1
|
Yang R, Ji J, Ding L, Yuan X, Qu L, Wu Y, Li Y. CRISPR-Enhanced Photocurrent Polarity Switching for Dual-lncRNA Detection Combining Deep Learning for Cancer Diagnosis. Anal Chem 2024. [PMID: 39092917 DOI: 10.1021/acs.analchem.4c02617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Abnormal expression in long noncoding RNAs (lncRNAs) is closely associated with cancers. Herein, a novel CRISPR/Cas13a-enhanced photocurrent-polarity-switching photoelectrochemical (PEC) biosensor was engineered for the joint detection of dual lncRNAs, using deep learning (DL) to assist in cancer diagnosis. After target lncRNA-activated CRISPR/Cas13a cleaves to induce DNAzyme bidirectional walkers with the help of cofactor Mg2+, nitrogen-doped carbon-Cu/Cu2O octahedra are introduced into the biosensor, producing a photocurrent in the opposite direction of CdS quantum dots (QDs). The developed PEC biosensor shows high specificity and sensitivity with limits of detection down to 25.5 aM for lncRNA HOTAIR and 53.1 aM for lncRNA MALAT1. More importantly, this platform for the lncRNA joint assay in whole blood can successfully differentiate cancers from healthy people. Furthermore, the DL model is applied to explore the potential pattern hidden in data of the established technology, and the accuracy of DL cancer diagnosis can acquire 93.3%. Consequently, the developed platform offers a new avenue for lncRNA joint detection and early intelligent diagnosis of cancer.
Collapse
Affiliation(s)
- Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jiangying Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinxin Yuan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Wang H, Tang D, Wang X, Wan X, Tang D. Surface plasmon resonance-enhanced photoelectrochemical immunoassay with Cu-doped porous Bi 2WO 6 nanosheets. Talanta 2024; 273:125863. [PMID: 38460424 DOI: 10.1016/j.talanta.2024.125863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
The development of rapid screening sensing platforms to improve pre-screening mechanisms in community healthcare is necessary to meet the significant need for portable testing in biomarker diagnostics. Here, we designed a portable smartphone-based photoelectrochemical (PEC) immunoassay for carcinoembryonic antigen (CEA) detection using Cu-doped ultrathin porous Bi2WO6 (CuBWO) nanosheets as the photoactive material. The CuBWO nanosheets exhibit a fast photocurrent response and excellent electrical transmission rate under UV light due to their surface plasmon resonance effect (SPR). The method uses glucose oxidase-labeled secondary antibody as a signal indicator for sandwich-type immune conjugation. In the presence of the target CEA, the electrons and holes generated at the surface of the photo-excited ultrathin porous CuBWO were rapidly consumed by the production of H2O2 from glucose oxidase oxidizing glucose, resulting in a weakened photocurrent signal. The photocurrent intensity increased logarithmically and linearly with increasing CEA concentration (0.02-50 ng mL-1), with a detection limit of 15.0 pg mL-1 (S/N = 3). The system provides a broader idea for inferring the electron-hole transport mechanism in ultrathin porous nanosheet layer materials and developing efficient PEC sensors.
Collapse
Affiliation(s)
- Haiyang Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China; Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing, 402160, PR China
| | - Dianyong Tang
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and Sciences, Chongqing, 402160, PR China.
| | - Xin Wang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xinyu Wan
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, PR China.
| |
Collapse
|
3
|
Leng D, Yu Z, Liu J, Jin W, Wu T, Ren X, Ma H, Wu D, Ju H, Wei Q. Multifunctional Supramolecular Hydrogel Modulated Heterojunction Interface Carrier Transport Engineering Facilitates Sensitive Photoelectrochemical Immunosensing. Anal Chem 2024; 96:8814-8821. [PMID: 38751335 DOI: 10.1021/acs.analchem.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Highly responsive interface of semiconductor nanophotoelectrochemical materials provides a broad development prospect for the identification of low-abundance cancer marker molecules. This work innovatively proposes an efficient blank WO3/SnIn4S8 heterojunction interface formed by self-assembly on the working electrode for interface regulation and photoregulation. Different from the traditional biomolecular layered interface, a hydrogel layer containing manganese dioxide with a wide light absorption range is formed at the interface after an accurate response to external immune recognition. The formation of the hydrogel layer hinders the effective contact between the heterojunction interface and the electrolyte solution, and manganese dioxide in the hydrogel layer forms a strong competition between the light source and the substrate photoelectric material. The process effectively improves the carrier recombination efficiency at the interface, reduces the interface reaction kinetics and photoelectric conversion efficiency, and thus provides strong support for target identification. Taking advantage of the process, the resulting biosensors are being explored for sensitive detection of human epidermal growth factor receptor 2, with a limit of detection as low as 0.037 pg/mL. Also, this study contributes to the advancement of photoelectrochemical biosensing technology and opens up new avenues for the development of sensitive and accurate analytical tools in the field of bioanalysis.
Collapse
Affiliation(s)
- Dongquan Leng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhen Yu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinjie Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Weihan Jin
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Tingting Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Hu J, Gao X, Gu M, Sun Y, Dong Y, Wang GL. Target mediated bioreaction to engineer surface vacancy effect on Bi 2O 2S nanosheets for photoelectrochemical detection of FEN1. Anal Chim Acta 2024; 1301:342467. [PMID: 38553124 DOI: 10.1016/j.aca.2024.342467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Photoelectrochemistry represents a promising technique for bioanalysis, though its application for the detection of Flap endonuclease 1 (FEN1) has not been tapped. Herein, this work reports the exploration of creating oxygen vacancies (Ov) in situ onto the surface of Bi2O2S nanosheets via the attachment of dopamine (DA), which underlies a new anodic PEC sensing strategy for FEN1 detection in label-free, immobilization-free and high-throughput modes. In connection to the target-mediated rolling circle amplification (RCA) reaction for modulating the release of the DA aptamer to capture DA, the detection system showed good performance toward FEN1 analysis with a linear detection range of 0.001-10 U/mL and a detection limit of 1.4 × 10-4 U/mL (S/N = 3). This work features the bioreaction engineered surface vacancy effect of Bi2O2S nanosheets as a PEC sensing strategy, which allows a simple, easy to perform, sensitive and selective method for the detection of FEN1. This sensing strategy might have wide applications in versatile bioasssays, considering the diversity of a variety of biological reactions may produce the DA aptamer.
Collapse
Affiliation(s)
- Jiangwei Hu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xin Gao
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengmeng Gu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Sun
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuming Dong
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Wang X, Lu T, Cai Z, Han D, Ye X, Liu Z. A Photoelectrochemical Sensor for Real-Time Monitoring of Neurochemical Signals in the Brain of Awake Animals. Anal Chem 2024; 96:6079-6088. [PMID: 38563576 DOI: 10.1021/acs.analchem.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Metal ion homeostasis is imperative for normal functioning of the brain. Considering the close association between brain metal ions and various pathological processes in brain diseases, it becomes essential to track their dynamics in awake animals for accurate physiological insights. Although ion-selective microelectrodes (ISMEs) have demonstrated great advantage in recording ion signals in awake animals, their intrinsic potential drift impairs their accuracy in long-term in vivo analysis. This study addresses the challenge by integrating ISMEs with photoelectrochemical (PEC) sensing, presenting an excitation-detection separated PEC platform based on potential regulation of ISMEs. A flexible indium tin oxide (Flex-ITO) electrode, modified with MoS2 nanosheets and Au NPs, serves as the photoelectrode and is integrated with a micro-LED. The integrated photoelectrode is placed on the rat skull to remain unaffected by animal activity. The potential of ISME dependent on the concentration of target K+ serves as the modulator of the photocurrent signal of the photoelectrode. The proposed design allows deep brain detection while minimizing interference with neurons, thus enabling real-time monitoring of neurochemical signals in awake animals. It successfully monitors changes in extracellular K+ levels in the rat brain after exposure to PM2.5, presenting a valuable analytical tool for understanding the impact of environmental factors on the nervous system.
