1
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Dang T, Zhang ZY, Li T. Visible-Light-Activated Heteroaryl Azoswitches: Toward a More Colorful Future. J Am Chem Soc 2024; 146:19609-19620. [PMID: 38991225 DOI: 10.1021/jacs.4c03135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Azobenzenes (Ph-N═N-Ph) are known as the most widely studied molecular photoswitches, and the recent rise of azoheteroarenes (Het-N═N-Ph or Het-N═N-Het) offers great opportunities to advance this already mature field. A common limitation is that azo-switches generally require harmful UV light for activation, which hinders their application across various fields. Despite great efforts in developing visible-light azobenzenes over the past few decades, the potential of visible-light heteroaryl azoswitches remains largely unexplored. This Perspective summarizes the state-of-the-art advancements in visible-light heteroaryl azoswitches, covering molecular design strategies, the structure-property relationship, and potential applications. We highlight the distinctive advantages of azoheteroarenes over azobenzenes in the research and development of visible-light switches. Furthermore, we discuss the opportunities and challenges in this emerging field and propose potential solutions to address crucial issues such as spectral red-shift and thermal half-life. Through this Perspective paper, we aim to provide inspiration for further exploration in this field, in anticipation of the growing prosperity and bright future of visible-light azoheteroarene photoswitches.
Collapse
Affiliation(s)
- Tongtong Dang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao-Yang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Kauth AM, Niebuhr R, Ravoo BJ. Arylazopyrazoles for Conjugation by CuAAC Click Chemistry. J Org Chem 2024; 89:6371-6376. [PMID: 38619381 DOI: 10.1021/acs.joc.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Molecular photoswitches are increasingly being implemented in bioactive compounds and responsive materials. For this purpose, photoswitches must be coupled to a wide variety of substrates and scaffolds. We present a library of "clickable" arylazopyrazoles (AAPs), which can be conjugated by Cu-catalyzed alkyne azide cycloaddition (CuAAC). All synthesized AAP alkynes show good photostationary states (at least 88%) and long half-life times of the Z-isomer (18 to 108 h). The AAP azides decompose upon exposure to ultraviolet (UV) irradiation, but after CuAAC, all AAPs exhibit good photophysical properties.
Collapse
Affiliation(s)
- Alisa-Maite Kauth
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Rebecca Niebuhr
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| | - Bart Jan Ravoo
- Center for Soft Nanoscience and Organic Chemistry Institute, University of Münster, Busso-Peus-Straße 10, D-48149 Münster, Germany
| |
Collapse
|
4
|
Cheng J, Zhang J, He S, Li M, Dong G, Sheng C. Photoswitchable PROTACs for Reversible and Spatiotemporal Regulation of NAMPT and NAD . Angew Chem Int Ed Engl 2024; 63:e202315997. [PMID: 38282119 DOI: 10.1002/anie.202315997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
Nicotinamide adenine dinucleotide (NAD+ ) is an essential coenzyme with diverse biological functions in DNA synthesis. Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme involved in NAD+ biosynthesis in mammals. We developed the first chemical tool for optical control of NAMPT and NAD+ in biological systems using photoswitchable proteolysis-targeting chimeras (PS-PROTACs). An NAMPT activator and dimethylpyrazolazobenzene photoswitch were used to design highly efficient PS-PROTACs, enabling up- and down-reversible regulation of NAMPT and NAD+ in a light-dependent manner and reducing the toxicity associated with inhibitor-based PS-PROTACs. PS-PROTAC was activated under 620 nm irradiation, realizing in vivo optical manipulation of antitumor activity, NAMPT, and NAD+ .
Collapse
Affiliation(s)
- Junfei Cheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
- Nautical Medicine Experimental Teaching Demonstration Center of Educational Institutions, Faculty of Naval Medicine, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Jing Zhang
- Department of Pathology, Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Shipeng He
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guoqiang Dong
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| | - Chunquan Sheng
- Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai, 200433, China
| |
Collapse
|
5
|
Steinbrecher R, Zhang P, Papadakis CM, Müller-Buschbaum P, Taubert A, Laschewsky A. Boosting the photo-switchability of double-responsive water-soluble polymers by incorporating arylazopyrazole dyes. Chem Commun (Camb) 2024; 60:1747-1750. [PMID: 38247444 DOI: 10.1039/d3cc06178g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Dual thermo- and light-responsive water-soluble copolymers that respond to exclusively non-invasive triggers are obtained by functionalising poly(N,N-dimethylacrylamide) with arylazopyrazole side chains. The light-induced E-Z (trans-Z) photo isomerisation of these dyes provides an exceptionally effective photo-switch, which can reversibly shift the LCST-type phase transition temperatures by almost 25 K.
