1
|
Ans M, Biyiklioglu Z, Mahapatra A, Chavan RD, Kruszyńska J, Unal M, Fazlı H, Nikiforow K, Yadav P, Akin S, Güzel E, Prochowicz D. Revealing the Impact of Aging on Perovskite Solar Cells Employing Nickel Phthalocyanine-Based Hole Transporting Material. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405284. [PMID: 39285650 PMCID: PMC11538661 DOI: 10.1002/advs.202405284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Indexed: 11/07/2024]
Abstract
The enhancement of the photovoltaic performance upon the aging process at particular environment is often observed in perovskite solar cells (PSCs), particularly for the devices with 2,2',7,7'-tetrakis(N,N-di(4-methoxyphenyl)amino)-9,9'-spirobifluorene (spiro-OMeTAD) as hole transporting material (HTM). In this work, for the first time the effect of aging the typical n-i-p PSCs employing nickel phthalocyanine (coded as Bis-PF-Ni) solely as dopant-free HTM is investigated and as an additive in spiro-OMeTAD solution. This study reveals that the prolong aging of these devices at dry air condition (RH = 2%, 25 °C) is beneficial for the improvement of their performances. Various bulk and surface characterization techniques are utilized to understand the factors behind the spontaneous efficiency enhancement of the devices after storage. As a result, the changes in properties of the Bis-PF-Ni layer are observed and at perovskite/Bis-PF-Ni interface, which ultimately improves the charge transport and reduces non-radiative recombination. In addition, the devices with Bis-PF-Ni HTM reveal enhanced long-term ambient and thermal stability compared to the PSCs based on doped spiro-OMeTAD.
Collapse
Affiliation(s)
- Muhammad Ans
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Zekeriya Biyiklioglu
- Department of ChemistryFaculty of ScienceKaradeniz Technical UniversityTrabzon61080Türkiye
| | - Apurba Mahapatra
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Rohit D. Chavan
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Joanna Kruszyńska
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Muhittin Unal
- Laboratory of Advanced Materials & Photovoltaics (LAMPs)Necmettin Erbakan UniversityKonya42090Türkiye
| | - Hilal Fazlı
- Department of ChemistryFaculty of ScienceKaradeniz Technical UniversityTrabzon61080Türkiye
| | - Kostiantyn Nikiforow
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| | - Pankaj Yadav
- Department of Solar EnergySchool of Energy TechnologyPandit Deendayal Energy UniversityGandhinagarGujarat382 007India
- Department of PhysicsSchool of Energy TechnologyPandit Deendayal Energy UniversityGandhinagarGujarat382 007India
| | - Seckin Akin
- Laboratory of Advanced Materials & Photovoltaics (LAMPs)Necmettin Erbakan UniversityKonya42090Türkiye
- Department of Metallurgical and Materials EngineeringNecmettin Erbakan UniversityKonya42090Türkiye
| | - Emre Güzel
- Department of Engineering Fundamental SciencesFaculty of TechnologySakarya University of Applied SciencesSakarya54050Türkiye
| | - Daniel Prochowicz
- Institute of Physical ChemistryPolish Academy of SciencesKasprzaka 44/52Warsaw01–224Poland
| |
Collapse
|
2
|
Xiao GB, Mu X, Suo ZY, Zhang X, Yu Z, Cao J. Direction Modulation of Intramolecular Electric Field Boosts Hole Transport in Phthalocyanines for Perovskite Solar Cells. Angew Chem Int Ed Engl 2024:e202414249. [PMID: 39251392 DOI: 10.1002/anie.202414249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/11/2024]
Abstract
Tuning the strength of intramolecular electric field (IEF) in conjugated molecules has emerged as an effective approach to boost charge transfer. While direction manipulation of IEF would be a potential way that is still unclear. Here, we leverage the control of peripheral substituents of conjugated phthalocyanines to chemically tune the spatial orientation of IEF. By analyzing the spatial swing of side chains using the Kolmogorov-Arnold representation and least squares algorithm, a comprehensive mathematical-physical model has been established. This model enables rapid evaluation of the IEF and maximum hole transport performance induced by spatial swings. The champion phthalocyanine as dopant-free hole transport material in perovskite solar cell realizes a record performance of 23.41 %. Greatly device stability is also exhibited. This work affords a new way to enhance hole transport capabilities of conjugated molecules by optimizing their IEF vector for photovoltaic devices.
Collapse
Affiliation(s)
- Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Zhen-Yang Suo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xukai Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Zefeng Yu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P.R. China
| |
Collapse
|
3
|
Mai S, Zhang W, Mu X, Cao J. Structural Decoration of Porphyrin/Phthalocyanine Photovoltaic Materials. CHEMSUSCHEM 2024; 17:e202400217. [PMID: 38494448 DOI: 10.1002/cssc.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Porphyrin/phthalocyanine compounds with fascinating molecular structures have attracted widespread attention in the field of solar cells in recent years. In this review, we focus on the pivotal role of porphyrin and phthalocyanine compounds in enhancing the efficiency of solar cells. The review seamlessly integrates the intricate molecular structures of porphyrins and phthalocyanines with their proficiency in absorbing visible light and facilitating electron transfer, key processes in converting sunlight into electricity. By delving into the nuances of intramolecular regulation, aggregated states, and surface/interface structure manipulation, it elucidates how various levels of molecular modifications enhance solar cell efficiency through improved charge transfer, stability, and overall performance. This comprehensive exploration provides a detailed understanding of the complex relationship between molecular design and solar cell performance, discussing current advancements and potential future applications of these molecules in solar energy technology.
