F (9.49%). The result demonstrates that the introduction of large steric substituents in the π-bridge units and electron-withdrawing end-groups plays a positive role in the construction of high-efficiency nonfused ring electron acceptors.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cai'e Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Hongbo Wu
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Yuanyuan Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaodong Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Cuihong Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zheng Tang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao 266071, China
| |
Collapse
|
39
|
Zhou L, Ran G, Liu Y, Bo Z, Sun S, Zhang W. Thermal Annealing Effect on Non-Fused Ring Acceptor Based Bulk Heterojunction Investigated by Transient Absorption Spectroscopy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Li J, Li H, Ma L, Xu Y, Cui Y, Wang J, Ren J, Zhu J, Zhang S, Hou J. Influence of Large Steric Hinderance Substituent Position on Conformation and Charge Transfer Process for Non-Fused Ring Acceptors. SMALL METHODS 2022; 6:e2200007. [PMID: 35212472 DOI: 10.1002/smtd.202200007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Indexed: 06/14/2023]
Abstract
To obtain stable and planar molecular geometry in non-fused electron acceptors, A4T-25 and A4T-26 are designed and synthesized by introducing the bulk 2,4,6-triisopropylphenyl side groups onto different positions of the central two thiophene units. A4T-25 and A4T-26 both show a narrow-bandgap of 1.39 and 1.46 eV, with highest occupied molecular orbital/lowest unoccupied molecular orbital levels of -5.56/-3.81 and -5.65/-3.83 eV, respectively, and the electrostatic potential distributions imply that they have strong electron-accepting capability. The single crystal structure analysis and the transfer integral calculation demonstrate that the much more compact π-π stacking in A4T-26 can promote efficient charge transportation compared to that in A4T-25. Therefore, the electron mobility of A4T-26 is obviously higher and more balanced than that of A4T-25. When blending the two acceptors with the same polymer donor PBDB-TF, the photovoltaic cell based on PBDB-TF:A4T-25 has an inadequate power conversion efficiency (PCE) of 7.83%, while the PBDB-TF:A4T-26-based one yields an enhanced PCE of 12.1%. Overall, this study offers an insight into the relationship between the fine-tuning of the molecular structure of non-fused ring acceptors and the corresponding charge transfer process in organic solar cells.
Collapse
Affiliation(s)
- Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Li
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lijiao Ma
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jincheng Zhu
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
41
|
Selection of side groups on simple
non‐fullerene
acceptors for the application in organic solar cells: From flexible to rigid. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Zhu E, Fu L, Lu Y, Jiang W, Jee MH, Liu R, Li Z, Che G, Woo HY, Liu C. NIR-Absorbing Electron Acceptor Based on a Selenium-Heterocyclic Core Attaching to Phenylalkyl Side Chains for Polymer Solar Cells with 17.3% Efficiency. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7082-7092. [PMID: 35076207 DOI: 10.1021/acsami.1c20813] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Selenium-heterocyclic and side-chain strategies for developing near-infrared (NIR) small fused-ring acceptors (FRAs) to further obtain short-circuit current density (Jsc) have proven advantageous in the top-performing polymer solar cells (PSCs). Herein, a new electron-rich central selenium-containing heterocycle core (BTSe) attaching alkyl side chains with a terminal phenyl group was coupled with a difluorinated and dichlorinated electron-accepting terminal 1,1-dicyanomethylene-3-indanone (IC) to afford two types of new FRAs, BTSe-IC2F and BTSe-IC2Cl. Interestingly, in spite of the weaker intramolecular charge transfer, BTSe-IC2F shows a stronger NIR response because of the smaller bandgap (Egopt) up to 1.26 eV, benefiting from the stronger ordered molecular packing in comparison to BTSe-IC2Cl with an Egopt of 1.30 eV. Additionally, thermal annealing induced an evident red shift by ∼50 nm in the absorption of D18:BTSe-IC2F blend films. Such a phenomenon may be attributed to the synergistic impact of the formation of inward constriction toward the molecular backbone because of the combination of bulky side chains and fluorinated IC as well as the reduced aromaticity of the selenium heterocycle. Consequently, the thermally annealed device based on BTSe-IC2F/D18 achieves a champion power conversion efficiency (PCE) of 17.3% with a high fill factor (FF) of 77.22%, which is among the highest reported PCE values for selenium-heterocyclic FRAs in binary PSCs. The improved Jsc and FF values of the D18:BTSe-IC2F film are simultaneously achieved mainly because of the preferred face-on orientations, the well-balanced electron/hole mobility, and the favorable blend morphology compared to D18:BTSe-IC2Cl. This work suggests that the selenium-heterocyclic fused-ring core (with proper side chains) combined with fluorinated terminal groups is an effective strategy for obtaining highly efficient NIR-responsive FRAs.