Collapse
Affiliation(s)
- René Steinbrecher
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany.
| | - Peiran Zhang
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Christine M Papadakis
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Peter Müller-Buschbaum
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Garching, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany.
| | - André Laschewsky
- Institute of Chemistry, University of Potsdam, Potsdam-Golm, Germany.
- Fraunhofer Institute for Applied Polymer Research IAP, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Mukherjee A, Seyfried MD, Ravoo BJ. Azoheteroarene and Diazocine Molecular Photoswitches: Self-Assembly, Responsive Materials and Photopharmacology. Angew Chem Int Ed Engl 2023; 62:e202304437. [PMID: 37212536 DOI: 10.1002/anie.202304437] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/23/2023]
Abstract
Aromatic units tethered with an azo (-N=N-) functionality comprise a unique class of compounds, known as molecular photoswitches, exhibiting a reversible transformation between their E- and Z-isomers in response to photo-irradiation. Photoswitches have been explored extensively in the recent past to prepare dynamic self-assembled materials, optoelectronic devices, responsive biomaterials, and more. Most of such materials involve azobenzenes as the molecular photoswitch and to date, SciFinder lists more than 7000 articles and 1000 patents. Subsequently, a great deal of effort has been invested to improve the photo-isomerization efficiency and related mesoscopic properties of azobenzenes. Recently, azoheteroarenes and cyclic azobenzenes, such as arylazopyrazoles, arylazoisoxazoles, arylazopyridines, and diazocines, have emerged as second generation molecular photoswitches beyond conventional azobenzenes. These photoswitches offer distinct photoswitching behavior and responsive properties which make them highly promising candidates for multifaceted applications ranging from photoresponsive materials to photopharmacophores. In this minireview, we introduce the structural refinement and photoresponsive properties of azoheteroarenes and diazocines and summarize the state-of-the-art on utilizing these photoswitches as responsive building blocks in supramolecular assembly, material science and photopharmacology, highlighting their versatile photochemical behavior, enhanced functionality, and latest applications.
Collapse
Affiliation(s)
- Anurag Mukherjee
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Maximilian D Seyfried
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| | - Bart Jan Ravoo
- Organisch-Chemisches Institut and Center for Soft Nanoscience (SoN), Westfälische Wilhelms-Universität Münster Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
7
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
8
|
Enache BC, Hanganu A, Tablet C, Anghel CC, Popescu CC, Paun A, Hădade ND, Mădălan AM, Matache M. Exploring Arylazo-3,5-Bis(trifluoromethyl)pyrazole Switches. ACS OMEGA 2022; 7:39122-39135. [PMID: 36340122 PMCID: PMC9631733 DOI: 10.1021/acsomega.2c04984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Arylazopyrazoles stand out among the azoheteroarene photoswitches due to their excellent properties in terms of stability of the least stable isomer and conversion between isomers, leading to their use in several interesting applications. We report herein the synthesis of arylazo-trifluoromethyl-substituted pyrazoles and their switching behavior under light irradiation. UV-vis and NMR experiments showed that arylazo-1H-3,5-bis(trifluoromethyl)pyrazoles displayed very long half-lives in DMSO (days), along with reasonable values of other parameters that characterize a photoswitch. Inclusion of naphthyl moieties as aryl counterparts of the arylazopyrazoles is beneficial only in combination with trifluoromethyl groups, while extending the conjugation by grafting the pyrazole moiety with electron-donating or -withdrawing substituents positively affects the photoswitching behavior, in terms of isomerization yield and half-lives of the least stable isomer. The experimental values were correlated with theoretical calculations indicating the valuable influence of the trifluoromethyl groups onto the photoswitching behavior.