Collapse
Affiliation(s)
- Sibei Mai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Weilun Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
4
|
Wang X, Wang M, Zhang Z, Wei D, Cai S, Li Y, Zhang R, Zhang L, Zhang R, Zhu C, Huang X, Gao F, Gao P, Wang Y, Huang W. De Novo Design of Spiro-Type Hole-Transporting Material: Anisotropic Regulation Toward Efficient and Stable Perovskite Solar Cells. RESEARCH (WASHINGTON, D.C.) 2024; 7:0332. [PMID: 38533182 PMCID: PMC10964223 DOI: 10.34133/research.0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
2,2',7,7'-Tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (Spiro-OMeTAD) represents the state-of-the-art hole-transporting material (HTM) in n-i-p perovskite solar cells (PSCs). However, its susceptibility to stability issues has been a long-standing concern. In this study, we embark on a comprehensive exploration of the untapped potential within the family of spiro-type HTMs using an innovative anisotropic regulation strategy. Diverging from conventional approaches that can only modify spirobifluorene with single functional group, this approach allows us to independently tailor the two orthogonal components of the spiro-skeleton at the molecular level. The newly designed HTM, SF-MPA-MCz, features enhanced thermal stability, precise energy level alignment, superior film morphology, and optimized interfacial properties when compared to Spiro-OMeTAD, which contribute to a remarkable power conversion efficiency (PCE) of 24.53% for PSCs employing SF-MPA-MCz with substantially improved thermal stability and operational stability. Note that the optimal concentration for SF-MPA-MCz solution is only 30 mg/ml, significantly lower than Spiro-OMeTAD (>70 mg/ml), which could remarkably reduce the cost especially for large-area processing in future commercialization. This work presents a promising avenue for the versatile design of multifunctional HTMs, offering a blueprint for achieving efficient and stable PSCs.
Collapse
Affiliation(s)
- Xuran Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Mingliang Wang
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute,
Chinese Academy of Sciences, Xiamen 361021, China
| | - Dong Wei
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Shidong Cai
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Yuheng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM),
Linköping University, Linköping, Sweden
| | - Liangliang Zhang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Ruidan Zhang
- College of Physics and Energy,
Fujian Normal University, Fuzhou, Fujian 350117, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xiaozhen Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM),
Linköping University, Linköping, Sweden
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter,
Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute,
Chinese Academy of Sciences, Xiamen 361021, China
| | - Yang Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE),
Northwestern Polytechnical University, Xi’an710072, China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM),
Nanjing Tech University (NanjingTech), Nanjing211800, China
| |
Collapse
|
5
|
Bui VKH, Nguyen TP. Advances in Hole Transport Materials for Layered Casting Solar Cells. Polymers (Basel) 2023; 15:4443. [PMID: 38006166 PMCID: PMC10675163 DOI: 10.3390/polym15224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Huge energy consumption and running out of fossil fuels has led to the advancement of renewable sources of power, including solar, wind, and tide. Among them, solar cells have been well developed with the significant achievement of silicon solar panels, which are popularly used as windows, rooftops, public lights, etc. In order to advance the application of solar cells, a flexible type is highly required, such as layered casting solar cells (LCSCs). Organic solar cells (OSCs), perovskite solar cells (PSCs), or dye-sensitive solar cells (DSSCs) are promising LCSCs for broadening the application of solar energy to many types of surfaces. LCSCs would be cost-effective, enable large-scale production, are highly efficient, and stable. Each layer of an LCSC is important for building the complete structure of a solar cell. Within the cell structure (active material, charge carrier transport layer, electrodes), hole transport layers (HTLs) play an important role in transporting holes to the anode. Recently, diverse HTLs from inorganic, organic, and organometallic materials have emerged to have a great impact on the stability, lifetime, and performance of OSC, PSC, or DSSC devices. This review summarizes the recent advances in the development of inorganic, organic, and organometallic HTLs for solar cells. Perspectives and challenges for HTL development and improvement are also highlighted.
Collapse
Affiliation(s)
- Vu Khac Hoang Bui
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea;
| | - Thang Phan Nguyen
- Department of Chemical and Biological Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Wang GE, Xiao GB, Li CP, Fu ZH, Cao J, Xu G. Directional Defect Management in Perovskites by In Situ Decom-position of Organic Metal Chalcogenides for Efficient Solar Cells. Angew Chem Int Ed Engl 2023:e202313833. [PMID: 37942505 DOI: 10.1002/anie.202313833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/24/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to "find" and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2 S and PbS. The resultant Cu2 S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs.
Collapse
Affiliation(s)
- Guan-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
| | - Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Cong-Ping Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Ganshu, 730000, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), 155 Yangqiao Road West, Fuzhou, Fujian, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| |
Collapse
|
7
|
Mu X, Liu Y, Xiao GB, Xu C, Gao X, Cao J. Porphyrin Supramolecule as Surface Carrier Modulator Imparts Hole Transporter with Enhanced Mobility for Perovskite Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202307152. [PMID: 37490622 DOI: 10.1002/anie.202307152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Modulating the surface charge transport behavior of hole transport materials (HTMs) would be as an potential approach to improve their hole mobility, while yet realized for fabricating efficient photovoltaic devices. Here, an oxygen bridged dimer-based monoamine FeIII porphyrin supramolecule is prepared and doped in HTM film. Theoretical analyses reveal that the polaron distributed on dimer can be coupled with the parallel arranged polarons on adjacent dimers. This polaron coupling at the interface of supramolecule and HTM can resonates with hole flux to increase hole transport efficiency. Mobility tests reveal that the hole mobility of doped HTM film is improved by 8-fold. Doped perovskite device exhibits an increased efficiency from 19.8 % to 23.2 %, and greatly improved stability. This work provides a new strategy to improve the mobility of HTMs by surface carrier modulation, therefore fabricating efficient photovoltaic devices.
