1
|
Zhang H, Guo L, Su Y, Wang R, Yang W, Mu W, Xuan L, Huang L, Wang J, Gao W. Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. Crit Rev Biotechnol 2024; 44:1121-1139. [PMID: 37574211 DOI: 10.1080/07388551.2023.2236787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 08/15/2023]
Abstract
Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.
Collapse
Affiliation(s)
- Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Yaowu Su
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Rubing Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenqi Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenrong Mu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Liangshuang Xuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
2
|
Ren H, Huang C, Pan Y, Dommaraju SR, Cui H, Li M, Gadgil MG, Mitchell DA, Zhao H. Non-modular fatty acid synthases yield distinct N-terminal acylation in ribosomal peptides. Nat Chem 2024; 16:1320-1329. [PMID: 38528101 PMCID: PMC11321927 DOI: 10.1038/s41557-024-01491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/27/2024] [Indexed: 03/27/2024]
Abstract
Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries. However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machinery from other natural product families. Here we report lipoavitides, a class of RiPP/fatty-acid hybrid lipopeptides that display a unique, putatively membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N terminus. The HMP is formed via condensation of isobutyryl-coenzyme A (isobutyryl-CoA) and methylmalonyl-CoA catalysed by a 3-ketoacyl-(acyl carrier protein) synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty-acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.
Collapse
Affiliation(s)
- Hengqian Ren
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chunshuai Huang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yuwei Pan
- Department of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Shravan R Dommaraju
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Haiyang Cui
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maolin Li
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mayuresh G Gadgil
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Wu S, Zhou H, Chen D, Lu Y, Li Y, Qiao J. Multi-omic analysis tools for microbial metabolites prediction. Brief Bioinform 2024; 25:bbae264. [PMID: 38859767 PMCID: PMC11165163 DOI: 10.1093/bib/bbae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
How to resolve the metabolic dark matter of microorganisms has long been a challenging problem in discovering active molecules. Diverse omics tools have been developed to guide the discovery and characterization of various microbial metabolites, which make it gradually possible to predict the overall metabolites for individual strains. The combinations of multi-omic analysis tools effectively compensates for the shortcomings of current studies that focus only on single omics or a broad class of metabolites. In this review, we systematically update, categorize and sort out different analysis tools for microbial metabolites prediction in the last five years to appeal for the multi-omic combination on the understanding of the metabolic nature of microbes. First, we provide the general survey on different updated prediction databases, webservers, or software that based on genomics, transcriptomics, proteomics, and metabolomics, respectively. Then, we discuss the essentiality on the integration of multi-omics data to predict metabolites of different microbial strains and communities, as well as stressing the combination of other techniques, such as systems biology methods and data-driven algorithms. Finally, we identify key challenges and trends in developing multi-omic analysis tools for more comprehensive prediction on diverse microbial metabolites that contribute to human health and disease treatment.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Haonan Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yutong Lu
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Tong Z, Xie X, Ge H, Jiao R, Wang T, Wang X, Zhuang W, Hu G, Tan R. Disulfide bridge-targeted metabolome mining unravels an antiparkinsonian peptide. Acta Pharm Sin B 2024; 14:881-892. [PMID: 38322339 PMCID: PMC10840396 DOI: 10.1016/j.apsb.2023.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 02/08/2024] Open
Abstract
Peptides are a particular molecule class with inherent attributes of some small-molecule drugs and macromolecular biologics, thereby inspiring continuous searches for peptides with therapeutic and/or agrochemical potentials. However, the success rate is decreasing, presumably because many interesting but less-abundant peptides are so scarce or labile that they are likely 'overlooked' during the characterization effort. Here, we present the biochemical characterization and druggability improvement of an unprecedented minor fungal RiPP (ribosomally synthesized and post-translationally modified peptide), named acalitide, by taking the relevant advantages of metabolomics approach and disulfide-bridged substructure which is more frequently imprinted in the marketed peptide drug molecules. Acalitide is biosynthetically unique in the macrotricyclization via two disulfide bridges and a protease (AcaB)-catalyzed lactamization of AcaA, an unprecedented precursor peptide. Such a biosynthetic logic was successfully re-edited for its sample supply renewal to facilitate the identification of the in vitro and in vivo antiparkinsonian efficacy of acalitide which was further confirmed safe and rendered brain-targetable by the liposome encapsulation strategy. Taken together, the work updates the mining strategy and biosynthetic complexity of RiPPs to unravel an antiparkinsonian drug candidate valuable for combating Parkinson's disease that is globally prevailing in an alarming manner.
