1
|
Becker T, Hermann A, Saritas N, Hoffmann A, Herres-Pawlis S. Open- and Closed-Loop Recycling: Highly Active Zinc Bisguanidine Polymerization Catalyst for the Depolymerization of Polyesters. CHEMSUSCHEM 2024; 17:e202400933. [PMID: 38870083 DOI: 10.1002/cssc.202400933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
In this study, the aliphatic N,N-bisguanidine zinc complex [Zn(DMEG2ch)2](OTf)2 ⋅ THF is introduced as a promising candidate for the chemical recycling of (bio) polyesters. This catalyst is highly active in the ring-opening polymerization (ROP) of lactide (LA) and ϵ-caprolactone (CL). The combination of polymerization and depolymerization activity creates new pathways towards a sustainable circular economy. The catalytic activity of [Zn(DMEG2ch)2](OTf)2 ⋅ THF for the chemical recycling of polylactide (PLA) via alcoholysis was investigated by detailed kinetic and thermodynamic studies. It is shown that various high value-added alkyl lactates can be obtained efficiently under mild reaction conditions. Catalyst recycling was successfully tested using ethanol for the degradation of PLA. In addition, LA can be recovered directly from PLA, enabling either open- or closed-loop recycling. Selective PLA degradation from mixtures with polyethylene terephthalate (PET) and polymer blends are presented. For the first time, a cascade recycling reaction of a PLA/polycaprolactone (PCL) blend is tested with a zinc-based bisguanidine catalyst, whereby PLA is degraded selectively at first and subsequent modification of the reaction conditions leads to efficient degradation of the remaining PCL. The highly active, universally applicable benign zinc catalyst allows the implementation of a circular plastics economy and thus the reduction of plastic pollution in the environment.
Collapse
Affiliation(s)
- Tabea Becker
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - A Hermann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nazik Saritas
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074, Aachen, Germany
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
2
|
Dobbelaar E, Goher SS, Vidal JL, Obhi NK, Felisilda BMB, Choo YSL, Ismail H, Lee HL, Nascimento V, Al Bakain R, Ranasinghe M, Davids BL, Naim A, Offiong NA, Borges J, John T. Towards a Sustainable Future: Challenges and Opportunities for Early-Career Chemists. Angew Chem Int Ed Engl 2024; 63:e202319892. [PMID: 39046086 DOI: 10.1002/anie.202319892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Indexed: 07/25/2024]
Abstract
The concepts of sustainability and sustainable chemistry have attracted increasing attention in recent years, being of great importance to the younger generation. In this Viewpoint Article, we share how early-career chemists can contribute to the sustainable transformation of their discipline. We identify ways in which they can engage to catalyse action for change. This article does not attempt to answer questions about the most promising or pressing areas driving research and chemical innovation in the context of sustainability. Instead, we want to inspire and engage early-career chemists in pursuing sustainable actions by showcasing opportunities in education, outreach and policymaking, research culture and publishing, while highlighting existing challenges and the complexity of the topic. We want to empower early-career chemists by providing resources and ideas for engagement for a sustainable future globally. While the article focuses on students and early-career chemists, it provides insights to further stimulate the engagement of scientists from diverse backgrounds.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- Department of Chemistry, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52-54, 67663, Kaiserslautern, Germany
- Current address, Freudenberg Technology Innovation SE & Co. KG, Höhnerweg 2-4, 69469, Weinheim, Germany
| | - Shaimaa S Goher
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Cairo, 1183, Egypt
| | | | | | - Bren M B Felisilda
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Yvonne S L Choo
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang, 43900, Selangor Darul Ehsan, Malaysia
| | - Hossny Ismail
- Dow Inc., Dow Egypt Services Limited, Katameya Heights Business Centre -, Office G01, Fifth Settlement, New Cairo, Egypt
| | - Hooi Ling Lee
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, 11800, Penang, Malaysia
| | - Vanessa Nascimento
- SupraSelen Laboratory, Department of Organic Chemistry, Institute of Chemistry, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Rio de Janeiro, 24020-141, Brazil
| | - Ramia Al Bakain
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| | - Muhandiramge Ranasinghe
- Australian Centre for Research on Separation Science, School of Natural Sciences-Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Bianca L Davids