Collapse
Affiliation(s)
- Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Yajun Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Guo-Bin Xiao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Chen Xu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Xingbang Gao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Tianshui South road 222, Lanzhou, Gansu, 73000, China
| |
Collapse
|
8
|
Qi L, Du G, Zhu G, Wang Y, Yang L, Zhang J. Enhanced Interface Compatibility by Ionic Dendritic Molecules To Achieve Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41109-41120. [PMID: 37590128 DOI: 10.1021/acsami.3c07539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Poly(3-hexylthiophene) (P3HT) represents a promising hole transport material for emerging perovskite solar cells (PSCs) due to its appealing merits of high thermal stability and appropriate hydrophobicity. Nonetheless, large energy losses at the P3HT/perovskite interface lead to unsatisfied efficiency and stability of the devices. Herein, two ionic dendritic molecules, 3,3'-(2,7-bis(3,6-bis(bis(4-methoxyphenyl)amino)-9H-carbazol-9-yl)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide and 3,3'-(2,7-bis(bis(4-(bis(4-methoxyphenyl)amino)phenyl)amino)-9H-fluorene-9,9-diyl)bis(N,N,N-trimethylpropan-1-aminium) iodide, namely, MPA-Cz-FAI and MPA-PA-FAI, are rationally designed as the interlayer to enhance interfacial compatibility. The dendritic backbone with conjugated structure endows the hole transport layer with high conductivity, derived from the more ordered microstructure with larger crystallization and higher connectivity of domain zones. Besides, a better energy level alignment is established between P3HT and perovskite, which enhances the charge extraction and transport yield. In addition, the peripheral methoxy groups enable effective defect passivation at the interface to suppress nonradiative recombination and the quaternary ammonium iodide serving as side chains enable efficient interfacial hole extraction contributing to enhanced charge collection yield. As a result, the dopant-free P3HT-based PSCs modified with MPA-Cz-PAI deliver a champion efficiency of 19.7%, significantly higher than that of the control devices (15.4%). More encouragingly, the unencapsulated devices demonstrate competitive environmental stability by retaining over 85% of its initial efficiency after 1500 h of storage under humid conditions (70% relative humidity). This work provides an effective molecular design strategy for interface engineering, envisaging a bright prospect for the further development of efficient and stable perovskite solar cells.
Collapse
Affiliation(s)
- Lianlian Qi
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Guozheng Du
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Guojie Zhu
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Yang Wang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
| | - Li Yang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jinbao Zhang
- College of Materials, Fujian Key Laboratory of Advanced Materials, Xiamen Key Laboratory of Electronic Ceramic Materials and Devices, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
9
|
Ke MR, Chen Z, Shi J, Wei Y, Liu H, Huang S, Li X, Zheng BY, Huang JD. A smart and visible way to switch the aromaticity of silicon(IV) phthalocyanines. Chem Commun (Camb) 2023; 59:9832-9835. [PMID: 37505224 DOI: 10.1039/d3cc02910g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Unlike traditional methods of modifying phthalocyanines (Pcs), we herein report a smart and visible way to switch the aromaticity of silicon(IV) phthalocyanines via a reversible nucleophilic addition reaction of the Pc skeleton induced by alkalis and acids, leading to an interesting allochroism phenomenon and the switching of photosensitive activities.
Collapse
Affiliation(s)
- Mei-Rong Ke
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Zixuan Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Jie Shi
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ying Wei
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Hao Liu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Shuping Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Xingshu Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Bi-Yuan Zheng
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Jian-Dong Huang
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
10
|
Khan D, Liu X, Qu G, Nath AR, Xie P, Xu ZX. Nexuses Between the Chemical Design and Performance of Small Molecule Dopant-Free Hole Transporting Materials in Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205926. [PMID: 36470653 DOI: 10.1002/smll.202205926] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Perovskite solar cells (PSCs) have grabbed much attention of researchers owing to their quick rise in power conversion efficiency (PCE). However, long-term stability remains a hurdle in commercialization, partly due to the inclusion of necessary hygroscopic dopants in hole transporting materials, enhancing the complexity and total cost. Generally, the efforts in designing dopant-free hole transporting materials (HTMs) are devoted toward small molecule and polymeric HTMs, where small molecule based HTMs (SM-HTMs) are dominant due to their reproducibility, facile synthesis, and low cost. Still, the state-of-art dopant-free SM-HTM has not been achieved yet, mainly because of the knowledge gap between device engineering and molecular designs. From a molecular engineering perspective, this article reviews dopant-free SM-HTMs for PSCs, outlining analyses of chemical structures with promising properties toward achieving effective, low-cost, and scalable materials for devices with higher stability. Finally, an outlook of dopant-free SM-HTMs toward commercial application and insight into the development of long-term stability PSCs devices is provided.