Collapse
Affiliation(s)
- Xiao Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tao Lu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zirui Cai
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Dongfang Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxue Ye
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| |
Collapse
|
6
|
Wu SH, Zhang SC, Kang YH, Wang YF, Duan ZM, Jing MJ, Zhao WW, Chen HY, Xu JJ. Aggregation-Enabled Electrochemistry in Confined Nanopore Capable of Complementary Faradaic and Non-Faradaic Detection. NANO LETTERS 2024; 24:4241-4247. [PMID: 38546270 DOI: 10.1021/acs.nanolett.4c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Electrochemistry that empowers innovative nanoscopic analysis has long been pursued. Here, the concept of aggregation-enabled electrochemistry (AEE) in a confined nanopore is proposed and devised by reactive oxygen species (ROS)-responsive aggregation of CdS quantum dots (QDs) within a functional nanopipette. Complementary Faradaic and non-Faradaic operations of the CdS QDs aggregate could be conducted to simultaneously induce the signal-on of the photocurrents and the signal-off of the ionic signals. Such a rationale permits the cross-checking of the mutually corroborated signals and thus delivers more reliable results for single-cell ROS analysis. Combined with the rich biomatter-light interplay, the concept of AEE can be extended to other stimuli-responsive aggregations for electrochemical innovations.
Collapse
Affiliation(s)
- Si-Hao Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuang-Chen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu-Han Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Feng Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zu-Ming Duan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Jian Jing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Ma Q, Chu W, Nong X, Zhao J, Liu H, Du Q, Sun J, Shen J, Lu SM, Lin M, Huang Y, Xia F. Local Electric Potential-Driven Nanofluidic Ion Transport for Ultrasensitive Biochemical Sensing. ACS NANO 2024; 18:6570-6578. [PMID: 38349220 DOI: 10.1021/acsnano.3c12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Nanofluidic biosensors have been widely used for detection of analytes based on the change of system resistance before and after target-probe interactions. However, their sensitivity is limited when system resistance barely changes toward low-concentration targets. Here, we proposed a strategy to address this issue by means of target-induced change of local membrane potential under relatively unchanged system resistance. The local membrane potential originated from the directional diffusion of photogenerated carriers across nanofluidic biosensors and gated photoinduced ionic current signal before and after target-probe interactions. The sensitivity of such biosensors for the detection of biomolecules such as circulating tumor DNA (ctDNA) and lysozyme exceeds that of applying a traditional strategy by more than 3 orders of magnitude under unchanged system resistance. Such biosensors can specifically detect the small molecule biomarker in the blood sample between prostate cancer patients and healthy humans. The key advantages of such nanofluidic biosensors are therefore complementary to traditional nanofluidic biosensors, with potential applications in a point-of-care analytical tool.
Collapse
Affiliation(s)
- Qun Ma
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Wenjing Chu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xianliang Nong
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jing Zhao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hong Liu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Jielin Sun
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Min Lu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Meihua Lin
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
8
|
Zheng YW, Yu SY, Li Z, Xu YT, Zhao WW, Jiang D, Chen HY, Xu JJ. High-Precision Single-Cell microRNA Therapy by a Functional Nanopipette with Sensitive Photoelectrochemical Feedback. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307067. [PMID: 37972263 DOI: 10.1002/smll.202307067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2023] [Indexed: 11/19/2023]
Abstract
This work proposes the concept of single-cell microRNA (miR) therapy and proof-of-concept by engineering a nanopipette for high-precision miR-21-targeted therapy in a single HeLa cell with sensitive photoelectrochemical (PEC) feedback. Targeting the representative oncogenic miR-21, the as-functionalized nanopipette permits direct intracellular drug administration with precisely controllable dosages, and the corresponding therapeutic effects can be sensitively transduced by a PEC sensing interface that selectively responds to the indicator level of cytosolic caspase-3. The experimental results reveal that injection of ca. 4.4 × 10-20 mol miR-21 inhibitor, i.e., 26488 copies, can cause the obvious therapeutic action in the targeted cell. This work features a solution to obtain the accurate knowledge of how a certain miR-drug with specific dosages treats the cells and thus provides an insight into futuristic high-precision clinical miR therapy using personalized medicine, provided that the prerequisite single-cell experiments are courses of personalized customization.
Collapse
Affiliation(s)
- You-Wei Zheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Si-Yuan Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Wang S, Yu H, Ge S, Wang Y, Gao C, Yu J. Insights into Chemical Bonds for Eliminating the Depletion Region and Accelerating the Photo-Induced Charge Efficient Separation toward Ultrasensitive Photoelectrochemical Sensing. BIOSENSORS 2023; 13:984. [PMID: 37998159 PMCID: PMC10668988 DOI: 10.3390/bios13110984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
The empty-space-induced depletion region in photoelectrodes severely exacerbates the recombination of electron-hole pairs, thereby reducing the photoelectrochemical (PEC) analytical performance. Herein, the chemical bond that can suppress the potential barrier and overcome the high energy barrier of out-of-plane Ohmic or Schottky contact is introduced into the PEC sensor to eliminate the depletion region and dramatically promote the separation of electron-hole pairs. Specifically, three-dimensional (3D) hierarchically wheatear-like TiO2 (HWT) nanostructures featuring a large surface area to absorb incident light are crafted as the substrate. The facile carbonized strategy is further employed to engineer the Ti-C chemical bond, serving as the touchstone. The average PL lifetime of HWT-C (4.14 ns) is much shorter than that of the 3D HWT (8.57 ns) due to the promoting effect of the chemically bonded structure on carrier separation. Consequently, the 3D HWT-C covalent photoelectrode (600 μA/cm2) exhibits a 3.6-fold increase in photocurrent density compared with the 3D HWT (167 μA/cm2). Ultimately, the model analyte of the tumor marker is detected, and the linear range is 0.02 ng/mL-100 ng/mL with a detection limitation of 0.007 ng/mL. This work provides a basic understanding of chemical bonds in tuning charge separation and insights on strategies for designing high-performance PEC sensors.