- School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Arish Naim
- Department of Industrial Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Current address: Department of Materials Science and Engineering, University of California, Davis, CA 95616, USA
| | | | - João Borges
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Torsten John
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
3
|
Syrén PO. Ancestral terpene cyclases: From fundamental science to applications in biosynthesis. Methods Enzymol 2024; 699:311-341. [PMID: 38942509 DOI: 10.1016/bs.mie.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes constitute one of the largest family of natural products with potent applications as renewable platform chemicals and medicines. The low activity, selectivity and stability displayed by terpene biosynthetic machineries can constitute an obstacle towards achieving expedient biosynthesis of terpenoids in processes that adhere to the 12 principles of green chemistry. Accordingly, engineering of terpene synthase enzymes is a prerequisite for industrial biotechnology applications, but obstructed by their complex catalysis that depend on reactive carbocationic intermediates that are prone to undergo bifurcation mechanisms. Rational redesign of terpene synthases can be tedious and requires high-resolution structural information, which is not always available. Furthermore, it has proven difficult to link sequence space of terpene synthase enzymes to specific product profiles. Herein, the author shows how ancestral sequence reconstruction (ASR) can favorably be used as a protein engineering tool in the redesign of terpene synthases without the need of a structure, and without excessive screening. A detailed workflow of ASR is presented along with associated limitations, with a focus on applying this methodology on terpene synthases. From selected examples of both class I and II enzymes, the author advocates that ancestral terpene cyclases constitute valuable assets to shed light on terpene-synthase catalysis and in enabling accelerated biosynthesis.
Collapse
Affiliation(s)
- Per-Olof Syrén
- School of Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden; School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
4
|
Vogt ETC, Weckhuysen BM. The refinery of the future. Nature 2024; 629:295-306. [PMID: 38720037 DOI: 10.1038/s41586-024-07322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/15/2024] [Indexed: 05/12/2024]
Abstract
Fossil fuels-coal, oil and gas-supply most of the world's energy and also form the basis of many products essential for everyday life. Their use is the largest contributor to the carbon dioxide emissions that drive global climate change, prompting joint efforts to find renewable alternatives that might enable a carbon-neutral society by as early as 2050. There are clear paths for renewable electricity to replace fossil-fuel-based energy, but the transport fuels and chemicals produced in oil refineries will still be needed. We can attempt to close the carbon cycle associated with their use by electrifying refinery processes and by changing the raw materials that go into a refinery from fossils fuels to carbon dioxide for making hydrocarbon fuels and to agricultural and municipal waste for making chemicals and polymers. We argue that, with sufficient long-term commitment and support, the science and technology for such a completely fossil-free refinery, delivering the products required after 2050 (less fuels, more chemicals), could be developed. This future refinery will require substantially larger areas and greater mineral resources than is the case at present and critically depends on the capacity to generate large amounts of renewable energy for hydrogen production and carbon dioxide capture.
Collapse
Affiliation(s)
- Eelco T C Vogt
- Inorganic Chemistry and Catalysis Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis Group, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Gomollón-Bel F, García-Martínez J. Connecting chemical worlds for a sustainable future. Chem Sci 2024; 15:5056-5060. [PMID: 38577374 PMCID: PMC10988580 DOI: 10.1039/d3sc06815c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/06/2024] Open
Abstract
Chemistry plays a central role in science and is the basis of one of the major, more impactful, and diverse industries. However, to address the most pressing global challenges, we must learn to create connections in an effective and meaningful way, with other disciplines, industries, and society at large. Here, we present the IUPAC Top Ten Emerging Technologies in Chemistry as an example of an initiative that highlights the value of the most promising advances in chemistry and contributes to creating connections to accelerate sustainable solutions for our society and our planet.