Collapse
Affiliation(s)
- Danish Khan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaoyuan Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Geping Qu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Amit Ranjan Nath
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Pengfei Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
11
|
Orbital Polarization-Dependent Fragment Twist-Induced Intramolecular Electric-Field-Driven Charge Transfer. Molecules 2023; 28:molecules28041801. [PMID: 36838789 PMCID: PMC9961529 DOI: 10.3390/molecules28041801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Defects, such as twisting, in fused aromatic hydrocarbons disrupt the plane of the π orbital. The twisted structure induces an electric field in the system and affects the spectra. In this work, theoretical studies show that the intramolecular electric field within a distinctly twisted structure is larger than that of other molecules. In addition, the spectral study shows that the degree of charge transfer and the magnetic transition dipole in the electrostatic potential extremum region of the molecular electric field were significantly improved, which affected the optical absorption and chiral optical behavior of the molecule. The discovery of this theoretical regulation law will provide a solid foundation for the electric-field-induced regulation of optical properties and will promote the precise design and synthesis of optoelectronic molecules with inner electric fields.
Collapse
|
12
|
Recent progress in perovskite solar cells: material science. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT. Nat Commun 2022; 13:7020. [DOI: 10.1038/s41467-022-34768-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractPoly (3-hexylthiophene) (P3HT) is one of the most attractive hole transport materials (HTMs) for the pursuit of stable, low-cost, and high-efficiency perovskite solar cells (PSCs). However, the poor contact and the severe recombination at P3HT/perovskite interface lead to a low power conversion efficiency (PCE). Thus, we construct a molecular bridge, 2-((7-(4-(bis(4-methoxyphenyl)amino)phenyl)−10-(2-(2-ethoxyethoxy)ethyl)−10H-phenoxazin-3-yl)methylene)malononitrile (MDN), whose malononitrile group can anchor the perovskite surface while the triphenylamine group can form π−π stacking with P3HT, to form a charge transport channel. In addition, MDN is also found effectively passivate the defects and reduce the recombination to a large extent. Finally, a PCE of 22.87% has been achieved with MDN-doped P3HT (M-P3HT) as HTM, much higher than the efficiency of PSCs with pristine P3HT. Furthermore, MDN gives the un-encapsulated device enhanced long-term stability that 92% of its initial efficiency maintain even after two months of aging at 75% relative humidity (RH) follow by one month of aging at 85% RH in the atmosphere, and the PCE does not change after operating at the maximum power point (MPP) under 1 sun illumination (~45 oC in N2) over 500 hours.
Collapse
|
14
|
Interface dipole at nickel oxide surface to enhance the photovoltage of perovskite solar cells. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Self-assembly of porphyrins on perovskite film for blade-coating stable large-area methylammonium-free solar cells. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Huang X, Deng G, Zhan S, Cao F, Cheng F, Yin J, Li J, Wu B, Zheng N. Solvent Gaming Chemistry to Control the Quality of Halide Perovskite Thin Films for Photovoltaics. ACS CENTRAL SCIENCE 2022; 8:1008-1016. [PMID: 35912345 PMCID: PMC9336153 DOI: 10.1021/acscentsci.2c00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 05/06/2023]
Abstract
Research on solvent chemistry, particularly for halide perovskite intermediates, has been advancing the development of perovskite solar cells (PSCs) toward commercial applications. A predictive understanding of solvent effects on the perovskite formation is thus essential. This work systematically discloses the relationship among the basicity of solvents, solvent-contained intermediate structures, and intermediate-to-perovskite α-FAPbI3 evolutions. Depending on their basicity, solvents exhibit their own favorite bonding selection with FA+ or Pb2+ cations by forming either hydrogen bonds or coordination bonds, resulting in two different kinds of intermediate structures. While both intermediates can be evolved into α-FAPbI3 below the δ-to-α thermodynamic temperature, the hydrogen-bond-favorable kind could form defect-less α-FAPbI3 via sidestepping the break of strong coordination bonds. The disclosed solvent gaming mechanism guides the solvent selection for fabricating high-quality perovskite films and thus high-performance PSCs and modules.
Collapse
Affiliation(s)
- Xiaofeng Huang
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Guocheng Deng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Shaoqi Zhan
- Department
of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Fang Cao
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Fangwen Cheng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| | - Jun Yin
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| | - Jing Li
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| | - Binghui Wu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| | - Nanfeng Zheng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, National &
Local Joint Engineering Research Center of Preparation Technology
of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung
Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation
Laboratory for Sciences and Technologies of Energy Materials of Fujian
Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
17
|
Cheng F, Cao F, Ru Fan F, Wu B. Promotion Strategies of Hole Transport Materials by Electronic and Steric Controls for n-i-p Perovskite Solar Cells. CHEMSUSCHEM 2022; 15:e202200340. [PMID: 35377527 DOI: 10.1002/cssc.202200340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Hole transport materials (HTMs) play a requisite role in n-i-p perovskite solar cells (PSCs). The properties of HTMs, such as hole extraction efficiency, chemical compatibility, film morphology, ion migration barrier, and so on, significantly affect PSCs' power conversion efficiencies (PCEs) and stabilities. Up till now, researchers have devoted much attention to developing new types of HTMs as well as promoting pristine HTMs using numerous strategies. In this Review, we summarize the design strategies of various common HTMs for n-i-p PSCs are comprehensively discussed from two separate aspects (additive and non-additive engineering). Additive engineering generally tunes electronic properties of HTMs while non-additive engineering basically modifies their steric structures. Critical analysis and comparison between these design strategies are provided, considering the overall PCEs and stabilities of PSCs. Finally, a brief perspective on future promising design strategies for HTMs is given, in order to fabricate efficient and stable n-i-p devices for the commercialization of PSCs.