Collapse
Affiliation(s)
- Shuai Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haihan Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Yanhu Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Chaomin Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Liu WJ, Wang LJ, Zhang CY. Progress in quantum dot-based biosensors for microRNA assay: A review. Anal Chim Acta 2023; 1278:341615. [PMID: 37709484 DOI: 10.1016/j.aca.2023.341615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
MicroRNAs (miRNAs) are responsible for post-transcriptional gene regulation, and may function as valuable biomarkers for diseases diagnosis. Accurate and sensitive analysis of miRNAs is in great demand. Quantum dots (QDs) are semiconductor nanomaterials with superior optoelectronic features, such as high quantum yield and brightness, broad absorption and narrow emission, long fluorescence lifetime, and good photostability. Herein, we give a comprehensive review about QD-based biosensors for miRNA assay. Different QD-based biosensors for miRNA assay are classified by the signal types including fluorescent, electrochemical, electrochemiluminescent, and photoelectrochemical outputs. We highlight the features, principles, and performances of the emerging miRNA biosensors, and emphasize the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
11
|
Li Z, Lu J, Wu F, Tao M, Wei W, Wang Z, Wang Z, Dai Z. Polarity Conversion of the Ag 2S/AgInS 2 Heterojunction by Radical-Induced Positive Feedback Polydopamine Adhesion for Signal-Switchable Photoelectrochemical Biosensing. Anal Chem 2023; 95:15008-15016. [PMID: 37749789 DOI: 10.1021/acs.analchem.3c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Efficient tuning of the polarity of photoactive nanomaterials is of great importance in improving the performance of photoelectrochemical (PEC) sensing platforms. Herein, polarity of the Ag2S/AgInS2 heterojunction is converted by radical-induced positive feedback polydopamine (PDA) adhesion, which is further employed to develop a signal-switchable PEC biosensor. In the nanocomposites, Ag2S and AgInS2 achieve electron-hole separation, exhibiting a strong anodic PEC response. Under the irradiation of light, the Ag2S/AgInS2 heterojunction is able to produce superoxide radical and hydroxyl radical intermediate species, leading to the polymerization of dopamine (DA) and the subsequent adhesion of PDA onto the Ag2S/AgInS2 heterojunction (Ag2S/AgInS2@PDA). By constructing a new electron-transfer pathway with PDA, the polarity of the Ag2S/AgInS2 heterojunction is converted, and the PEC response changes from anodic to cathodic photocurrents. In addition, since the photoreduction activity of PDA is stronger than that of the Ag2S/AgInS2 heterojunction, more superoxide radical can be produced by Ag2S/AgInS2@PDA once PDA is generated, thereby promoting the generation of PDA. Consequently, a positive feedback mechanism is established to enhance the polarity conversion of the Ag2S/AgInS2 heterojunction and amplify the responding to DA. As a result, the bioanalytical method is capable of sensitively quantifying DA in 10 orders of magnitude with an ultralow limit of detection. Moreover, the applicability of this biosensor in real samples is identified by measuring DA in fetal bovine serum and compared with a commercial ELISA method. Overall, this work offers an alternative perspective for adjusting photogenerated carriers of nanomaterials and designing high-performance PEC biosensors.
Collapse
Affiliation(s)
- Zijun Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiarui Lu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Tao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wanting Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zizheng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhihui Dai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
12
|
Geng W, Jiang G, Liu H, Xue L, Ding L, Li Y, Wu Y, Yang R. A Direct-Contact Photocurrent-Direction-Switching Biosensing Platform Based on In Situ Formation of CN QDs/TiO 2 Nanodiscs and Double-Supported 3D DNA Walking Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302829. [PMID: 37356081 DOI: 10.1002/smll.202302829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/27/2023] [Indexed: 06/27/2023]
Abstract
Herein, a direct-contact photocurrent-direction-switching photoelectrochemical (PEC) biosensing platform for the ultrasensitive and selective detection of soluble CD146 (sCD146) is reported for the first time via in situ formation of carbon nitride quantum dots (CN QDs)/titanium dioxide (TiO2 ) nanodiscs with the double-supported 3D DNA walking amplification. In this platform, metal organic frameworks (MOFs)-derived porous TiO2 nanodiscs exhibit excellent anodic photocurrent, whereas a single-stranded auxiliary DNA (ssDNA) as biogate is absorbed onto the TiO2 nanodiscs to block active sites. Subsequently, with the help of intermediate DNAs from target sCD146-induced double-supported 3D DNA walking signal amplification, the ssDNA can leave away from the surface of TiO2 nanodiscs due to the specific hybridization with intermediate DNAs. Afterward, the successful direct contact of CN QDs on TiO2 nanodiscs by porosity and electrostatic adsorption, leads to the effective photocurrent-direction switching from anodic to cathodic photocurrent. Based on direct-contact photocurrent-direction-switching CN QDs/TiO2 nanodiscs system and double-supported 3D DNA walking signal amplification, sCD146 is detected sensitively with a wide linear range (10 fg mL-1 to 5 ng mL-1 ) and a low limit of detection (2.1 fg mL-1 ). Also, the environmentally friendly and direct-contact photocurrent-direction-switching PEC biosensor has an application prospect for cancer biomarker detection.
Collapse
Affiliation(s)
- Wenchao Geng
- School of Chemical and Printing Dyeing Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China
| | - Guihua Jiang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Huimin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Linsheng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuling Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ruiying Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
13
|
Dong Q, Xing J, Yuan R, Yuan Y. Novel Porphyrinic Covalent Organic Polymer with Polarity-Switchable Dual Wavelength for Accurate and Sensitive Photoelectrochemical Sensing. Anal Chem 2023; 95:13967-13974. [PMID: 37672686 DOI: 10.1021/acs.analchem.3c02548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we synthesized a novel porphyrinic covalent organic polymer (TPAPP-PTCA PCOP) for constructing a polarity-switchable dual-wavelength photoelectrochemical (PEC) biosensor with ferrocene (Fc) and hydrogen peroxide (H2O2) as regulator and amplifier simultaneously. Interestingly, this new PCOP possessed both n-type and p-type semiconductor characteristics, which thus enabled the appearance of a dual-polarity photocurrent at two different excitation wavelengths. Furthermore, Fc and H2O2 could readily switch the photocurrent of PCOP to the cathode and anode stemming from its efficient electron collection and donation function, respectively. Based on these, a PCOP-based PEC biosensor skillfully integrating dual wavelengths with reliable accuracy and polarity switch with high sensitivity was instituted. As a result, the developed PEC biosensor exhibited a low detection limit down to 0.089 pg mL-1 for the most powerful natural carcinogen aflatoxin M1 (AFM1) assay. Impressively, the target exhibited a completely opposite photocurrent difference to the interfering substances, and the linear correlation coefficient of the assay was improved compared to single-wavelength detection. The PEC sensing platform not only provided a basis for exploring multicharacteristic photoactive material but also innovatively developed the detection mode of the PEC biosensor.
Collapse
Affiliation(s)
- Qingyuan Dong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Juan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
14
|
Li W, Zhang M, Han D, Yang H, Hong Q, Fang Y, Zhou Z, Shen Y, Liu S, Huang C, Zhu H, Zhang Y. Carbon Nitride-Based Heterojunction Photoelectrodes with Modulable Charge-Transfer Pathways toward Selective Biosensing. Anal Chem 2023; 95:13716-13724. [PMID: 37650675 DOI: 10.1021/acs.analchem.3c03221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Photoelectrochemical (PEC) sensing enables the rapid, accurate, and highly sensitive detection of biologically important chemicals. However, achieving high selectivity without external biological elements remains a challenge because the PEC reactions inherently have poor selectivity. Herein, we report a strategy to address this problem by regulating the charge-transfer pathways using polymeric carbon nitride (pCN)-based heterojunction photoelectrodes. Interestingly, because of redox reactions at different semiconductor/electrolyte interfaces with specific charge-transfer pathways, each analyte demonstrated a unique combination of photocurrent-change polarity. Based on this principle, a pCN-based PEC sensor for the highly selective sensing of ascorbic acid in serum against typical interferences, such as dopamine, glutathione, epinephrine, and citric acid was successfully developed. This study sheds light on a general PEC sensing strategy with high selectivity without biorecognition units by engineering charge-transfer pathways in heterojunctions on photoelectrodes.