Collapse
Affiliation(s)
- Enwei Zhu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Liying Fu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Ye Lu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Min Hun Jee
- Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Renming Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Chemistry, Jilin Normal University, Siping 13600, P.R. China
| | - Zhiyi Li
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Environment Science and Engineering, Jilin Normal University, Siping 13600, P.R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Environment Science and Engineering, Jilin Normal University, Siping 13600, P.R. China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 02841, South Korea
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun 130103, P.R. China
- College of Environment Science and Engineering, Jilin Normal University, Siping 13600, P.R. China
| |
Collapse
|
43
|
Bi P, Zhang S, Ren J, Chen Z, Zheng Z, Cui Y, Wang J, Wang S, Zhang T, Li J, Xu Y, Qin J, An C, Ma W, Hao X, Hou J. A High-Performance Nonfused Wide-Bandgap Acceptor for Versatile Photovoltaic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108090. [PMID: 34784077 DOI: 10.1002/adma.202108090] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Wide-bandgap (WBG) nonfullerene acceptors (NFAs) with nonfused conjugated structures play a critical role in organic photovoltaic (OPV) cells. Here, NFAs named GS-OEH, GS-OC6, and GS-ISO, with optical bandgaps larger than 1.70 eV, are synthesized without using the fused ring structures. Compared with GS-OEH and GS-OC6, GS-ISO exhibits much stronger crystallinity, leading to a smaller energetic disorder and a larger exciton diffusion coefficient. GS-ISO also possesses a higher electroluminescence external quantum efficiency of 1.0 × 10-2 . The OPV cell based on PBDB-TF:GS-ISO demonstrates a power conversion efficiency (PCE) of 11.62% under the standard one sun illumination. Besides, the PBDB-TF:GS-ISO-based cell with effective area of 1.0 cm2 exhibits a PCE of 28.37% under 2700 K illumination of 500 lux. A tandem OPV cell using PBDB-TF:GS-ISO as the front subcell shows an outstanding efficiency of 19.10%. Importantly, the GS-ISO-based OPV cell exhibits promising stability under the continuous illumination of simulated sunlight. This study indicates that the molecular design strategy demonstrated in this work has great superiority in developing nonfused NFAs and also that GS-ISO is a promising WBG acceptor for versatile photovoltaic applications.
Collapse
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhong Zheng
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shijie Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Tao Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye Xu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinzhao Qin
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cunbin An
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Song X, Xu Y, Tao X, Gao X, Wu Y, Yu R, He Y, Tao Y. BODIPY Cored A-D-A'-D-A Type Nonfused-Ring Electron Acceptor for Efficient Polymer Solar Cells. Macromol Rapid Commun 2022; 43:e2100828. [PMID: 35032076 DOI: 10.1002/marc.202100828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Indexed: 11/11/2022]
Abstract
In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45o between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted LUMO by 0.4 eV as well as blue-shifted absorption by up to 150 nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954 V compared to 4.47% and 0.739 V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yinming He
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
45
|
High-performance nonfused ring electron acceptor with a steric hindrance induced planar molecular backbone. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1159-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
46
|
Li F, Fan XH, Gao CY, Yang LM. Terminal Groups Plays an Important Role in Enhancing the Performance of Organic Solar Cells Based on Non-Fused Electron Acceptors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01108e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-fused-ring electron acceptors (NFRAs) have made great progress resulting in their property of cheap and efficient in organic solar cells (OSCs). In order to solve the disadvantage of low device...