Collapse
Affiliation(s)
- Zhiwu Tong
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiahong Xie
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huiming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tingting Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xincun Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenying Zhuang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Hu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Renxiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
5
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-guided discovery of biaryl-linked lasso peptides. Chem Sci 2023; 14:13176-13183. [PMID: 38023510 PMCID: PMC10664482 DOI: 10.1039/d3sc02380j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Using mass spectrometry, stable isotope incorporation, and extensive 2D-NMR spectrometry, we report the structural characterization of two unique examples of (C-N) biaryl-linked lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with a Trp-Tyr crosslink, while longipepetin A, from Longimycelium tulufanense, features a Trp-Trp linkage. Besides the unusual bicyclic frame, a Met of longipepetin A undergoes S-methylation to yield a trivalent sulfonium, a heretofore unprecedented RiPP modification. A bioinformatic survey revealed additional lasso peptide BGCs containing P450 enzymes which await future characterization. Lastly, nocapeptin A bioactivity was assessed against a panel of human and bacterial cell lines with modest growth-suppression activity detected towards Micrococcus luteus.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Dinh T Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| | - Douglas A Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| |
Collapse
|
6
|
Ren H, Huang C, Pan Y, Cui H, Dommaraju SR, Mitchell DA, Zhao H. Non-modular Fatty Acid Synthases Yield Unique Acylation in Ribosomal Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564083. [PMID: 37961664 PMCID: PMC10634828 DOI: 10.1101/2023.10.25.564083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent efforts in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs) have expanded the diversity of post-translational modification chemistries 1, 2 . However, RiPPs are rarely reported as hybrid molecules incorporating biosynthetic machineries from other natural product families 3-8 . Here, we report lipoavitides, a class of RiPP/fatty acid hybrid lipopeptides that display a unique, membrane-targeting 4-hydroxy-2,4-dimethylpentanoyl (HMP)-modified N -terminus. The HMP is formed via condensation of isobutyryl-CoA and methylmalonyl-CoA catalyzed by a 3-ketoacyl-ACP synthase III enzyme, followed by successive tailoring reactions in the fatty acid biosynthetic pathway. The HMP and RiPP substructures are then connected by an acyltransferase exhibiting promiscuous activity towards the fatty acyl and RiPP substrates. Overall, the discovery of lipoavitides contributes a prototype of RiPP/fatty acid hybrids and provides possible enzymatic tools for lipopeptide bioengineering.
Collapse
|
7
|
Zhong G. Cytochromes P450 Associated with the Biosyntheses of Ribosomally Synthesized and Post-translationally Modified Peptides. ACS BIO & MED CHEM AU 2023; 3:371-388. [PMID: 37876494 PMCID: PMC10591300 DOI: 10.1021/acsbiomedchemau.3c00026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 10/26/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a class of exponentially increased natural products with characteristic chemical structures, topologies, and biosynthetic mechanisms as well as exceptional bioactivities including antibacteria, antitumors, and antiviruses. The biosynthesis of RiPP proceeds via a ribosomally assembled precursor peptide that undergoes varied post-translational modifications to generate a mature peptide. Cytochrome P450 (CYP or P450) monooxygenases are a superfamily of heme-containing enzymes that span a wide range of secondary metabolite biosynthetic pathways due to their broad substrate scopes and excellent catalytic versatility. In contrast to the enormous quantities of RiPPs and P450s, the P450 associated RiPP biosynthesis is comparatively limited, with most of their functions and timings remaining mysterious. Herein, this Review aims to provide an overview on the striking roles of P450s in RiPP biosyntheses uncovered to date and to illustrate their remarkable functions, mechanisms, as well as remaining challenges. This will shed light on novel P450 discovery and characterizations in RiPP biosyntheses.