Collapse
Affiliation(s)
- Wang Li
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Mingming Zhang
- Center of Clinical Laboratory Medicine, Zhongda Hospital, and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing 210009, China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanfeng Fang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yanfei Shen
- Center of Clinical Laboratory Medicine, Zhongda Hospital, and Jiangsu Provincial Key Laboratory of Critical Care Medicine, Medical School, Southeast University, Nanjing 210009, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chaofeng Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Haibin Zhu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
15
|
Qin Y, Zhang J, Tan R, Wu Z, Liu M, Li J, Xu M, Gu W, Zhu C, Hu L. Small-Molecule Probe-Induced In Situ-Sensitized Photoelectrochemical Biosensor for Monitoring α-Glucosidase Activity. ACS Sens 2023; 8:3257-3263. [PMID: 37566793 DOI: 10.1021/acssensors.3c01269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Semiconductor-based photoelectrochemical (PEC) biosensors have garnered significant attention in the field of disease diagnosis and treatment. However, the recognition units of these biosensors are mainly limited to bioactive macromolecules, which hinder the photoelectric response due to their insulating characteristics. In this study, we develop an in situ-sensitized strategy that utilizes a small-molecule probe at the interface of the photoelectrode to accurately detect α-glucosidase (α-Glu) activity. Silane, a prototype small-molecule probe, was surface-modified on graphitic carbon nitride to generate Si nanoparticles upon reacting with hydroquinone, the enzymatic product of α-Glu. The in situ formed heterojunction enhances the light-harvesting property and photoexcited carrier separation efficiency. As a result, the in situ-sensitized PEC biosensor demonstrates excellent accuracy, a low detection limit, and outstanding anti-interference ability, showing good applicability in evaluating α-Glu activity and its inhibitors in human serum samples. This novel in situ sensitization approach using small-molecule probes opens up new avenues for developing simple and efficient PEC biosensing platforms by replacing conventional biorecognition elements.
Collapse
Affiliation(s)
- Ying Qin
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingyi Zhang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Rong Tan
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhichao Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Mingwang Liu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jinli Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Miao Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| |
Collapse
|
16
|
Hu X, Wu X, Xiong Z, Wang XT, Wang AJ, Yuan PX, Zhao T, Feng JJ. In situ electrostatic assembly of porphyrin as enhanced PEC photosensitizer for bioassay of single HCT-116 cells via competitive reaction. Biosens Bioelectron 2023; 236:115405. [PMID: 37267689 DOI: 10.1016/j.bios.2023.115405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Nowadays, synthesis of novel organic photosensitizer is imperative but challenging for photoelectrochemical (PEC) assay in analytical and biomedical fields. In this work, the PEC responses enhanced about 4.3 folds after in situ electrostatic assembly of 1-butyl-3-methylimidazole tetrafluoroborate ([BIm][BF4]) on meso-tetra (4-carboxyphenyl) porphine (TP), which was first covalently linked with NH2 modified indium tin oxide electrode ([BIm]+--TP-NH2-ITO). Moreover, the [BIm]+--TP-NH2-ITO showed a much larger photocurrent in a water/dimethyl sulfoxide (DMSO) binary solvent with a water fraction (fw) of 90%, which displayed 6.7-fold increase over that in pure DMSO, coupled by discussing the PEC enhanced mechanism in detail. Then, the PEC signals were sharply quenched via a competitive reaction between magnetic bead linked dsDNA (i.e., initial hybridization of aptamer DNA with linking DNA) and HCT-116 cells (closely associated with CRC), where the liberated L-DNA stripped the [BIm]+ from [BIm]+--TP-NH2-ITO. The PEC detection strategy exhibited a wider linear range (30 ∼ 3 × 105 cells mL-1) and a lower limit of detection (6 cells mL-1), achieving single-cell bioanalysis even in diluted human serum sample. The in situ assembly strategy offers a valuable biosensing platform to amplify the PEC signals with advanced organic photosensitizer for early diagnosis of tumors.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiajunpeng Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zuping Xiong
- MOE Key Laboratory of Macromolecular Synthesis of Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xin-Tao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Tiejun Zhao
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
17
|
Bakhshandeh F, Saha S, Sen P, Sakib S, MacLachlan R, Kanji F, Osman E, Soleymani L. A universal bacterial sensor created by integrating a light modulating aptamer complex with photoelectrochemical signal readout. Biosens Bioelectron 2023; 235:115359. [PMID: 37187062 DOI: 10.1016/j.bios.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Photoelectrochemical (PEC) signal transduction is of great interest for ultrasensitive biosensing; however, signal-on PEC assays that do not require target labeling remain elusive. In this work, we developed a signal-on biosensor that uses nucleic acids to modulate PEC currents upon target capture. Target presence removes a biorecognition probe from a DNA duplex carrying a gold nanoparticle, bringing the gold nanoparticle in direct contact to the photoelectrode and increasing the PEC current. This assay was used to develop a universal bacterial detector by targeting peptidoglycan using an aptamer, demonstrating a limit-of-detection of 82 pg/mL (13 pM) in buffer and 239 pg/mL (37 pM) in urine for peptidoglycan and 1913 CFU/mL forEscherichia coliin urine. When challenged with a panel of unknown targets, the sensor identified samples with bacterial contamination versus fungi. The versatility of the assay was further demonstrated by analyzing DNA targets, which yielded a limit-of-detection of 372 fM.
Collapse
Affiliation(s)
- Fatemeh Bakhshandeh
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sudip Saha
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Payel Sen
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Sadman Sakib
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Roderick MacLachlan
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Farhaan Kanji
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Enas Osman
- School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; School of Biomedical Engineering, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, 1280 Main Street West, L8S 4L8, Hamilton, Ontario, Canada.
| |
Collapse
|
18
|
CRISPR/Cas12a-based MUSCA-PEC strategy for HSV-1 assay. Anal Chim Acta 2023; 1250:340955. [PMID: 36898814 DOI: 10.1016/j.aca.2023.340955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
In the photoelectrochemical sensing, constant potential excitation to get the photoelectrochemical signal is the main excitation signal mode. Novel method for photoelectrochemical signal obtaining is needed. Inspired by this ideal, a photoelectrochemical strategy for Herpes simplex virus (HSV-1) detection with multiple potential step chronoamperometry (MUSCA) pattern was fabricated using CRISPR/Cas12a cleavage coupled with entropy-driven target recycling. In the presence of target, HSV-1, the Cas12a was activated by the H1-H2 complex obtained by entropy-driven, then digesting the circular fragment of csRNA to expose single-stranded crRNA2 and alkaline phosphatase (ALP). The inactive Cas12a was self-assembled with crRNA2 and activated again with the help of assistant dsDNA. After multiple rounds of CRISPR/Cas12a cleavage and magnetic separation, MUSCA, as a signal amplifier, collected the enhanced photocurrent responses generated by catalyzed p-Aminophenol (p-AP). Different from the reported signal enhancement strategies based on photoactive nanomaterials and sensing mechanisms, MUSCA technique endowed the strategy with unique advantages of direct, fast and ultrasensitive. A superior detection limit of 3 aM toward HSV-1 was achieved. This strategy was successfully applied for HSV-1 detection in Human serum samples. The combination of MUSCA technique and CRISPR/Cas12a assay brings broader potential prospect for the detection of nucleic acids.