Collapse
Affiliation(s)
- Fangwen Cheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Fang Cao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Feng Ru Fan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Binghui Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
18
|
Abstract
Perovskite solar cells (PSCs) have captured the attention of the global energy research community in recent years by showing an exponential augmentation in their performance and stability. The supremacy of the light-harvesting efficiency and wider band gap of perovskite sensitizers have led to these devices being compared with the most outstanding rival silicon-based solar cells. Nevertheless, there are some issues such as their poor lifetime stability, considerable J–V hysteresis, and the toxicity of the conventional constituent materials which restrict their prevalence in the marketplace. The poor stability of PSCs with regard to humidity, UV radiation, oxygen and heat especially limits their industrial application. This review focuses on the in-depth studies of different direct and indirect parameters of PSC device instability. The mechanism for device degradation for several parameters and the complementary materials showing promising results are systematically analyzed. The main objective of this work is to review the effectual strategies of enhancing the stability of PSCs. Several important factors such as material engineering, novel device structure design, hole-transporting materials (HTMs), electron-transporting materials (ETMs), electrode materials preparation, and encapsulation methods that need to be taken care of in order to improve the stability of PSCs are discussed extensively. Conclusively, this review discusses some opportunities for the commercialization of PSCs with high efficiency and stability.
Collapse
|
19
|
Wu S, Cao J. Perovskite modifiers with porphyrin/phthalocyanine complexes for efficient photovoltaics. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2079410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shuangtong Wu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, P. R. China
| |
Collapse
|
20
|
Study of Intermolecular Interaction between Small Molecules and Carbon Nanobelt: Electrostatic, Exchange, Dispersive and Inductive Forces. Catalysts 2022. [DOI: 10.3390/catal12050561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The conjugated structure of carbon is used in chemical sensing and small molecule catalysis because of its high charge transfer ability, and the interaction between carbon materials and small molecules is the main factor determining the performance of sensing and catalytic reactions. In this work, Reduced Density Gradient (RDG) and Symmetry-Adapted Perturbation Theory (SAPT) energy decomposition methods were used in combination to investigate the heterogeneity of catalytic substrates commonly used in energy chemistry with [6, 6] the carbon nanobelt ([6, 6] CNB, the interaction properties and mechanisms inside and outside the system). The results show that most of the attractive forces between dimers are provided by dispersive interactions, but electrostatic interactions cannot be ignored either. The total energy of the internal adsorption of [6, 6] CNB was significantly smaller than that of external adsorption, which led to the small molecules being more inclined to adsorb in the inner region of [6, 6] CNB. The dispersive interactions of small molecules adsorbed on [6, 6] CNB were also found to be very high. Furthermore, the dispersive interactions of the same small molecules adsorbed inside [6, 6] CNB were significantly stronger than those adsorbed outside. In [6, 6] CNB dimers, dispersion played a major role in the mutual attraction of molecules, accounting for 70% of the total attraction.
Collapse
|
21
|
Zhao J, Mu X, Wang L, Fang Z, Zou X, Cao J. Homogeneously Large Polarons in Aromatic Passivators Improves Charge Transport between Perovskite Grains for >24 % Efficiency in Photovoltaics. Angew Chem Int Ed Engl 2022; 61:e202116308. [DOI: 10.1002/anie.202116308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Jia‐Hui Zhao
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| | - Luyao Wang
- State School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Zihan Fang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 P.R. China
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P.R. China
| |
Collapse
|
22
|
Sun M, Shu J, Zhao C, Wu J, Guo H, Guo Y, Yin X, Lin Y, Tan Z, He M, Wang L. Interface Modification with CuCrO 2 Nanocrystals for Highly Efficient and Stable Planar Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13352-13360. [PMID: 35289163 DOI: 10.1021/acsami.2c00388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interfaces between the absorber and charge transport layers are shown to be critical for the performance of perovskite solar cells (PSCs). PSCs based on the Spiro-OMeTAD hole transport layers generally suffer from the problems of stability and reproducibility. Inorganic hole transport materials CuCrO2 have good chemical stability and high hole mobility. Herein, we reported the preparation of the delafossite-type CuCrO2 nanocrystals with a template-etching-calcination method and the incorporation of the as-obtained CuCrO2 nanocrystals at the perovskite/Spiro-OMeTAD interfaces of planar PSCs to improve the device efficiency and stability. Compared with the traditional hydrothermal method, the template-etching-calcination method used less calcination time to prepare CuCrO2 nanocrystals. After the CuCrO2 interface modification, the efficiency of PSCs improved from 18.08% to 20.66%. Additionally, the CuCrO2-modified PSCs showed good stability by retaining nearly 90% of the initial PCE after being stored in a drybox for 30 days. The template-etching-calcination strategy will pave a new approach for the synthesis of high-performance inorganic hole-transporting materials.