Collapse
|
6
|
Fernandez Rivas D, Cintas P, Glassey J, Boffito DC. Ultrasound and sonochemistry enhance education outcomes: From fundamentals and applied research to entrepreneurial potential. ULTRASONICS SONOCHEMISTRY 2024; 103:106795. [PMID: 38359576 PMCID: PMC10879001 DOI: 10.1016/j.ultsonch.2024.106795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
With this manuscript we aim to initiate a discussion specific to educational actions around ultrasonics sonochemistry. The importance of these actions does not just derive from a mere pedagogical significance, but they can be an exceptional tool for illustrating various concepts in other disciplines, such as process intensification and microfluidics. Sonochemistry is currently a far-reaching discipline extending across different scales of applicability, from the fundamental physics of tiny bubbles and molecules, up to process plants. This review is part of a special issue in Ultrasonics Sonochemistry, where several scholars have shared their experiences and highlighted opportunities regarding ultrasound as an education tool. The main outcome of our work is that teaching and mentorship in sonochemistry are highly needed, with a balanced technical and scientific knowledge to foster skills and implement safe protocols. Applied research typically features the use of ultrasound as ancillary, to merely enhance a given process and often leading to poorly conceived experiments and misunderstanding of the actual effects. Thus, our scientific community must build a consistent culture and monitor reproducible practices to rigorously generate new knowledge on sonochemistry. These practices can be implemented in teaching sonochemistry in classrooms and research laboratories. We highlight ways to collectively provide a potentially better training for scientists, invigorating academic and industry-oriented careers. A salient benefit for education efforts is that sonochemistry-based projects can serve multidisciplinary training, potentially gathering students from different disciplines, such as physics, chemistry and bioengineering. Herein, we discuss challenges, opportunities, and future avenues to assist in designing courses and research programs based on sonochemistry. Additionally, we suggest simple experiments suitable for teaching basic physicochemical principles at the undergraduatelevel. We also provide arguments and recommendations oriented towards graduate and postdoctoral students, in academia or industry to be more entrepreneurial. We have identified that sonochemistry is consistently seen as a 'green' or sustainable tool, which particular appeal to process intensification approaches, including microfluidics and materials science. We conclude that a globally aligned pedagogical initiative and constantly updated educational tools will help to sustain a virtuous cycle in STEM and industrial applications of sonochemistry.
Collapse
Affiliation(s)
- David Fernandez Rivas
- Mesoscale Chemical Systems Group, MESA+ Institute and Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| | - Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, and IACYS-Green Chemistry & Sustainable Development Unit, Facultad de Ciencias-UEx, 06006 Badajoz, Spain
| | - Jarka Glassey
- School of Engineering, Merz Court, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daria C Boffito
- Department of Chemical Engineering, Engineering Process Intensification and Catalysis (EPIC), Polytechnique Montréal, C.P. 6079, Succ. "CV", Montréal H3C 3A7, Québec, Canada; Canada Research Chair in Engineering Process Intensification and Catalysis (EPIC), Polytechnique Montréal, C.P. 6079, Succ. "CV", Montréal H3C 3A7, Québec, Canada
| |
Collapse
|
7
|
Guo L, Makino R, Shimoyama D, Kadota J, Hirano H, Nomura K. Synthesis of Ethylene/Isoprene Copolymers Containing Cyclopentane/Cyclohexane Units as Unique Elastomers by Half-Titanocene Catalysts. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lijuan Guo
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ryoji Makino
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Daisuke Shimoyama
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Joji Kadota
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Hiroshi Hirano
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
8
|
Reshuffle Bonds by Ball Milling: A Mechanochemical Protocol for Charge-Accelerated Aza-Claisen Rearrangements. Molecules 2023; 28:molecules28020807. [PMID: 36677865 PMCID: PMC9860570 DOI: 10.3390/molecules28020807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
This study presents the development of a mechanochemical protocol for a charge-accelerated aza-Claisen rearrangement. The protocol waives the use of commonly applied transition metals, ligands, or pyrophoric Lewis acids, e.g., AlMe3. Based on (heterocyclic) tertiary allylamines and acyl chlorides, the desired tertiary amides were prepared in yields ranging from 17% to 84%. Moreover, the same protocol was applied for a Belluš-Claisen-type rearrangement resulting in the synthesis of a 9-membered lactam without further optimization.
