1
|
Zhang C, Wang Z, Qiao L, Yu L, Pang J, Feng Y, Chen W, Fan L, Wang R, Guo H, Kang Z, Sun D. In Situ Transformation of an Amorphous Supramolecular Coating to a Hydrogen-Bonded Organic Framework Membrane to Trigger Selective Gas Permeation. Angew Chem Int Ed Engl 2024; 63:e202407779. [PMID: 38789391 DOI: 10.1002/anie.202407779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
We introduce a "solution-processing-transformation" strategy, deploying solvent vapor as scaffolds, to fabricate high-quality hydrogen-bonded organic framework (HOF) membranes. This strategy can overcome the mismatch in processing conditions and crystal growth thermodynamics faced during the facile solution processing of the membrane. The procedure includes the vapor-trigged in situ transformation of dense amorphous supramolecules to crystalline HOF-16, with HOF-11 as the transient state. The mechanism involves a vapor-activated dissolution-precipitation equilibrium shifting and hydrogen bonding-guided molecule rearrangement, elucidated through combined experimental and theoretical analysis. Upon removal of the molecular scaffolds, the resulting HOF-16 membranes showcase significant improvement in hydrogen separation performance over their amorphous counterparts and previously reported HOF membranes. The method's broad applicability is evidenced by successfully extending it to other substrates and HOF structures. This study provides a fundamental understanding of guest-induced ordered supramolecular assembly and paves the way for the advanced manufacture of high-performance HOF membranes for gas separation processes.
Collapse
Affiliation(s)
- Caiyan Zhang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Zhikun Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Lu Qiao
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Liting Yu
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Jia Pang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Yang Feng
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenmiao Chen
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Lili Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Rongming Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Hailing Guo
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Zixi Kang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
2
|
Xiao H, Luo D, Zhang Y, Liu F, Xu S, Ding B, Dou H, Zhang X. Fully Conjugated Covalent Triazine Framework Integrating Hexaazatrinaphthylene Unit as Anode Material for High-Performance Hybrid Lithium-Ion Capacitors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54049-54057. [PMID: 39348602 DOI: 10.1021/acsami.4c13729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
As a high-performance energy storage device consisting of a battery-type anode and a capacitor-type cathode, hybrid lithium-ion capacitors (HLICs) combine the advantages of high energy density of batteries and high power density of capacitors. However, the imbalance in electrochemical kinetics between the battery-type anode and the capacitor-type cathode hinders the further development of HLICs. Fully conjugated covalent organic frameworks have great potential as electrode materials for HLICs due to the designability of their structure. Herein, a fully conjugated covalent triazine framework (PT-CTF) integrating the hexaazatrinaphthylene unit was constructed, which provides abundant active sites (C═N and C═C groups) as the pseudocapacitive anode material for HLICs. And the connection of the triazine unit of PT-CTF improves the molecular conjugate degree, facilitating the transport of electrons. The fabricated PT-CTF||AC HLICs exhibit a high energy density (164.9 Wh kg-1 at 100 mA g-1), large power density (13.1 kW kg-1 at 4 A g-1), and excellent cycling capability (72% after 10 000 cycles at 2 A g-1).
Collapse
Affiliation(s)
- Hong Xiao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Derong Luo
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yiduo Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Feng Liu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Shu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Bing Ding
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Hui Dou
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
3
|
Gu Q, Lu X, Chen C, Wang X, Kang F, Li YY, Xu Q, Lu J, Han Y, Qin W, Zhang Q. High-Performance Piezoelectric Two-Dimensional Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202409708. [PMID: 38973371 DOI: 10.1002/anie.202409708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
Organic piezoelectric nanogenerators (PENGs) are attractive in harvesting mechanical energy for various self-powering systems. However, their practical applications are severely restricted by their low output open circuit voltage. To address this issue, herein, we prepared two two-dimensional (2D) covalent organic frameworks (COFs, CityU-13 and CityU-14), functionalized with fluorinated alkyl chains for PENGs. The piezoelectricity of both COFs was evidenced by switchable polarization, characteristic butterfly amplitude loops, phase hysteresis loops, conspicuous surface potentials and high piezoelectric coefficient value (d33). The PENGs fabricated with COFs displayed highest output open circuit voltages (60 V for CityU-13 and 50 V for CityU-14) and delivered satisfactory short circuit current with an excellent stability of over 600 seconds. The superior open circuit voltages of CityU-13 and CityU-14 rank in top 1 and 2 among all reported organic materials-based PENGs.