Collapse
Affiliation(s)
- Meili Sun
- State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Junfeng Shu
- State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Caixiang Zhao
- State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jinpeng Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haodan Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanjun Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Xiong Yin
- State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan'ao Tan
- State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Harmandar K, Küçük T, Atilla D, İbişoğlu H, Şenkuytu E, Ün ŞŞ. Zn(II) phthalocyanine-cyclotriphosphazene dyad: synthesis, characterization, photophysical, and photochemical properties. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kevser Harmandar
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Tuğba Küçük
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Devrim Atilla
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Hanife İbişoğlu
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Elif Şenkuytu
- Department of Chemistry, Atatürk University, Erzurum, Turkey
| | - Şule Şahin Ün
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
24
|
Hao M, Tan D, Chi W, Li ZS. A π-extended triphenylamine based dopant-free hole-transporting material for perovskite solar cells via heteroatom substitution. Phys Chem Chem Phys 2022; 24:4635-4643. [PMID: 35133365 DOI: 10.1039/d1cp05503h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The triphenylamine (TPA) group is an important molecular fragment that has been widely used to design efficient hole-transporting materials (HTMs). However, the applicability of triphenylamine derived HTMs that exhibit low hole mobility and conductivity in commercial perovskite solar cells (PSCs) has been limited. To aid in the development of highly desirable TPA-based HTMs, we utilized a combination of density functional theory (DFT) and Marcus electron transfer theory to investigate the effect of heteroatoms, including boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, germanium, arsenic, and selenium atoms, on the energy levels, optical properties, hole mobility, and interfacial charge transfer behaviors of a series of HTMs. Our computational results revealed that compared with the commonly referenced OMeTPA-TPA molecule, most heteroatoms lead to deeper energy levels. Furthermore, these heteroatom-based HTMs exhibit improved hole mobility due to their more rigid molecular structures. More significantly, these heteroatoms also enhance the interface interaction in perovskite/HTM systems, resulting in a larger internal electric field. Our work represents a new approach that aids in the understanding and designing of more efficient and better performing HTMs, which we hope can be used as a platform to propel the developmental commercialization of these highly desirable PSCs.
Collapse
Affiliation(s)
- Mengyao Hao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore
| | - Weijie Chi
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore.,Department of Chemistry, School of Science, Hainan University, Haikou, 570228, China.
| | - Ze-Sheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
25
|
Yao J, Kong J, Shi W, Lu C. The Insolubility Problem of Organic Hole-Transport Materials Solved by Solvothermal Technology: Toward Solution-Processable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7493-7503. [PMID: 35080369 DOI: 10.1021/acsami.1c24035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Generally, the high efficiency of solution-processable perovskite solar cells (PSCs) comes at the expense of using expensive organic matters as a hole-transport material (HTM). Although intense efforts have tried to use commercially available and low-cost macrocyclic molecules as HTM candidates, they still face two enormous challenges: poor solubility and inherent instability. Here, solvothermal treatment for old and insoluble HTMs (phthalocyanine (Pc) and its derivatives) has been proposed, which is unusual due to the occurrence of solubilization for insoluble precursors induced by the carbonization of the dissolved part. Since the macrocyclic structure still exists, the as-prepared new-type carbon dots not only retain the capacity of hole transfer but serve as an effective passivation additive. Synergy makes the all-air-processed carbon-based PSCs (CH3NH3PbI3) fabricated with carbon dots achieve a decent power conversion efficiency of 13.7%. Importantly, organics have undergone solvothermal treatment, completely breaking through the instability bottleneck, which exists in the long-term operation of PSCs. The universality of this methodology will usher exploration into other low-cost insoluble organics and drastically enhance the high-performance cost ratio of PSC equipment.
Collapse
Affiliation(s)
- Jian Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
26
|
Zhao JH, Mu X, Wang L, Fang Z, Zou X, Cao J. Homogeneously Large Polarons in Aromatic Passivators Improves Charge Transport Between Perovskite Grains for >24% Efficiency in Photovoltaics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia-Hui Zhao
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Xijiao Mu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Luyao Wang
- Shanghai Jiaotong University: Shanghai Jiao Tong University School of Materials Science and Engineering CHINA
| | - Zihan Fang
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | | | - Jing Cao
- Lanzhou University College of chemistry and chemical engineering Lanzhou CHINA
| |
Collapse
|
27
|
Besalú-Sala P, Solà M, Luis JM, Torrent-Sucarrat M. Fast and Simple Evaluation of the Catalysis and Selectivity Induced by External Electric Fields. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Josep M. Luis
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003 Girona, Catalonia, Spain
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) and Donostia International Physics Center (DIPC), P Manuel Lardizabal 3, E-20018 Donostia/San Sebastián, Euskadi, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
28
|
Fang Z, Wang L, Mu X, Chen B, Xiong Q, Wang WD, Ding J, Gao P, Wu Y, Cao J. Grain Boundary Engineering with Self-Assembled Porphyrin Supramolecules for Highly Efficient Large-Area Perovskite Photovoltaics. J Am Chem Soc 2021; 143:18989-18996. [PMID: 34665964 DOI: 10.1021/jacs.1c07518] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Grain boundary management is critical to the performance and stability of polycrystalline perovskite solar cells (PSCs), especially large-area devices. However, typical passivators are insulating in nature and limit carrier transport. Here, we design a supramolecular binder for grain boundaries to simultaneously passivate defects and promote hole transport across perovskite grain boundaries. By doping the monoamine porphyrins (MPs, M = Co, Ni, Cu, Zn, or H) into perovskite films, MPs self-assemble into supramolecules at grain boundaries. Organic cations in perovskites protonate MPs in supramolecules to form ammonium porphyrins bound on the perovskite grain surface, to passivate defects and extract holes from the perovskite lattice. Periodic polarons in supramolecules (especially NiP-supramolecule) promote the transport of extracted holes across boundaries, reducing nonradiative carrier recombination. The NiP-doped PSCs reveal a certified efficiency of 22.1% for an active area of 1.0 cm2 with the remarkably improved open-circuit voltage and fill factor. The unencapsulated device retained over 80% initial performance under AM 1.5G solar light continuous illumination or heating at 85 °C over 3000 h.