Collapse
|
9
|
Yamamoto Y, Kodama S, Nomoto A, Ogawa A. Innovative green oxidation of amines to imines under atmospheric oxygen. Org Biomol Chem 2022; 20:9503-9521. [PMID: 36218331 DOI: 10.1039/d2ob01421a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, the development of environmentally benign molecular construction methods has been of great importance, and especially, resource recycling, high atomic efficiency, and low environmental impact are in high demand. From this point of view, attention has also been focused on the development of one-pot synthesis of pharmaceuticals and functional molecules. Imines are excellent synthetic intermediates of these useful molecules, and the environmentally friendly oxidative synthesis of imines from amines has been energetically developed using oxygen (or air), which is abundantly available on the Earth, as an oxidant. This review focuses on the latest innovative and green oxidation systems of amines to imines under atmospheric oxygen, and their application to one-pot/eco-friendly and sustainable synthesis of pharmaceuticals and functional molecules. In particular, catalytic systems that activate molecular oxygen are categorized and described in detail as transition metal catalytic systems, photoirradiated catalytic systems, and organocatalytic systems.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Shintaro Kodama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Akiya Ogawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
10
|
Yamamoto Y, Yamakawa C, Nishimura R, Dong CP, Kodama S, Nomoto A, Ueshima M, Ogawa A. Metal-Free Synthesis of 2-Substituted Quinazolines via Green Oxidation of o-Aminobenzylamines: Practical Construction of N-Containing Heterocycles Based on a Salicylic Acid-Catalyzed Oxidation System. Front Chem 2022; 9:822841. [PMID: 35280219 PMCID: PMC8905626 DOI: 10.3389/fchem.2021.822841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Conventional quinazoline synthesis methods involve a highly multistep reaction, and often require excess amounts of substrate to control the product selectivity, leading to significant resource wastage. Hence, in this study, from the viewpoint of green chemistry, we developed a novel metal-free synthetic method for 2-substituted quinazoline derivatives by the 4,6-dihydroxysalicylic acid-catalyzed oxidative condensation of o-aminobenzylamines and benzylamines using atmospheric oxygen. In this system, the use of a catalytic amount of BF3‧Et2O (10 mol%) as a Lewis acid successfully led to the efficient oxidative condensation and intramolecular cyclization of these amines, followed by aromatization to afford the corresponding 2-arylquinazolines in up to 81% yield with excellent atom economy and environmental factor. Furthermore, to expand this green oxidation method to gram-scale synthesis, we investigated the development of an oxidation process using salicylic acid itself as an organocatalyst, and established a method for the practical green synthesis of a series of nitrogen-containing heterocycles. We expect that the findings will contribute to the development of practical synthesis methods for pharmaceutical manufacturing and industrial applications, along with further advancements in green chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Akiya Ogawa
- *Correspondence: Shintaro Kodama, ; Akiya Ogawa,
| |
Collapse
|
11
|
|
12
|
Kots PA, Vance BC, Vlachos DG. Polyolefin plastic waste hydroconversion to fuels, lubricants, and waxes: a comparative study. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00447f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A direct comparison of the recent advancements in the hydrogenolysis and hydrocracking of polyolefins is lacking. This perspective aims to address this gap while providing insights from model alkane studies to guide future research.