Collapse
Affiliation(s)
- Guannan Zhong
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Suzhou
Research Institute of Shandong University, Suzhou 215123, China
| |
Collapse
|
8
|
Lopatniuk M, Riedel F, Wildfeuer J, Stierhof M, Dahlem C, Kiemer AK, Luzhetskyy A. Development of a Streptomyces-based system for facile thioholgamide library generation and analysis. Metab Eng 2023; 78:48-60. [PMID: 37142115 DOI: 10.1016/j.ymben.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023]
Abstract
Derivatizing natural products (NPs) is essential in structure-activity relationship (SAR) studies, compound optimization, and drug development. Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent one of the major classes of natural products. Thioholgamide represents thioamitide - a recently emerged family of RiPPs with unique structures and great potential in anticancer drug development. Although the method for generating the RiPP library by codon substitutions in the precursor peptide gene is straightforward, the techniques to perform RiPP derivatization in Actinobacteria remain limited and time-consuming. Here, we report a facile system for producing a library of randomized thioholgamide derivatives utilizing an optimized Streptomyces host. This technique enabled us to access all possible amino acid substitutions of the thioholgamide molecule, one position at a time. Out of 152 potential derivatives, 85 were successfully detected, revealing the impact of amino acid substitutions on thioholgamide post-translational modifications (PTMs). Moreover, new PTMs were observed among thioholgamide derivatives: thiazoline heterocycles, which have not yet been reported for thioamitides, and S-methylmethionine, which is very rare in nature. The obtained library was subsequently used for thioholgamide SAR studies and stability assays.
Collapse
Affiliation(s)
- Maria Lopatniuk
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Florian Riedel
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Julia Wildfeuer
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany; Department of Pharmacy, Pharmaceutical Biology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Marc Stierhof
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Charlotte Dahlem
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany.
| |
Collapse
|
9
|
Ijichi S, Hoshino S, Asamizu S, Onaka H. SolS-catalyzed sulfoxidation of labionin to solabionin drives antibacterial activity of solabiomycins. Bioorg Med Chem Lett 2023; 89:129323. [PMID: 37169227 DOI: 10.1016/j.bmcl.2023.129323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/13/2023]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are newly found lipopeptide-class natural products. We recently employed a combined approach of genome mining and stable isotope labeling and discovered solabiomycins as one of the polar-functionalized fatty-acylated RiPPs (PFARs) from Streptomyces lydicus NBRC13058. The solabiomycins contained a characteristic sulfoxide group in the labionin moiety referred to as the 'solabionin' structure for the RiPP moiety. A previous gene knockout experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of an alkyl sulfide in the solabionin. In this study, we isolated deoxysolabiomycins A and B from ΔsolS mutant and fully determined the chemical structures using a series of NMR experiments. We also tested the bioactivity of deoxysolabiomycins against Gram-positive bacteria, including Mycolicibacterium smegmatis, and notably found that the sulfoxide is critical for the antibacterial activity. To characterize the catalytic activity of SolS, the recombinant protein was incubated with a putative substrate, deoxysolabiomycins, and the cofactors FAD and NADPH. In vitro reactions demonstrated that SolS catalyzes the sulfoxidation, converting deoxysolabiomycins to solabiomycins.