Collapse
|
19
|
Li X, Huang J, Ding J, Xiu M, Huang K, Cui K, Zhang J, Hao S, Zhang Y, Yu J, Huang Y. PEC/Colorimetric Dual-Mode Lab-on-Paper Device via BiVO 4/FeOOH Nanocomposite In Situ Modification on Paper Fibers for Sensitive CEA Detection. BIOSENSORS 2023; 13:103. [PMID: 36671939 PMCID: PMC9855910 DOI: 10.3390/bios13010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/06/2023]
Abstract
A dual-mode lab-on-paper device based on BiVO4/FeOOH nanocomposites as an efficient generating photoelectrochemical (PEC)/colorimetric signal reporter has been successfully constructed by integration of the lab-on-paper sensing platform and PEC/colorimetric detection technologies for sensitive detection of carcinoembryonic antigen (CEA). Concretely, the BiVO4/FeOOH nanocomposites were in situ synthesized onto the paper-working electrode (PWE) through hydrothermal synthesis of the BiVO4 layer on cellulose fibers (paper-based BiVO4) which were initially modified by Au nanoparticles for improving the conductivity of three dimensional PWE, and then the photo-electrodeposition of FeOOH onto the paper-based BiVO4 to construct the paper-based BiVO4/FeOOH for the portable dual-mode lab-on-paper device. The obtained nanocomposites with an FeOOH needle-like structure deposited on the BiVO4 layer exhibits enhanced PEC response activity due to its effective separation of the electron-hole pair which could further accelerate the PEC conversion efficiency during the sensing process. With the introduction of CEA targets onto the surface of nanocomposite-modified PWE assisted by the interaction with the CEA antibody from a specific recognition property, a signal-off PEC signal state with a remarkable photocurrent response decreasing trend can be achieved, realizing the quantitative detection of CEA with the PEC signal readout mode. By means of a smart origami paper folding, the colorimetric signal readout is achieved by catalyzing 3,3',5,5'-tetramethylbenzidine (TMB) to generate blue oxidized TMB in the presence of H2O2 due to the satisfied enzyme-like catalytic activity of the needle-like structure, FeOOH, thereby achieving the dual-mode signal readout system for the proposed lab-on-paper device. Under the optimal conditions, the PEC and colorimetric signals measurement were effectively carried out, and the corresponding linear ranges were 0.001-200 ng·mL-1 and 0.5-100 ng·mL-1 separately, with the limit of detection of 0.0008 and 0.013 ng·mL-1 for each dual-mode. The prepared lab-on-paper device also presented a successful application in serum samples for the detection of CEA, providing a potential pathway for the sensitive detection of target biomarkers in clinical application.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiali Huang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiayu Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
20
|
Meng S, Liu D, Li Y, Dong N, Liu S, Liu C, Li X, You T. Photoelectrochemical and visual dual-mode sensor for efficient detection of Cry1Ab protein based on the proximity hybridization driven specific desorption of multifunctional probe. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129759. [PMID: 36058185 DOI: 10.1016/j.jhazmat.2022.129759] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Currently, the development of sensitive and visual strategy for Cry1Ab detection, particularly using a switchable dual-mode detection system based on a single component, remains a great challenge. Here, a photoelectrochemical (PEC) and visual dual-mode sensor was designed for Cry1Ab detection based on a proximity hybridization driven multifunctional probe. In the presence of Cry1Ab, specific desorption of the antibody-DNA conjugate was achieved via sufficient proximity hybridization, leading to the selective release of the multifunctional signal probe, i.e., antibody-labeled single-stranded DNA-gold nanoparticles (Ab1-S1-AuNPs). The released Ab1-S1-AuNPs reduced the photocurrent signal and produced a colored response, thereby achieving PEC and visual dual-mode detection based on a single component. Owing to the different signal generation mechanisms, two independent signals were obtained simultaneously, which provided self-verification to improve reliability and accuracy. Taking advantage of the PEC sensitive detection and visual prediction, the dual-mode sensor achieved efficient detection of the Cry1Ab protein. The developed sensor was successfully used to determine Cry1Ab in corn, wheat, and soil samples with satisfactory results. This method offers a promising biosensing platform for the on-site detection of Cry1Ab protein.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Shuda Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Chang Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xia Li
- Department of Chemistry, Liaocheng University, Liaocheng 252059, Shandong, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
21
|
Zhong Y, Zha R, Li W, Lu C, Zong Y, Sun D, Li C, Wang Y. Signal-On Near-Infrared Photoelectrochemical Aptasensors for Sensing VEGF165 Based on Ionic Liquid-Functionalized Nd-MOF Nanorods and In-Site Formation of Gold Nanoparticles. Anal Chem 2022; 94:17835-17842. [PMID: 36508733 DOI: 10.1021/acs.analchem.2c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The low photon energy and deep penetrating ability of near-infrared (NIR) light make it an ideal light source for a photoelectrochemical (PEC) immunosensing system. Absorption wavelengths of the metal-organic frameworks (MOFs) can be regulated by adjusting the metal ions and the conjugation degree of the ligands. Herein, an ionic liquid with a large conjugated structure was synthesized and was used as a ligand to coordinate with Nd ions to prepare Nd-MOF nanorods with a band gap of 1.26 eV. The Nd-MOF rods show a good photoabsorption property from 200 to 980 nm. A PEC platform was constructed by using Nd-MOF nanorods as the photoelectroactive element. A detachable double-stranded DNA labeled with alkaline phosphatase (ALP), which is specific to VEGF165, was immobilized onto the PEC sensing interface. After blocking unspecific active sites with bovine albumin, an NIR PEC aptasensing system was developed for VEGF165 detection. After being incubated in a mixture of VEGF165, l-ascorbic acid 2-phosphate (magnesium salt hydrate) (AAP), and chloroauric acid, the aptamers for VEGF165 were detached from the PEC aptasensing interface, thus resulting in the decrease of the charge-transfer resistance and the increase of the photocurrent response. The shedding of the aptamers also makes the ALP approach the electrode surface, thus catalyzing the reduction of AAP to produce ascorbic acid (AA). Subsequently, AA reduces in situ chloroauric acid to produce AuNPs on the Nd-MOF-based sensing interface. With the excellent conductivity and localized surface plasmon resonance effect, the AuNPs can accelerate the separation of electron-hole pairs generated from Nd-MOF nanorods, thus promoting the photoelectric conversion efficiency and achieving signal amplification. Under optimized conditions, the PEC responses were linearly related to the VEGF165 concentrations in the range of 0.01-100 ng mL-1 and exhibit a low detection limit of 3.51 pg mL-1 (S/N = 3). VEGF165 in human serum samples was detected by the NIR PEC aptasensor. Their concentrations were found to be well consistent with that obtained from ELISA. Furthermore, the PEC aptasensor demonstrated recoveries from 96.07 to 103.8%. The relative standard deviations were within 5%, indicating good accuracy and precision. The results further verify its practicability for clinical diagnosis.