Collapse
Affiliation(s)
- Pavel A. Kots
- Center for Plastic Innovation, University of Delaware, 221 Academy St., Newark, DE 19716, USA
| | - Brandon C. Vance
- Center for Plastic Innovation, University of Delaware, 221 Academy St., Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | - Dionisios G. Vlachos
- Center for Plastic Innovation, University of Delaware, 221 Academy St., Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| |
Collapse
|
13
|
Yamamoto Y, Ota M, Kodama S, Ueshima M, Nomoto A, Ogawa A, Furuya M, Kawakami K. Excellent Catalytic Performances of a Au/C-CuO Binary System in the Selective Oxidation of Benzylamines to Imines under Atmospheric Oxygen. ACS OMEGA 2021; 6:34339-34346. [PMID: 34963919 PMCID: PMC8697021 DOI: 10.1021/acsomega.1c04046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
A green method of the oxidation of benzylamines to imines was developed using a novel binary system of Au/C-CuO. This system was evaluated under atmospheric oxygen, and the corresponding imines were obtained in up to 100% yields by loading 0.006 mol % of Au/C and 1.25 mol % of CuO under mild conditions. This system was also successfully applied to the syntheses of N-containing functional molecules, as well as that of imines on the scale of several grams. Furthermore, the turnover number of the system (more than 8000 times on a gold basis) as well as its ability to be reused more than 10 times for benzylamine oxidation demonstrates the excellent durability and recyclability of the developed system.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Miyuto Ota
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shintaro Kodama
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Michio Ueshima
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akihiro Nomoto
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Akiya Ogawa
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Mitsunori Furuya
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| | - Kiminori Kawakami
- Science
& Innovation Center, Mitsubishi Chemical
Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama-shi, Kanagawa 227-8502, Japan
| |
Collapse
|
14
|
Stamm A, Öhlin J, Mosbech C, Olsén P, Guo B, Söderberg E, Biundo A, Fogelström L, Bhattacharyya S, Bornscheuer UT, Malmström E, Syrén PO. Pinene-Based Oxidative Synthetic Toolbox for Scalable Polyester Synthesis. JACS AU 2021; 1:1949-1960. [PMID: 34849510 PMCID: PMC8620555 DOI: 10.1021/jacsau.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Generation of renewable polymers is a long-standing goal toward reaching a more sustainable society, but building blocks in biomass can be incompatible with desired polymerization type, hampering the full implementation potential of biomaterials. Herein, we show how conceptually simple oxidative transformations can be used to unlock the inherent reactivity of terpene synthons in generating polyesters by two different mechanisms starting from the same α-pinene substrate. In the first pathway, α-pinene was oxidized into the bicyclic verbanone-based lactone and subsequently polymerized into star-shaped polymers via ring-opening polymerization, resulting in a biobased semicrystalline polyester with tunable glass transition and melting temperatures. In a second pathway, polyesters were synthesized via polycondensation, utilizing the diol 1-(1'-hydroxyethyl)-3-(2'-hydroxy-ethyl)-2,2-dimethylcyclobutane (HHDC) synthesized by oxidative cleavage of the double bond of α-pinene, together with unsaturated biobased diesters such as dimethyl maleate (DMM) and dimethyl itaconate (DMI). The resulting families of terpene-based polyesters were thereafter successfully cross-linked by either transetherification, utilizing the terminal hydroxyl groups of the synthesized verbanone-based materials, or by UV irradiation, utilizing the unsaturation provided by the DMM or DMI moieties within the HHDC-based copolymers. This work highlights the potential to apply an oxidative toolbox to valorize inert terpene metabolites enabling generation of biosourced polyesters and coatings thereof by complementary mechanisms.