Collapse
Affiliation(s)
- Shinta Ijichi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan
| | - Shotaro Hoshino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan
| | - Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
10
|
Vagstad AL. Engineering ribosomally synthesized and posttranslationally modified peptides as new antibiotics. Curr Opin Biotechnol 2023; 80:102891. [PMID: 36702077 DOI: 10.1016/j.copbio.2023.102891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
The rise of antimicrobial resistance is an urgent public health threat demanding the invention of new drugs to combat infections. Naturally sourced nonribosomal peptides (NRPs) have a long history as antimicrobial drugs. Through recent advances in genome mining and engineering technologies, their ribosomally synthesized and posttranslationally modified peptide (RiPP) counterparts are poised to further contribute to the arsenal of anti-infectives. As natural products from diverse organisms involved in interspecies competition, many RiPPs already possess antimicrobial activities that can be further optimized as drug candidates. Owing to the mutability of precursor protein genes that encode their core structures and the availability of diverse posttranslational modification (PTM) enzymes with broad substrate tolerances, RiPP systems are well suited to engineer complex peptides with desired functions.
Collapse
Affiliation(s)
- Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.
| |
Collapse
|
11
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-Guided Discovery of Biaryl-Tailored Lasso Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531328. [PMID: 36945544 PMCID: PMC10028836 DOI: 10.1101/2023.03.06.531328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Here, we report the structural characterization of two unique examples of (C-N) biaryl-containing lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with Trp-Tyr crosslink while longipepetin A, from Longimycelium tulufanense, features Trp-Trp linkage. Besides the unusual bicyclic frame, longipepetin A receives an S-methylation by a new Met methyltransferase resulting in unprecedented sulfonium-bearing RiPP. Our bioinformatic survey revealed P450(s) and further maturating enzyme(s)-containing lasso BGCs awaiting future characterization.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| | - Dinh T. Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen (Germany)
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen (Germany)
| | - Douglas A. Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801 (United States)
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen (Germany)
| |
Collapse
|
12
|
Mordhorst S, Ruijne F, Vagstad AL, Kuipers OP, Piel J. Emulating nonribosomal peptides with ribosomal biosynthetic strategies. RSC Chem Biol 2023; 4:7-36. [PMID: 36685251 PMCID: PMC9811515 DOI: 10.1039/d2cb00169a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide natural products are important lead structures for human drugs and many nonribosomal peptides possess antibiotic activity. This makes them interesting targets for engineering approaches to generate peptide analogues with, for example, increased bioactivities. Nonribosomal peptides are produced by huge mega-enzyme complexes in an assembly-line like manner, and hence, these biosynthetic pathways are challenging to engineer. In the past decade, more and more structural features thought to be unique to nonribosomal peptides were found in ribosomally synthesised and posttranslationally modified peptides as well. These streamlined ribosomal pathways with modifying enzymes that are often promiscuous and with gene-encoded precursor proteins that can be modified easily, offer several advantages to produce designer peptides. This review aims to provide an overview of recent progress in this emerging research area by comparing structural features common to both nonribosomal and ribosomally synthesised and posttranslationally modified peptides in the first part and highlighting synthetic biology strategies for emulating nonribosomal peptides by ribosomal pathway engineering in the second part.
Collapse
Affiliation(s)
- Silja Mordhorst
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Fleur Ruijne
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Nijenborgh 7, 9747 AG Groningen The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4 8093 Zürich Switzerland
| |
Collapse
|
13
|