Collapse
Affiliation(s)
- Yingying Zhong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Ruyan Zha
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Wei Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunfeng Lu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Yuange Zong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Dong Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chunya Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China
| | - Yanying Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, South-Central University for Nationalities, Wuhan 430074, China.,Experimental Teaching and Laboratory Management Center, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
22
|
Deng L, Du J, Hun X. Photoelectrochemical assay based on CRISPR/Cas12a coupled with AuNP/MoS2/WS2/g-C3N4 nanoprobe for determination of hepatitis B virus. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Meng S, Liu D, Li Y, Dong N, Chen T, You T. Engineering the Signal Transduction between CdTe and CdSe Quantum Dots for in Situ Ratiometric Photoelectrochemical Immunoassay of Cry1Ab Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13583-13591. [PMID: 36251948 DOI: 10.1021/acs.jafc.2c05910] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controllable modulation of a response mode is extremely attracting to fabricate biosensor with programmable analytical performances. Here, we reported a proof-of-concept ratiometric photoelectrochemical (PEC) immunoassay of Cry1Ab protein based on the signal transduction regulation at the sensing interface. A sandwich-type PEC structure was designed so that gold nanorods sensitized quantum dots to fix primary antibody (Au NRs/QDs-Ab1) and methylene blue sensitized QDs to combine a second antibody (MB/QDs-Ab2), which served as photoelectric substrate and signal amplifier, respectively. Unlike common recognition element, such a sandwich-type PEC structure allowed for the in situ generation of two specific response signals. For analysis, Cry1Ab captured by Au NRs/QDs-Ab1 led to a decreased photocurrent (ICry1Ab), while the subsequently anchored MB/QDs-Ab2 produced another photocurrent (IMB). Noteworthy, by taking advantage of the different energy band gaps of QDs, varying locations of CdTe and CdSe QDs could realize different signal transduction strategies (i.e., Mode 1 and Mode 2). Investigations on data analysis of ICry1Ab and IMB via different routes demonstrated the superior analytical performances of ratiometry (Mode 1). Consequently, the ratiometric PEC immunosensor offered a linear range of 0.01-100 ng mL-1 with a detection limit of 1.4 pg mL-1. This work provides an efficient strategy for in situ collection of multiple photocurrents to design ratiometric PEC sensors.
Collapse
Affiliation(s)
- Shuyun Meng
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dong Liu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuye Li
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Na Dong
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ting Chen
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
24
|
Zhang L, Chen FZ, Sun H, Meng R, Zeng Q, Wang X, Zhou H. Stimulus-Responsive Metal-Organic Framework Signal-Reporting System for Photoelectrochemical and Fluorescent Dual-Mode Detection of ATP. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46103-46111. [PMID: 36173115 DOI: 10.1021/acsami.2c14376] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dual-mode bioanalysis integrating photoelectrochemical (PEC) and other modes is emerging and allows signal cross-checking for more reliable results. Metal-organic frameworks (MOFs) have been shown to be attractive materials in various biological applications. This work presents the utilization of MOF encapsulation and stimuli-responsive decapsulation for dual-mode PEC and fluorescence (FL) bioanalysis. Photoactive dye methylene violet (MV) was encapsulated in zeolitic imidazolate framework-90 (ZIF-90) to form an MV@ZIF-90 hybrid material, and MV could be released by adenosine triphosphate (ATP)-induced ZIF-90 disintegration. The released MV not only had FL emission but also had a sensitization effect on the ZnIn2S4 (ZnInS) photoanode. Based on the MV-dependent sensitization effect and FL emission characteristic, a dual-mode PEC-FL strategy was established for ATP detection with low detection limits, that is, 3.2 and 4.1 pM for PEC and FL detection, respectively. This study features and will inspire the construction and implementation of smart MOF materials for dual-mode bioanalysis.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng-Zao Chen
- School of Pharmaceutical Chemical and Materials Engineering, Taizhou University, Jiaojiang, Taizhou 318000, China
| | - Haodi Sun
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Runze Meng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingsheng Zeng
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xinxing Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong Zhou
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
25
|
Plasmon enhanced broadband photoelectrochemical response of ZnO/CdTe/Bi nanoarrays for quantitative analysis of nasopharyngeal carcinoma in a recyclable microfluidic biosensing chip. Biosens Bioelectron 2022; 214:114491. [DOI: 10.1016/j.bios.2022.114491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022]
|
26
|
Dang X, Shi Z, Sun Z, Li Y, Hu X, Zhao H. Ultrasensitive sandwich-type photoelectrochemcial oxytetracycline sensing platform based on MnIn2S4/WO3 (Yb, Tm) functionalized rGO film. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Li X, Cui K, Xiu M, Zhou C, Li L, Zhang J, Hao S, Zhang L, Ge S, Huang Y, Yu J. In situ growth of WO 3/BiVO 4 nanoflowers onto cellulose fibers to construct photoelectrochemical/colorimetric lab-on-paper devices for the ultrasensitive detection of AFP. J Mater Chem B 2022; 10:4031-4039. [PMID: 35506741 DOI: 10.1039/d2tb00297c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, novel dual-mode lab-on-paper devices based on in situ grown WO3/BiVO4 heterojunctions onto cellulose fibers, as signal amplification probes, were successfully fabricated by the integration of photoelectrochemical (PEC)/colorimetric analysis technologies into a paper sensing platform for the ultrasensitive detection of alpha-fetoprotein (AFP). Specifically, to achieve an impressive PEC performance of the lab-on-paper device, the WO3/BiVO4 heterojunction was in situ grown onto the surface of cellulose fibers assisted with Au nanoparticle (Au NP) functionalization for enhancing the conductivity of the working zone of the device. With the target concentration increased, more immune conjugates could be captured by the proposed paper photoelectrode, which could lead to a quantitative decrease in the photocurrent intensity, eventually realizing the accurate PEC signal readout. To meet the requirement of end-user application, a colorimetric signal readout system was designed for the lab-on-paper device based on the color reaction of 3,3'5,5'-tetramethylbenzidine (TMB) oxidized by WO3/BiVO4 nanoflowers in the presence of H2O2. Noticeably, it is the first time that the WO3/BiVO4 heterojunction is in situ grown onto cellulose fibers, which enhances the sensitivity in view of both their PEC activity and catalytic ability. By controlling the conversion process of hydrophobicity and hydrophilicity on the lab-on-paper device combined with diverse origami methods, the dual-mode PEC/colorimetric signal output for the ultrasensitive AFP detection was realized. Under optimal conditions, the proposed dual-mode lab-on-paper device could enable the sensitive PEC/colorimetric diagnosis of AFP in the linear range of 0.09-100 ng mL-1 and 5-100 ng mL-1 with the limit of detection of 0.03 and 1.47 ng mL-1, respectively.