Collapse
Affiliation(s)
- Arne Stamm
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Johannes Öhlin
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Caroline Mosbech
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Peter Olsén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Boyang Guo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Elisabeth Söderberg
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Antonino Biundo
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
| | - Linda Fogelström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | | | - Uwe T. Bornscheuer
- Department
of Biotechnology and Enzyme Catalysis, University
of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Strasse 4, 17487 Greifswald, Germany
| | - Eva Malmström
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| | - Per-Olof Syrén
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Science
for Life Laboratory, KTH Royal Institute
of Technology, Tomtebodavägen
23, Box 1031, SE-171 21 Solna, Sweden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm SE-100 44 Sweden
| |
Collapse
|
15
|
Bohrmann‐Linde C, Meuter N, Zeller D, Tausch MW. Teaching Photochemistry: Experimental Approaches and Digital Media. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claudia Bohrmann‐Linde
- Department of Chemical Education University of Wuppertal Gaußstr. 20 42119 Wuppertal Germany
| | - Nico Meuter
- Department of Chemical Education University of Wuppertal Gaußstr. 20 42119 Wuppertal Germany
| | - Diana Zeller
- Department of Chemical Education University of Wuppertal Gaußstr. 20 42119 Wuppertal Germany
| | - Michael W. Tausch
- Department of Chemical Education University of Wuppertal Gaußstr. 20 42119 Wuppertal Germany
| |
Collapse
|
16
|
Droescher M, Garcia-Martinez J, Shuai Z. Emerging technologies for a more sustainable future. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-1012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Michael Droescher
- Gesellschaft Deutscher Naturforscher und Ärzte e.V. , Hauptstraße 5 , 53604 Bad Honnef , Germany
| | - Javier Garcia-Martinez
- Laboratorio de Nanotecnología Molecular, Departamento de Química Inorgánica , Universidad de Alicante , Ctra. San Vicente-Alicante s/n , 03690 Alicante , Spain
| | - Zhigang Shuai
- Department of Chemistry and MOE Key Laboratory for Organic Electronics and Molecular Engineering , Tsinghua University , 100084 Beijing , People’s Republic of China
| |
Collapse
|
17
|
Kitphaitun S, Chaimongkolkunasin S, Manit J, Makino R, Kadota J, Hirano H, Nomura K. Ethylene/Myrcene Copolymers as New Bio-Based Elastomers Prepared by Coordination Polymerization Using Titanium Catalysts. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Suphitchaya Kitphaitun
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Sapanna Chaimongkolkunasin
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Jeeranun Manit
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Ryoji Makino
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Joji Kadota
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Hiroshi Hirano
- Osaka Research Institute of Industrial Science and Technology (ORIST), 1-6-50, Morinomiya, Joto-ku, Osaka 536-8553, Japan
| | - Kotohiro Nomura
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
18
|
García-Martínez J. Standing on the Shoulders of Giants - Your Mentors and Role Models Will Shape Your Career. Chemistry 2021; 27:13664-13668. [PMID: 34528299 PMCID: PMC8519041 DOI: 10.1002/chem.202100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/02/2022]
Abstract
Choosing the right mentors and role models has a profound impact in both our lives and professional careers; however, most often, not enough time or thought is given to this important decision. Because of that, we may miss some great opportunities and limit the potential benefits. In this invited contribution, I share my personal experience on nurturing the relationship with mentors and on choosing role models with my same values and a strong sense of service.
Collapse
Affiliation(s)
- Javier García-Martínez
- Molecular Nanotechnology Lab, Department of Inorganic Chemistry, University of Alicante, 03690, Alicante, Spain
| |
Collapse
|
19
|
Dobbelaar E, Richter J. An overview of young chemists’ expectations towards the sustainable development of the chemical sector. Opinions that matter. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Young chemists play an important role in the transformation of the chemical sector in the next couple of years. They will have to do the heavy lifting and find the solutions needed for a sustainable tomorrow. Therefore, it is important to give them a voice in what their expectations are, how they believe they should be educated and prepared, and what opportunities they see for implementation levels in different areas to promote sustainable development. To shed light on these often under-represented opinions, young chemists across the globe were asked to express their views on the role and responsibilities of the chemical sector anonymously. The result is a snapshot of how young chemists perceive the future of chemistry and the immediate actions that need to be taken to get there. Throughout all answers, their hopes are expressed that the chemical sector will realize its great role and responsibility in leading and promoting sustainable development, thus limiting global warming, through cooperation with authorities, other sectors, and civil society. In this regard, young chemists do have numerous specific ideas about appropriate measures and are eager to take part in shaping a sustainable future.