He B, Cheng Z, Zhong Z, Gao Y, Liu H, Li Y. Expanded Sequence Space of Radical S‐Adenosylmethionine‐Dependent Enzymes Involved in Post‐translational Macrocyclization**. Angew Chem Int Ed Engl 2022; 61:e202212447. [DOI: 10.1002/anie.202212447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Bei‐Bei He
- Department of Chemistry and The Swire Institute of Marine Science The University of Hong Kong Pokfulam Road Hong Kong China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| | - Zhuo Cheng
- Department of Chemistry and The Swire Institute of Marine Science The University of Hong Kong Pokfulam Road Hong Kong China
| | - Zheng Zhong
- Department of Chemistry and The Swire Institute of Marine Science The University of Hong Kong Pokfulam Road Hong Kong China
| | - Ying Gao
- Department of Chemistry and The Swire Institute of Marine Science The University of Hong Kong Pokfulam Road Hong Kong China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| | - Hongyan Liu
- Department of Chemistry and The Swire Institute of Marine Science The University of Hong Kong Pokfulam Road Hong Kong China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| | - Yong‐Xin Li
- Department of Chemistry and The Swire Institute of Marine Science The University of Hong Kong Pokfulam Road Hong Kong China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) Guangzhou China
| |
Collapse
|
14
|
Shelton KE, Mitchell DA. Bioinformatic prediction and experimental validation of RiPP recognition elements. Methods Enzymol 2022; 679:191-233. [PMID: 36682862 PMCID: PMC9871372 DOI: 10.1016/bs.mie.2022.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products for which discovery efforts have rapidly grown over the past decade. There are currently 38 known RiPP classes encoded by prokaryotes. Half of the prokaryotic RiPP classes include a protein domain called the RiPP Recognition Element (RRE) for successful installation of post-translational modifications on a RiPP precursor peptide. In most cases, the RRE domain binds to the N-terminal "leader" region of the precursor peptide, facilitating enzymatic modification of the C-terminal "core" region. The prevalence of the RRE domain renders it a theoretically useful bioinformatic handle for class-independent RiPP discovery; however, first-in-class RiPPs have yet to be isolated and experimentally characterized using an RRE-centric strategy. Moreover, with most known RRE domains engaging their cognate precursor peptide(s) with high specificity and nanomolar affinity, evaluation of the residue-specific interactions that govern RRE:substrate complexation is a necessary first step to leveraging the RRE domain for various bioengineering applications. This chapter details protocols for developing custom bioinformatic models to predict and annotate RRE domains in a class-specific manner. Next, we outline methods for experimental validation of precursor peptide binding using fluorescence polarization binding assays and in vitro enzyme activity assays. We anticipate the methods herein will guide and enhance future critical analyses of the RRE domain, eventually enabling its future use as a customizable tool for molecular biology.
Collapse
Affiliation(s)
- Kyle E Shelton
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Douglas A Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
15
|
Huang S, Wang Y, Cai C, Xiao X, Liu S, Ma Y, Xie X, Liang Y, Chen H, Zhu J, Hegemann JD, Yao H, Wei W, Wang H. Discovery of a Unique Structural Motif in Lanthipeptide Synthetases for Substrate Binding and Interdomain Interactions. Angew Chem Int Ed Engl 2022; 61:e202211382. [PMID: 36102578 PMCID: PMC9828337 DOI: 10.1002/anie.202211382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 01/12/2023]
Abstract
Class III lanthipeptide synthetases catalyze the formation of lanthionine/methyllanthionine and labionin crosslinks. We present here the 2.40 Å resolution structure of the kinase domain of a class III lanthipeptide synthetase CurKC from the biosynthesis of curvopeptin. A unique structural subunit for leader binding, named leader recognition domain (LRD), was identified. The LRD of CurKC is responsible for the recognition of the leader peptide and for mediating interactions between the lyase and kinase domains. LRDs are highly conserved among the kinase domains of class III and class IV lanthipeptide synthetases. The discovery of LRDs provides insight into the substrate recognition and domain organization in multidomain lanthipeptide synthetases.