Collapse
Affiliation(s)
- Zihan Fang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Luyao Wang
- State School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Bin Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Qiu Xiong
- State Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jiaxin Ding
- Instrumental Analysis Centre, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Peng Gao
- State Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
29
|
Zhang F, Radacki K, Braunschweig H, Lambert C, Ravat P. Zinc‐[7]helicenocyanin und sein diskretes π‐gestapeltes homochirales Dimer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fangyuan Zhang
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Krzysztof Radacki
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Holger Braunschweig
- Institut für Anorganische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Christoph Lambert
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Prince Ravat
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
30
|
Gao H, Yu R, Ma Z, Gong Y, Zhao B, Lv Q, Tan Z. Recent advances of organometallic complexes in emerging photovoltaics. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huaizhi Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Biao Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Qianglong Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China
| |
Collapse
|
31
|
Cai C, Yao J, Chen L, Yuan Z, Zhang Z, Hu Y, Zhao X, Zhang Y, Chen Y, Li Y. Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunsheng Cai
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Jia Yao
- State Key Laboratory of Organic/Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Zhongyi Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Zhi‐Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Xiaohong Zhao
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Youdi Zhang
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry Nanchang University 999 Xuefu Avenue Nanchang 330031 China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
32
|
Ravat P, Zhang F, Radacki K, Braunschweig H, Lambert C. Zinc-[7]helicenocyanine and Its Discrete π-Stacked Homochiral Dimer. Angew Chem Int Ed Engl 2021; 60:23656-23660. [PMID: 34403564 PMCID: PMC8597050 DOI: 10.1002/anie.202109380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/11/2021] [Indexed: 11/24/2022]
Abstract
In this communication, we demonstrate a novel approach to prepare a discrete dimer of chiral phthalocyanine (Pc) by exploiting the flexible molecular geometry of helicenes, which enables structural interlocking and strong aggregation tendency of Pcs. Synthesized [7]helicene‐Pc hybrid molecular structure, zinc‐[7]helicenocyanine (Zn‐7HPc), exclusively forms a stable dimeric pair consisting of two homochiral molecules. The dimerization constants were estimated to be as high as 8.96×106 M−1 and 3.42×107 M−1 in THF and DMSO, respectively, indicating remarkable stability of dimer. In addition, Zn‐7HPc exhibited chiral self‐sorting behavior, which resulted in preferential formation of a homochiral dimer also in the racemic sample. Two phthalocyanine subunits in the dimeric form strongly communicate with each other as revealed by a large comproportionation constant and observation of an IV‐CT band for the thermodynamically stable mixed‐valence state.
Collapse
Affiliation(s)
- Prince Ravat
- University of Würzburg, Institute of Organic Chemistry, Am Hubland, 97074, Würzburg, GERMANY
| | - Fangyuan Zhang
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institut für Organische Chemie, GERMANY
| | - Krzysztof Radacki
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institut für Anorganische Chemie, GERMANY
| | - Holger Braunschweig
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institut für Anorganische Chemie, GERMANY
| | - Christoph Lambert
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg, Institut für Organische Chemie, GERMANY
| |
Collapse
|
33
|
Shayeganfar F, Shahsavari R. Deep Learning Method to Accelerate Discovery of Hybrid Polymer-Graphene Composites. Sci Rep 2021; 11:15111. [PMID: 34301976 PMCID: PMC8302643 DOI: 10.1038/s41598-021-94085-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Interfacial encoded properties of polymer adlayers adsorbed on the graphene (GE) and silicon dioxide (SiO2) have been constituted a scaffold for the creation of new materials. The holistic understanding of nanoscale intermolecular interaction of 1D/2D polymer assemblies on substrate is the key to bottom-up design of molecular devices. We develop an integrated multidisciplinary approach based on electronic structure computation [density functional theory (DFT)] and big data mining [machine learning (ML)] in parallel with neural network (NN) and statistical analysis (SA) to design hybrid polymers from assembly on substrate. Here we demonstrate that interfacial pressure and structural deformation of polymer network adsorbed on GE and SiO2 offer unique directions for the fabrication of 1D/2D polymers using only a small number of simple molecular building blocks. Our findings serve as the platform for designing a wide range of typical inorganic heterostructures, involving noncovalent intermolecular interaction observed in many nanoscale electronic devices.
Collapse
Affiliation(s)
- Farzaneh Shayeganfar
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA.