Collapse
Affiliation(s)
- Emiel Dobbelaar
- Faculty of Chemistry , Technische Universität Kaiserslautern , Erwin-Schrödinger-Str. 52-54 , 67663 Kaiserslautern , Germany
| | - Janine Richter
- Faculty of Chemistry and Food Chemistry , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
20
|
Pawlas J, Rasmussen JH. Circular Aqueous Fmoc/t-Bu Solid-Phase Peptide Synthesis. CHEMSUSCHEM 2021; 14:3231-3236. [PMID: 34270883 DOI: 10.1002/cssc.202101028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Circular economy and aqueous synthesis are attractive concepts for sustainable chemistry. Here it is reported that the two can be combined in the universal method for peptide chemistry, fluorenylmethoxycarbonyl(Fmoc)/t-Bu solid-phase peptide synthesis (SPPS). It was demonstrated that Fmoc/t-Bu SPPS could be performed under aqueous conditions using standard Fmoc amino acids (AAs) employing TentaGel S as resin and 4 : 1 mixture of water with inexpensive green solvent PolarClean. This resin/solvent combination played a crucial dual role by virtue of improving resin swelling and solubility of starting materials. In a model coupling, TCFH and 2,4,6-collidine afforded a full conversion at only 1.3 equiv. AA, and these conditions were used in SPPS of Leu enkephaline amide affording the model peptide in 85 % yield and 86 % purity. A method to recycle the waste by filtration through a mixed ion exchange resin was developed, allowing reusing the waste without affecting quality of the peptide. The method herein obviates the use of unconventional or processed AAs in aqueous SPPS while using lower amounts of starting materials. By recycling/reusing SPPS waste the hazardous dipolar aprotic solvents used in SPPS were not only replaced with an aqueous medium, solvent use was also significantly reduced. This opens up a new direction in aqueous peptide chemistry in which efficient use of inexpensive starting materials and waste minimization is coupled with the universal Fmoc/t-Bu SPPS.
Collapse
Affiliation(s)
- Jan Pawlas
- PolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061, Limhamn, Sweden
| | - Jon H Rasmussen
- PolyPeptide Group, Limhamnsvägen 108, PO BOX 30089, 20061, Limhamn, Sweden
| |
Collapse
|
21
|
Chalupa R, Nesměrák K. Chemophobia cured by chemists: chemists as children of the Sun. MONATSHEFTE FUR CHEMIE 2021; 152:1045-1051. [PMID: 34393272 PMCID: PMC8356892 DOI: 10.1007/s00706-021-02814-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
The success of chemists in the fight against COVID-19 provides us with a unique opportunity for strengthening the position of chemistry in society and suppressing chemophobia which has badly affected the image and development of chemistry over several decades. By highlighting the unique merits of chemistry in controlling infections and healing diseases, we propose developing a communication strategy "Chemists as children of the Sun". The time is ripe for chemists to take control of the story of chemistry. We believe that chemists must help the public to see chemistry in a whole new light. Only a positive perception of chemistry and the chemical profession will secure a sufficient supply of new talents, ideas, and also financial resources for the development of this unique and irreplaceable science for humanity. GRAPHIC ABSTRACT
Collapse
Affiliation(s)
- Radek Chalupa
- Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- RCC Europe, Ltd., Prague, Czech Republic
| | - Karel Nesměrák
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|