Collapse
Affiliation(s)
- Xu Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Kang Cui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Mingzhen Xiu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Chenxi Zhou
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Shiji Hao
- School of Materials Science & Engineering, Dongguan University of Technology, Guangdong 523808, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan, 250022, P. R. China
| | - Shenguang Ge
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
28
|
Photoelectrochemical detection of microRNAs based on target-triggered self-assembly of energy band position-matched CdS QDs and C 3N 4 nanosheets. Mikrochim Acta 2022; 189:65. [PMID: 35064308 DOI: 10.1007/s00604-022-05168-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
An ultrasensitive photochemical biosensor based on the target miRNA-triggered catalytic hairpin assembly (CHA) reaction between Au nanoparticles (AuNPs)/C3N4 nanosheets and CdS quantum dots (QDs) was developed for the determination of miRNAs. Firstly, AuNPs/C3N4 nanosheets were immobilized onto a working glassy carbon electrode. Then, the hairpin probe 1 (H1) was loaded through Au-S bonding. Afterward, the unbound sites were blocked with 6-mercaptohexanol to avoid nonspecific adsorption. In the presence of the target miRNA, the CHA reaction between the H1 and hairpin probe 2-CdS QDs (H2-CdS QDs) could be triggered. As a result, the AuNPs/C3N4 nanosheet and CdS QDs were linked by the double helix structure H1-H2. Unlike the other CHA reactions, H2 used in this work is longer than H1 so that the AuNPs/C3N4 nanosheets could touch the CdS QDs. Given the matched energy band positions between the C3N4 nanosheet and CdS QDs, a strong photocurrent could be obtained after the CHA reaction was triggered by the target miRNA. In addition, p-type C3N4 nanosheets and n-type CdS QDs presented reduction photocurrents and oxidation photocurrents, respectively. Therefore, the photocurrents were vectors in this design that can eliminate the interference of nonspecific adsorption and avoid the generation of false-positive signals. Under the optimal conditions, the limit of detection was 92 aM. The constructed photoelectrochemical biosensor showed good reproducibility and selectivity in the analysis of serum samples, which indicates its great prospects in disease diagnostics and bioanalysis.
Collapse
|
29
|
Shanmugam ST, Trashin S, De Wael K. Singlet oxygen-based photoelectrochemical detection of DNA. Biosens Bioelectron 2022; 195:113652. [PMID: 34583105 DOI: 10.1016/j.bios.2021.113652] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 01/02/2023]
Abstract
The current work, designed for the photoelectrochemical detection of DNA, evaluates light-responsive DNA probes carrying molecular photosensitizers generating singlet oxygen (1O2). We take advantage of their chromophore's ability to produce 1O2 upon photoexcitation and subsequent photocurrent response. Type I, fluorescent and type II photosensitizers were studied using diode lasers at 406 nm blue, 532 nm green and 659 nm red lasers in the presensce and absence of a redox reporter, hydroquinone (HQ). Only type II photosensitizers (producing 1O2) resulted in a noticeable photocurrent in 1-4 nA range upon illumination, in particular, dissolved DNA probes labeled with chlorin e6 and erythrosine were found to give a well-detectable photocurrent response in the presence of HQ. Whereas, Type I photosensitizers and fluorescent chromophores generate negligible photocurrents (<0.15 nA). The analytical performance of the sensing system was evaluated using a magnetic beads-based DNA assay on disposable electrode platforms, with a focus to enhance the sensitivity and robustness of the technique in detecting complementary DNA targets. Amplified photocurrent responses in the range of 70-100 nA were obtained and detection limits of 17 pM and 10 pM were achieved using magnetic beads-captured chlorin e6 and erythrosine labeled DNA probes respectively. The presented novel photoelectrochemical detection can further be optimized and employed in applications for which enzymatic amplification such as polymerase chain reaction (PCR) is not applicable owing to their limitations and as an effective alternative to colorimetric detection when rapid detection of specific nucleic acid targets is required.
Collapse
Affiliation(s)
- Saranya Thiruvottriyur Shanmugam
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Stanislav Trashin
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- A-Sense Lab, Department of Bioengineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
30
|
Abstract
Nowadays, the emerging photoelectrochemical (PEC) bioanalysis has drawn intensive interest due to its numerous merits. As one of its core elements, functional nanostructured materials play a crucial role during the construction of PEC biosensors, which can not only be employed as transducers but also act as signal probes. Although both chemical composition and morphology control of nanostructured materials contribute to the excellent analytical performance of PEC bioassay, surveys addressing nanostructures with different dimensionality have rarely been reported. In this review, according to classification based on dimensionality, zero-dimensional, one-dimensional, two-dimensional, and three-dimensional nanostructures used in PEC bioanalysis are evaluated, with an emphasis on the effect of morphology on the detection performances. Furthermore, using the illustration of recent works, related novel PEC biosensing patterns with promising applications are also discussed. Finally, the current challenges and some future perspectives in this field are addressed based on our opinions.
Collapse
|
31
|
Niu X, Zhao Y, Wang F, Wu J, Qu F, Tan W. Ultrasensitive Photoelectrochemical Biosensor Based on Novel Z-Scheme Heterojunctions of Zn-Defective CdS/ZnS for MicroRNA Assay. Anal Chem 2021; 93:17134-17140. [PMID: 34911298 DOI: 10.1021/acs.analchem.1c04820] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The sensitive and accurate detection of microRNA (miRNA) has meaningful values for clinical diagnosis application as an early stage of tumor markers. Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive and highly selective detection of microRNA-122 (miRNA-122) based on a direct Z-scheme heterojunction of Zn vacancy-mediated CdS/ZnS (CSZS-VZn). Impressively, the prepared Z-scheme heterojunction nanocomposite with defect level properties could make the photogenerated charges stay at the Zn vacancy defect levels and combine photogenerated holes in the valence bands of CdS, thus significantly achieving a better charge carrier separation efficiency and broadening the absorption of visible light and demonstrating 5-8 times enhancement of PEC response compared to single-component materials. Simultaneously, an exonuclease III (Exo-III)-assisted signal amplification strategy and a strand displacement reaction were combined to improve the conversion efficiency of the target and further increase the detection sensitivity. More importantly, the elaborated biosensor showed ultrasensitive and highly specific detection of the target miRNA-122 over a wide linear range from 10 aM to 100 pM with a low detection limit of 3.3 aM and exhibited enormous potential in the fields of bioanalysis and clinical diagnosis.
Collapse
Affiliation(s)
- Xiankang Niu
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Fang Wang
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Jinghua Wu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Weihong Tan
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Hangzhou, 310022 Zhejiang, China
| |
Collapse
|
32
|
Li J, Wu Y, Qin Y, Liu M, Chen G, Hu L, Gu W, Zhu C. AgCu@CuO aerogels with peroxidase-like activities and photoelectric responses for sensitive biosensing. Chem Commun (Camb) 2021; 57:13788-13791. [PMID: 34870654 DOI: 10.1039/d1cc06177a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Photoelectrochemical (PEC) enzymatic biosensors integrate the excellent selectivity of enzymes and high sensitivity of PEC bioanalysis, but the drawbacks such as high cost, poor stability, and tedious immobilization of natural enzymes on photoelectrodes severely suppress their applications. AgCu@CuO aerogel-based photoelectrode materials with both remarkable enzyme-like activities and outstanding photoelectric properties were innovatively designed and synthesized to evaluate the activity of xanthine oxidase with a wide linear detection range and a low limit of detection.