Collapse
|
47
|
Gao X, Xu Y, Yu R, Song X, Tao X, Tao Y. Estimating donor:acceptor compatibility for polymer solar cells through nonfused-ring acceptors with benzoxadiazole core and different halogenated terminal groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj04513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel nonfused-ring electron acceptors based on a benzoxadiazole-derived core are developed to estimate different miscibility-driven morphologies and donor:acceptor compatibilities.
Collapse
Affiliation(s)
- Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
48
|
|
49
|
Li Y, Liu X, Liu H, Yu J, Li Z. Unfused Nonfullerene Acceptors Based on Simple Dipolar Merocyanines. Chemistry 2021; 27:18103-18108. [PMID: 34751986 DOI: 10.1002/chem.202103278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Merocyanine (MC) dyes exhibit facile synthesis and attractive optical properties, making them widely studied as the donor materials in organic solar cells (OSCs). In this study, for the first time, simple indole-based MCs are successfully designed as unfused nonfullerene acceptors (NFAs) for OSCs by forming dimers with A-D-π-D-A structure, which possess enhanced photostability compared to the well-known ITIC acceptor and high electron mobility in blend films. When blended with P3HT donor, one of the dimers, i. e. Z2, shows a good cell efficiency of 3.53 %, which outperforms the performance of most of P3HT/NFA blends, particularly for unfused systems, and thus indicates good potential of simple MCs as NFAs.
Collapse
Affiliation(s)
- Yibin Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Xin Liu
- MIIT Key Laboratory of Advanced Solid Laser, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, P. R. China
| | - Hongtao Liu
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| | - Jiangsheng Yu
- MIIT Key Laboratory of Advanced Solid Laser, School of Electronic and Optical Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu District, Nanjing, P. R. China
| | - Zhong'an Li
- Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, P. R. China
| |
Collapse
|
50
|
Yuan L, Liang S, Xiao C, Chen Q, Li W. Near-Infrared Nonfullerene Acceptors Based on 4H-Cyclopenta[1,2-b:5,4-b']dithiophene for Organic Solar Cells and Organic Field-Effect Transistors. Chem Asian J 2021; 16:4171-4178. [PMID: 34738329 DOI: 10.1002/asia.202101147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/29/2021] [Indexed: 11/07/2022]
Abstract
The development of nonfullerene small molecular acceptors (NF-SMAs) has dominated the improvement of efficiencies for organic solar cells and the near-infrared (NIR) absorption is the primary feature of NF-SMAs compared with fullerene derivatives. In this article, a series of acceptor-donor-acceptor-structured NF-SMAs (named CPICs) containing 4H-cyclopenta[1,2-b : 5,4-b']dithiophene (CPDT) electron donor and F-substituted 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (2FIC) as electron acceptor were designed and synthesized. With the increase of CPDT units, the elongated conjugations broadened the absorption range of the acceptors and tuned their energy levels sequentially. Therefore, their charge-transporting polarities switched from electron-only type to bipolar mode in organic field-effect transistors. Moreover, these changes also influenced the voltages, current densities, and eventual PCEs of their corresponding cells. When blending with PBDB-T, a champion efficiency of 10.01% was achieved in CPIC-2 based cells. This work demonstrated the importance of absorptions, suitable energy levels and charge transports in improving the efficiencies of organic solar cells.
Collapse
Affiliation(s)
- Likai Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Shijie Liang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Qiaomei Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|