Collapse
Affiliation(s)
- Qianfeng Gu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Mecca Province, 23955-6900, Saudi Arabia
| | - Xiang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fangyuan Kang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yang Yang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P.R. China
| | - Yu Han
- School of Emergent Soft Matter & Center for Electron Microscopy, South China University of Technology, 777 Xingye Avenue East, Panyu District, Guangzhou, 511442, P. R. China
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda South Road, Jinan, Shandong, 250100, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, 999077, P. R. China
- Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF) & Hong Kong Institute of Clean Energy, City University of Hong Kong, Tat Chee Avenue 83, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Xu M, Li D, Feng Y, Yuan Y, Wu Y, Zhao H, Kumar RV, Feng G, Xi K. Microporous Materials in Polymer Electrolytes: The Merit of Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405079. [PMID: 38922998 DOI: 10.1002/adma.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Solid-state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large-scale, cost-effective production of SSBs necessitates the development of high-performance solid-state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid-state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost-effectiveness, making them particularly well-suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal-organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying "feature-function" mechanisms of various CPE types is underscored.
Collapse
Affiliation(s)
- Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Danyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuhe Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Yuan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yutong Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - R Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Guodong Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kai Xi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
5
|
Xu J, Feng G, Ao D, Li X, Li M, Lei S, Wang Y. Functional Covalent Organic Frameworks' Microspheres Synthesized by Self-Limited Dynamic Linker Exchange for Stationary Phases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406256. [PMID: 38897184 DOI: 10.1002/adma.202406256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Synthesizing uniform functional covalent organic framework (COF) microspheres is the prerequisite of applying COFs as novel stationary phases for liquid chromatography. However, the synthesis of functionalized COF microspheres is challenging due to the difficulty in maintaining microspheric morphology when conferring functions. Here, a facile and universal "self-limited dynamic linker exchange" strategy is developed to achieve surface functionalization of uniform COF microspheres. Six different types of COF microspheres are constructed, showing the universality and superiority of the strategy. The library of COF microspheres' stationary phases can be further enriched on demand by varying different functional building blocks. The "self-limited dynamic linker exchange" is attributed to the result of a delicate balance of reaction thermodynamics and molecular diffusion energy barrier. As a demonstration, the chiral functional COF microspheres are used as stationary phases of chiral chromatography and realized effective enantioseparation.
Collapse
Affiliation(s)
- Jiabi Xu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Guangyuan Feng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Dana Ao
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Xiaojuan Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Mengqian Li
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| | - Shengbin Lei
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yong Wang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education &Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
6
|
Yang FF, Wang XL, Tian J, Yin Y, Liang L. Vitrification-enabled enhancement of proton conductivity in hydrogen-bonded organic frameworks. Nat Commun 2024; 15:3930. [PMID: 38729939 PMCID: PMC11087529 DOI: 10.1038/s41467-024-48158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) are versatile materials with potential applications in proton conduction. Traditional approaches involve incorporating humidity control to address grain boundary challenges for proton conduction. This study finds vitrification as an alternative strategy to eliminate grain boundary effect in HOFs by rapidly melt quenching the kinetically stable HOF-SXU-8 to glassy state HOF-g. Notably, a remarkable enhancement in proton conductivity without humidity was achieved after vitrification, from 1.31 × 10-7 S cm-1 to 5.62× 10-2 S cm-1 at 100 °C. Long term stability test showed negligible performance degradation, and even at 30 °C, the proton conductivity remained at high level of 1.2 × 10-2 S cm-1. Molecule dynamics (MD) simulations and X-ray total scattering experiments reveal the HOF-g system is consisted of three kinds of clusters, i.e., 1,5-Naphthalenedisulfonic acid (1,5-NSA) anion clusters, N,N-dimethylformamide (DMF) molecule clusters, and H+-H2O clusters. In which, the H+ plays an important role to bridge these clusters and the high conductivity is mainly related to the H+ on H3O+. These findings provide valuable insights for optimizing HOFs, enabling efficient proton conduction, and advancing energy conversion and storage devices.
Collapse
Affiliation(s)
- Feng-Fan Yang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Xiao-Lu Wang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
- College of Chemistry, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiayue Tian
- School of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Yang Yin
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Linfeng Liang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, 030006, Shanxi, China.
| |
Collapse
|
7
|
Xi Z, Xing J, Yuan R, Yuan Y. Covalent organic frame based high-performance nanocomposite for construction of ATP sensor. Biosens Bioelectron 2024; 250:116081. [PMID: 38316088 DOI: 10.1016/j.bios.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
In this work, a novel covalent organic frame (TAPT-TFPB COF) with self-enhanced photoelectric activity was prepared for decorating on conductive single-walled carbon nanotubes (SWCNT) to synthetize a high-performance photoelectric nanocomposite (COF/SWCNT), in which the interfacial charge separation and photogenerated carrier migration rate was significantly improved to obtain desiring photoelectric conversion efficiency for generating an extremely high photocurrent. Accordingly, the synthetic COF/SWCNT was ingeniously applied in the fabrication of ultrasensitive photoelectrochemical (PEC) biosensor for realizing the trace ATP detection by integrating with an Exo III-assisted dual DNA recycling amplification strategy. The recycling amplification could efficiently convert trace target ATP into plentiful output DNA, which ingeniously triggered the hybridization chain reaction (HCR) to generate a long DNA strand with substantial quencher manganese porphyrin (MnPP) loading to depress the photocurrent of COF/SWCNT. The experimental data showed that proposed biosensor had a detection range from 10 fmol L-1 to 10 nmol L-1 with the detection limit as low as 2.75 fmol L-1 (S/N = 3). In addition, this proposed biosensor showed excellent analytical performance in terms of stability, specificity and reproducibility, providing a possibility to accomplish sensitive and accurate in vitro diagnosis.