Collapse
Affiliation(s)
- Jinli Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China. .,School of Electronic and Information Engineering, Jingchu University of Technology, Jingmen, 448000, P. R. China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Ying Qin
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Mingwang Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Guojuan Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Liuyong Hu
- Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China.
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
33
|
Abstract
Electrochemistry represents an important analytical technique used to acquire and assess chemical information in detail, which can aid fundamental investigations in various fields, such as biological studies. For example, electrochemistry can be used as simple and cost-effective means for bio-marker tracing in applications, such as health monitoring and food security screening. In combination with light, powerful spatially-resolved applications in both the investigation and manipulation of biochemical reactions begin to unfold. In this article, we focus primarily on light-addressable electrochemistry based on semiconductor materials and light-readable electrochemistry enabled by electrochemiluminescence (ECL). In addition, the emergence of multiplexed and imaging applications will also be introduced.
Collapse
|
34
|
Hao M, Miao P, Wang Y, Wang W, Ge S, Yu X, Hu XX, Ding B, Zhang J, Yan M. Near-Infrared Light-Initiated Photoelectrochemical Biosensor Based on Upconversion Nanorods for Immobilization-Free miRNA Detection with Double Signal Amplification. Anal Chem 2021; 93:11251-11258. [PMID: 34369163 DOI: 10.1021/acs.analchem.1c02160] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoelectrochemical (PEC) sensors are relatively new sensing platforms with high detection sensitivity and low cost. However, the current PEC biosensors dependent on ultraviolet or visible light as the exciting resource cause injuries to biological samples and systems, which restrains the applications in complicated matrixes. Herein, a near-infrared light (NIR)-initiated PEC biosensor based on NaYF4:Yb,Tm@NaYF4@TiO2@CdS (csUCNRs@TiO2@CdS) was constructed for sensitive detection of acute myocardial infarction (AMI)-related miRNA-133a in an immobilization-free format coupled with a hybridization chain reaction and a redox circle signal amplification strategy. A low-energy 980 nm NIR incident laser was converted to 300-480 nm light to excite the adjacent TiO2@CdS photosensitive shell to generate photocurrent by NaYF4:Yb,Tm@NaYF4 upconversion nanorods. Also, magnetic beads were employed for the homogeneous determination of target miRNA-133a to reduce the recognition steric hindrance and improve the detection sensitivity. The photocurrent response was positively correlated with the level of ascorbic acid as the energy donor to consume photoacoustic holes produced on the surface of csUCNRs@TiO2@CdS, which was generated by alkaline phosphatase catalyzation and regenerated by tris(2-carboxyethyl) phosphine reduction upon the appearance of miRNA-133a. Exerting a NIR-light-driven and immobilization-free strategy, the as-constructed biosensor displayed linearly sensitive and selective determination of miRNA-133a with a detection limit of 36.12 aM. More significantly, the assay method provided a new concept of the PEC sensing strategy driven by NIR light to detect diverse biomarkers with pronounced sensitivity, light stability, and low photodamage.
Collapse
Affiliation(s)
- Mengjiao Hao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Pei Miao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenshou Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Xinyan Yu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiao-Xiao Hu
- College of Life Sciences, Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Biyan Ding
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
35
|
Leng D, Zhao J, Ren X, Xu R, Liu L, Liu X, Li Y, Wei Q. MoSe 2/CdSe Heterojunction Destruction by Cation Exchange for Photoelectrochemical Immunoassays with a Controlled-Release Strategy. Anal Chem 2021; 93:10712-10718. [PMID: 34283578 DOI: 10.1021/acs.analchem.1c02354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, a split-type immunoassay strategy instigated by cation exchange (CE) and changing the capacity of an electron donor in an electrolyte solution is optimized, namely, for differentiating the biological-specific binding assay and photoelectrochemical (PEC) analysis. MoSe2/CdSe, a Z-scheme heterojunction with efficient visible light absorption and a low recombination of carriers, is used as a photoelectrode substrate. Silver ions (Ag+) as the initiator of CE are generated by the acidolysis of evenly loaded silver nanoparticles on mesoporous silica nanospheres (MSNs). The theoretical calculation and experimental results confirm that Ag+ replaces Cd2+ in CdSe and retains the crystal structure of MoSe2. However, this behavior destroys the perfectly matched heterojunction structure and introduces defects, which led to the reduction of the photocurrent response. In addition, ascorbate oxidase in combination with MSNs can be used as a consumptive agent of the electron donor, which further improves the sensitivity and reliability of the sensor. As a proof of principle, neuron-specific enolase was applied to elucidate the potential application of the PEC immunoassay in clinical diagnosis, and the obtained linear range of the sensor was from 0.0001 to 100 ng/mL with a detection limit of 28 fg/mL (S/N = 3).
Collapse
Affiliation(s)
- Dongquan Leng
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Jihao Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Rui Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Lei Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yuyang Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| |
Collapse
|
36
|
Cui L, Shen J, Li CC, Cui PP, Luo X, Wang X, Zhang CY. Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Anal Chem 2021; 93:10310-10316. [PMID: 34260216 DOI: 10.1021/acs.analchem.1c01797] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA methyltransferases may function as important biomarkers of cancers and genetic diseases. Herein, we develop a dye-sensitized and gold plasmon-enhanced cathodic photoelectrochemical (PEC) biosensor on the basis of p-type covalent organic polymers (COPs) for the signal-on measurement of M.SssI methyltransferase (M.SssI MTase). The cathodic PEC biosensor is constructed by the in situ growth of p-type COP films onto a glass coated with indium tin oxide and the subsequent assembly of biotin- and HS-labeled double-stranded DNA (dsDNA) probes onto the COP film via biotin-streptavidin interaction. The dsDNA probe contains the recognition sequence of M.SssI MTase. The COP thin films possess a porous ultrathin nanosheet structure with abundant active sites, facilitating the generation of a high photocurrent compared with the hydrothermally synthesized ones. The presence of DNA methyltransferases can prevent the digestion of restriction endonuclease HpaII, consequently inducing the introduction of gold nanoparticles (AuNPs) to the dsDNA probes via the S-Au bond and the intercalation of rhodamine B (RhB) into the DNA grooves to produce a high photocurrent due to the dye-photosensitized enhancement and AuNP-mediated surface plasmon resonance. However, in the absence of M.SssI MTase, HpaII digests the dsDNA probes, and neither AuNPs nor RhB can be introduced onto the electrode surface, leading to a low photocurrent. This cathodic PEC biosensor possesses high sensitivity and good selectivity, and it can screen the inhibitors and detect M.SssI MTase in serum as well.
Collapse
Affiliation(s)
- Lin Cui
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Jingzhu Shen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chen-Chen Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Pei-Pei Cui
- Shandong Provincial Key Laboratory of Biophysics, Shandong Universities Key Laboratory of Functional Biological Resources Utilization and Development, College of Life Science, Dezhou University, Dezhou 253023, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaolei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China
| |
Collapse
|