- Department of Physics and Energy Engineering, Amirkabir University of Technology, 15916-3967, Tehran, Iran.
| | | |
Collapse
|
34
|
Cai C, Yao J, Chen L, Yuan Z, Zhang ZG, Hu Y, Zhao X, Zhang Y, Chen Y, Li Y. Silicon Naphthalocyanine Tetraimides: Cathode Interlayer Materials for Highly Efficient Organic Solar Cells. Angew Chem Int Ed Engl 2021; 60:19053-19057. [PMID: 34160863 DOI: 10.1002/anie.202106364] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/20/2021] [Indexed: 11/10/2022]
Abstract
Naphthalocyanine derivatives (SiNcTI-N and SiNcTI-Br) were firstly used as excellent cathode interlayer materials (CIMs) in organic solar cells, via introducing four electron-withdrawing imide groups and two hydrophilic alkyls. Both of them showed deep LUMO energy levels (below -3.90 eV), good thermal stability (Td >210 °C), and strong self-doping property. The SiNcTI-Br CIM displayed high conductivity (4.5×10-5 S cm-1 ) and electron mobility (7.81×10-5 cm2 V-1 s-1 ), which could boost the efficiencies of the PM6:Y6-based OSCs over a wide range of CIM layer thicknesses (4-25 nm), with maximum efficiency of 16.71 %.
Collapse
Affiliation(s)
- Chunsheng Cai
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yao
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhongyi Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Hu
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiaohong Zhao
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Youdi Zhang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yongfang Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
35
|
Cao J, Ma D, Yu SH. Future directions of material chemistry and energy chemistry. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Energy is an important substantial foundation for the survival and development of humans. However, the over-consumption of resources and environmental pollution have become more prominent. The key factors for solving energy problems are to increase energy utilization efficiency and optimize energy structure. The development of new materials is the research emphasis in the field of material chemistry all the time. For instance, developing new light-capture materials and catalysts to improve the efficiency of existing photovoltaic cells is one of the most effective approaches to increasing solar power capacity radically. The design of high-performance catalytic materials to make better use of energy from fossil fuels and biomass. In addition, it is an important research direction of material chemistry and energy chemistry to deeply understand the reaction mechanism of energy conversion.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province , College of Chemistry and Chemical Engineering, Lanzhou University , Lanzhou 730000 , P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences , College of Chemistry and Molecular Engineering and College of Engineering, and BIC-ESAT, Peking University , Beijing 100871 , P. R. China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry , University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
36
|
Chen R, Wang Y, Nie S, Shen H, Hui Y, Peng J, Wu B, Yin J, Li J, Zheng N. Sulfonate-Assisted Surface Iodide Management for High-Performance Perovskite Solar Cells and Modules. J Am Chem Soc 2021; 143:10624-10632. [PMID: 34236187 DOI: 10.1021/jacs.1c03419] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Owing to the ionic nature of lead halide perovskites, their halide-terminated surface is unstable under light-, thermal-, moisture-, or electric-field-driven stresses, resulting in the formation of unfavorable surface defects. As a result, nonradiative recombination generally occurs on perovskite films and deteriorates the efficiency, stability, and hysteresis performances of perovskite solar cells (PSCs). Here, a surface iodide management strategy was developed through the use of cesium sulfonate to stabilize the perovskite surface. It was found that the pristine surface of common perovskite was terminated with extra iodide, that is, with an I-/Pb2+ ratio larger than 3, explaining the origination of surface-related problems. Through post-treatment of perovskite films by cesium sulfonate, the extra iodide on the surface was facilely removed and the as-exposed Pb2+ cations were chelated with sulfonate anions while maintaining the original 3D perovskite structure. Such iodide replacement and lead chelating coordination on perovskite could reduce the commonly existing surface defects and nonradiative recombination, enabling assembled PSCs with an efficiency of 22.06% in 0.12 cm2 cells and 18.1% in 36 cm2 modules with high stability.
Collapse
Affiliation(s)
- Ruihao Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongke Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Siqing Nie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yong Hui
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian Peng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binghui Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Yin
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Li
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nanfeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, OSED, Jiujiang Research Institute, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
37
|
Liu Z, Zhang B, Huang Y, Song Y, Dong N, Wang J, Chen Y. Ether-linked porphyrin covalent organic framework with broadband optical switch. iScience 2021; 24:102526. [PMID: 34142038 PMCID: PMC8188477 DOI: 10.1016/j.isci.2021.102526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/10/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
It is still a challenge to design and synthesize novel switchable optical materials with ultrafast nonlinear optical (NLO) response in a broad spectral range. These materials have exhibited great application potential in many high-technology fields such as biological imaging, chemical sensors, optical data storage, laser protection, and controllable intelligent and optoelectronic devices. By using porphyrins with highly delocalized 18 π-electron conjugated system as functional building blocks, the first ether-linked porphyrin covalent organic framework materials (COF-Pors) with highly ordered lattice structure have been successfully synthesized. In contrast to the starting porphyrins that only exhibit reverse saturable absorption (RSA) response at 532 nm, the as-prepared COF-Pors shows large NLO effect in a broad range from visible to near infrared. Upon laser illumination, COF-Pors exhibits typical saturable absorption (SA) effect at lower incident laser energy, and RSA response at higher pulse energy. The first ether-linked porphyrin covalent organic framework (COF-Pors) was synthesized. COF-Pors exhibits reversible intensity-dependent SA to RSA transition in DMF dispersions. COF-Pors shows an NLO switching effect in a broad range from visible to near infrared. COF-Pors exhibits SA at lower pulse energy and RSA at higher pulse energy.
Collapse
Affiliation(s)
- Zhiwei Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuelin Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi Song
- Department of Light Industry and Chemical Engineering, Guizhou Light Industry Technical College, 3 Dongqing Road, Huaxi University Town, Guiyang 550025, China
| | - Ningning Dong
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, China.,State Department Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Wang
- Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, CAS, Shanghai 201800, China.,State Department Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|