Collapse
Affiliation(s)
- Bogdan C Enache
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
- Department of Research and Development, SC Microsin SRL, 51-63 Pericle Papahagi Street, 032364 Bucharest, Romania
| | - Anamaria Hanganu
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
- "C. D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania
| | - Cristina Tablet
- Faculty of Pharmacy, Titu Maiorescu University, Gh. Sincai Bd. 16, 040317 Bucharest, Romania
- Department of Physical Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Catalin C Anghel
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
- Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Codruta C Popescu
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Anca Paun
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| | - Niculina Daniela Hădade
- Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania
| | - Augustin M Mădălan
- Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Mihaela Matache
- Research Centre of Applied Organic Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90 Panduri Street, 050663 Bucharest, Romania
| |
Collapse
|
9
|
Laczi D, Johnstone MD, Fleming CL. Photoresponsive Small Molecule Inhibitors for the Remote Control of Enzyme Activity. Chem Asian J 2022; 17:e202200200. [PMID: 35446477 PMCID: PMC9322446 DOI: 10.1002/asia.202200200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Indexed: 12/14/2022]
Abstract
The development of new and effective therapeutics is reliant on the ability to study the underlying mechanisms of potential drug targets in live cells and multicellular systems. A persistent challenge in many drug development programmes is poor selectivity, which can obscure the mechanisms involved and lead to poorly understood modes of action. In efforts to improve our understanding of these complex processes, small molecule inhibitors have been developed in which their OFF/ON therapeutic activity can be toggled using light. Photopharmacology is devoted to using light to modulate drugs. Herein, we highlight the recent progress made towards the development of light-responsive small molecule inhibitors of selected enzymatic targets. Given the size of this field, literature from 2015 onwards has been reviewed.
Collapse
Affiliation(s)
- Dóra Laczi
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Mark D. Johnstone
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| | - Cassandra L. Fleming
- Centre for Biomedical and Chemical SciencesSchool of ScienceAuckland University of TechnologyPrivate Bag 92006Auckland1142New Zealand
| |
Collapse
|
10
|
Babii O, Afonin S, Diel C, Huhn M, Dommermuth J, Schober T, Koniev S, Hrebonkin A, Nesterov‐Mueller A, Komarov IV, Ulrich AS. Diarylethene-Based Photoswitchable Inhibitors of Serine Proteases. Angew Chem Int Ed Engl 2021; 60:21789-21794. [PMID: 34268844 PMCID: PMC8519022 DOI: 10.1002/anie.202108847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 12/20/2022]
Abstract
A bicyclic peptide scaffold was chemically adapted to generate diarylethene-based photoswitchable inhibitors of serine protease Bos taurus trypsin 1 (T1). Starting from a prototype molecule-sunflower trypsin inhibitor-1 (SFTI-1)-we obtained light-controllable inhibitors of T1 with Ki in the low nanomolar range, whose activity could be modulated over 20-fold by irradiation. The inhibitory potency as well as resistance to proteolytic degradation were systematically studied on a series of 17 SFTI-1 analogues. The hydrogen bond network that stabilizes the structure of inhibitors and possibly the enzyme-inhibitor binding dynamics were affected by isomerization of the photoswitch. The feasibility of manipulating enzyme activity in time and space was demonstrated by controlled digestion of gelatin-based hydrogel and an antimicrobial peptide BP100-RW. Finally, our design principles of diarylethene photoswitches are shown to apply also for the development of other serine protease inhibitors.
Collapse
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
- Institute of Microstructure Technology (IMT)KITHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
| | - Christian Diel
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Marcel Huhn
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Jennifer Dommermuth
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Tim Schober
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
- Lumobiotics GmbHAuer Straße 276227KarlsruheGermany
| | - Serhii Koniev
- Taras Shevchenko National University of Kyivvul. Volodymyrska 601601KyivUkraine
| | - Andrii Hrebonkin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure Technology (IMT)KITHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyivvul. Volodymyrska 601601KyivUkraine
- Lumobiotics GmbHAuer Straße 276227KarlsruheGermany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
11
|
Babii O, Afonin S, Diel C, Huhn M, Dommermuth J, Schober T, Koniev S, Hrebonkin A, Nesterov‐Mueller A, Komarov IV, Ulrich AS. Diarylethen‐basierte lichtschaltbare Inhibitoren von Serinproteasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
- Institute of Microstructure Technology (IMT) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
| | - Christian Diel
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Marcel Huhn
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Jennifer Dommermuth
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Tim Schober
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- Lumobiotics GmbH Auer Straße 2 76227 Karlsruhe Deutschland
| | - Serhii Koniev
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 1601 Kyiv Ukraine
| | - Andrii Hrebonkin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure Technology (IMT) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 1601 Kyiv Ukraine
- Lumobiotics GmbH Auer Straße 2 76227 Karlsruhe Deutschland
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| |
Collapse
|