Collapse
Affiliation(s)
- Shanqing Huang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Ying Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Chuangxu Cai
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Xiuyun Xiao
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Shulei Liu
- Institute of Molecular EnzymologySchool of Biology and Basic Medical SciencesSoochow UniversitySuzhou215123China
| | - Yeying Ma
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Xiangqian Xie
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Yong Liang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Hao Chen
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| | - Jiapeng Zhu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI)Saarland University Campus66123SaarbrückenGermany
| | - Julian D. Hegemann
- School of Medicine and Life SciencesState Key Laboratory Cultivation Base for TCM Quality and EfficacyJiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Hongwei Yao
- Institute of Molecular EnzymologySchool of Biology and Basic Medical SciencesSoochow UniversitySuzhou215123China
| | - Wanqing Wei
- State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxi214122P. R. China
| | - Huan Wang
- State Key Laboratory of Coordination ChemistryChemistry and Biomedicine Innovation Center of Nanjing UniversityJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringNanjing UniversityNo. 163 Xianlin AveNanjing210093China
| |
Collapse
|
16
|
Asamizu S, Ijichi S, Hoshino S, Jo H, Takahashi H, Itoh Y, Matsumoto S, Onaka H. Stable Isotope-Guided Metabolomics Reveals Polar-Functionalized Fatty-Acylated RiPPs from Streptomyces. ACS Chem Biol 2022; 17:2936-2944. [PMID: 36112882 DOI: 10.1021/acschembio.2c00601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are a rarely found untapped class of natural products. Although polar-functionalized fatty-acylated RiPPs (PFARs) have potential as antimicrobial agents, the repertoire is still limited. Therefore, expanding the chemical space is expected to contribute to the development of pharmaceutical agents. In this study, we performed genome mining and stable isotope-guided comparative metabolomics to discover new PFAR natural products. We focused on the feature that PFARs incorporate l-arginine or l-lysine as the starter unit of the fatty acyl group and fed 13C6,15N4-l-arginine or 13C6,15N2-l-lysine to bacterial cultures. Metabolites were extracted and compared with those extracted from nonlabeled l-arginine or l-lysine fed cultures. We identified putative PFARs and successfully isolated solabiomycin A and B from Streptomyces lydicus NBRC 13 058 and albopeptin B from Streptomyces nigrescens HEK616, which contained a sulfoxide group in the labionin moiety. The gene disruption experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of aryl sulfides. The solabiomycins showed antibacterial activity against Gram-positive bacteria, including Mycobacterium tuberculosis H37Rv with a minimum 95% inhibitory concentration (MIC95) of 3.125 μg/mL, suggesting their potential as antituberculosis agents.
Collapse
Affiliation(s)
- Shumpei Asamizu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shinta Ijichi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shotaro Hoshino
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hansaem Jo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hidenori Takahashi
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Yuko Itoh
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-9510, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, 1-757 Asahimachi-Dori, Chuo-ku, Niigata 951-9510, Japan.,Laboratory of Tuberculosis, Institute of Tropical Disease, Universitas Airlangga, Kampus C Jl., Mulyorejo, Surabaya 60115, Indonesia
| | - Hiroyasu Onaka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
17
|
Lee SR, Seyedsayamdost MR. Induction of Diverse Cryptic Fungal Metabolites by Steroids and Channel Blockers. Angew Chem Int Ed Engl 2022; 61:e202204519. [PMID: 35509119 PMCID: PMC9276648 DOI: 10.1002/anie.202204519] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 07/20/2023]
Abstract
Fungi offer a deep source of natural products but remain underutilized. Most biosynthetic gene clusters (BGCs) that can be detected are silent or "cryptic" in standard lab cultures and their products are thus not interrogated in routine screens. As genetic alterations are difficult and some strains can only be grown on agar, we have herein applied an agar-based high-throughput chemical genetic screen to identify inducers of fungal BGCs. Using R. solani and S. sclerotiorum as test cases, we report 13 cryptic metabolites in four compound groups, including sclerocyclane, a natural product with a novel scaffold. Steroids were the best elicitors and follow-up studies showed that plant-steroids trigger sclerocyclane synthesis, which shows antibiotic activity against B. plantarii, an ecological competitor of S. sclerotiorum. Our results open new paths to exploring the chemical ecology of fungal-plant interactions and provide a genetics-free approach for uncovering cryptic fungal metabolites.
Collapse
Affiliation(s)
- Seoung Rak Lee
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544 (USA)
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 (USA)
| |
Collapse
|
18
|
Hara Y, Watanabe K, Takaya A, Manome T, Yaguchi T, Ishibashi M. Two Bioactive Compounds, Uniformides A and B, Isolated from a Culture of Nocardia uniformis IFM0856 T in the Presence of Animal Cells. Org Lett 2022; 24:4998-5002. [DOI: 10.1021/acs.orglett.2c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasumasa Hara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keiichiro Watanabe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Akiko Takaya
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Teruhisa Manome
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
19
|
Lee SR, Seyedsayamdost MR. Induction of Diverse Cryptic Fungal Metabolites by Steroids and Channel Blockers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Seoung Rak Lee
- Department of Chemistry Princeton University Princeton NJ 08544 USA
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry Princeton University Princeton NJ 08544 USA
- Department of Molecular Biology Princeton University Princeton NJ 08544 USA
| |
Collapse
|
20
|
McLaughlin MI, Yu Y, van der Donk WA. Substrate Recognition by the Peptidyl-( S)-2-mercaptoglycine Synthase TglHI during 3-Thiaglutamate Biosynthesis. ACS Chem Biol 2022; 17:930-940. [PMID: 35362960 PMCID: PMC9016710 DOI: 10.1021/acschembio.2c00087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Thiaglutamate is a recently identified amino acid analog originating from cysteine. During its biosynthesis, cysteinyl-tRNA is first enzymatically appended to the C-terminus of TglA, a 50-residue ribosomally translated peptide scaffold. After hydrolytic removal of the tRNA, this cysteine residue undergoes modification on the scaffold before eventual proteolysis of the nascent 3-thiaglutamyl residue to release 3-thiaglutamate and regenerate TglA. One of the modifications of TglACys requires a complex of two polypeptides, TglH and TglI, which uses nonheme iron and O2 to catalyze the removal of the peptidyl-cysteine β-methylene group, oxidation of this Cβ atom to formate, and reattachment of the thiol group to the α carbon. Herein, we use in vitro transcription-coupled translation and expressed protein ligation to characterize the role of the TglA scaffold in TglHI recognition and determine the specificity of TglHI with respect to the C-terminal residues of its substrate TglACys. The results of these experiments establish a synthetically accessible TglACys fragment sufficient for modification by TglHI and identify the l-selenocysteine analog of TglACys, TglASec, as an inhibitor of TglHI. These insights as well as a predicted structure and native mass spectrometry data set the stage for deeper mechanistic investigation of the complex TglHI-catalyzed reaction.
Collapse
Affiliation(s)
- Martin I. McLaughlin
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yue Yu
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21:359-378. [PMID: 35296832 DOI: 10.1038/s41573-022-00414-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and 'biosynthetic dark matter', revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
22
|
Saad H, Aziz S, Gehringer M, Kramer M, Straetener J, Berscheid A, Brötz‐Oesterhelt H, Gross H. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides. Angew Chem Int Ed Engl 2021; 60:16472-16479. [PMID: 33991039 PMCID: PMC8362196 DOI: 10.1002/anie.202102571] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/09/2021] [Indexed: 12/16/2022]
Abstract
The increasing number of available genomes, in combination with advanced genome mining techniques, unveiled a plethora of biosynthetic gene clusters (BGCs) coding for ribosomally synthesized and post-translationally modified peptides (RiPPs). The products of these BGCs often represent an enormous resource for new and bioactive compounds, but frequently, they cannot be readily isolated and remain cryptic. Here, we describe a tunable metabologenomic approach that recruits a synergism of bioinformatics in tandem with isotope- and NMR-guided platform to identify the product of an orphan RiPP gene cluster in the genomes of Nocardia terpenica IFM 0406 and 0706T . The application of this tactic resulted in the discovery of nocathioamides family as a founder of a new class of chimeric lanthipeptides I.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Department of Phytochemistry and Plant SystematicsDivision of Pharmaceutical IndustriesNational Research CentreDokkiCairoEgypt
| | - Saefuddin Aziz
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Microbiology DepartmentBiology FacultyJenderal Soedirman UniversityPurwokertoIndonesia
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Markus Kramer
- Institute of Organic ChemistryUniversity of TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Jan Straetener
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Anne Berscheid
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Heike Brötz‐Oesterhelt
- Department of Microbial Bioactive CompoundsInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight InfectionUniversity of TübingenTübingenGermany
| | - Harald Gross
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight InfectionUniversity of TübingenTübingenGermany
| |
Collapse
|