Collapse
Affiliation(s)
- Zhiyi Xi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Juan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
8
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
9
|
Cai Y, Yu Y, Wu J, Qu J, Hu J, Tian D, Li J. Recent advances of pure/independent covalent organic framework membrane materials: preparation, properties and separation applications. NANOSCALE 2024; 16:961-977. [PMID: 38108437 DOI: 10.1039/d3nr05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Covalent organic frameworks (COF) are porous crystalline polymers connected by covalent bonds. Due to their inherent high specific surface area, tunable pore size, and good stability, they have attracted extensive attention from researchers. In recent years, COF membrane materials developed rapidly, and a large amount of research work has been presented on the preparation methods, properties, and applications of COF membranes. This review focuses on the research on independent/pure continuous COF membranes. First, based on the membrane formation mechanism, COF membrane preparation methods are categorized into two main groups: bottom-up and top-down. Four methods are presented, namely, solvothermal, interfacial polymerization, steam-assisted conversion, and layer by layer. Then, the aperture, hydrophilicity/hydrophobicity and surface charge properties of COF membranes are summarized and outlined. According to the application directions of gas separation, water treatment, organic solvent nanofiltration, pervaporation and energy, the latest research results of COF membranes are presented. Finally, the challenges and future directions of COF membranes are summarized and an outlook provided. It is hoped that this work will inspire and motivate researchers in related fields.
Collapse
Affiliation(s)
- Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
10
|
Wang C, Cusin L, Ma C, Unsal E, Wang H, Consolaro VG, Montes-García V, Han B, Vitale S, Dianat A, Croy A, Zhang H, Gutierrez R, Cuniberti G, Liu Z, Chi L, Ciesielski A, Samorì P. Enhancing the Carrier Transport in Monolayer MoS 2 through Interlayer Coupling with 2D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305882. [PMID: 37690084 DOI: 10.1002/adma.202305882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/23/2023] [Indexed: 09/12/2023]
Abstract
The coupling of different 2D materials (2DMs) to form van der Waals heterostructures (vdWHs) is a powerful strategy for adjusting the electronic properties of 2D semiconductors, for applications in opto-electronics and quantum computing. 2D molybdenum disulfide (MoS2 ) represents an archetypical semiconducting, monolayer thick versatile platform for the generation of hybrid vdWH with tunable charge transport characteristics through its interfacing with molecules and assemblies thereof. However, the physisorption of (macro)molecules on 2D MoS2 yields hybrids possessing a limited thermal stability, thereby jeopardizing their technological applications. Herein, the rational design and optimized synthesis of 2D covalent organic frameworks (2D-COFs) for the generation of MoS2 /2D-COF vdWHs exhibiting strong interlayer coupling effects are reported. The high crystallinity of the 2D-COF films makes it possible to engineer an ultrastable periodic doping effect on MoS2 , boosting devices' field-effect mobility at room temperature. Such a performance increase can be attributed to the synergistic effect of the efficient interfacial electron transfer process and the pronounced suppression of MoS2 's lattice vibration. This proof-of-concept work validates an unprecedented approach for the efficient modulation of the electronic properties of 2D transition metal dichalcogenides toward high-performance (opto)electronics for CMOS digital circuits.
Collapse
Affiliation(s)
- Can Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Luca Cusin
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Chun Ma
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Elif Unsal
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Hanlin Wang
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | | | - Verónica Montes-García
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Bin Han
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Stefania Vitale
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Arezoo Dianat
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Alexander Croy
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737, Jena, Germany
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Rafael Gutierrez
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062, Dresden, Germany
- Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062, Dresden, Germany
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Paolo Samorì
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| |
Collapse
|
11
|
Peng H, Liu X, Su Y, Li J, Zhao Q. Advanced Lithium Extraction Membranes Derived from Tagged-Modification of Polyamide Networks. Angew Chem Int Ed Engl 2023; 62:e202312795. [PMID: 37796136 DOI: 10.1002/anie.202312795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/06/2023]
Abstract
Efficient Mg2+ /Li+ separation is crucial to combating the lithium shortage worldwide, yet current nanofiltration membranes suffer from low efficacy and/or poor scalability, because desirable properties of membranes are entangled and there is a trade-off. This work reports a "tagged-modification" approach to tackle the challenge. A mixture of 3-bromo-trimethylpropan-1-aminium bromide (E1 ) and 3-aminopropyltrimethylazanium (E2 ) was designed to modify polyethylenimine - trimesoyl chloride (PEI-TMC) membranes. E1 and E2 reacted with the PEI and TMC, respectively, and thus, the membrane properties (hydrophilicity, pore sizes, charge) were untangled and intensified simultaneously. The permeance (34.3 L m-2 h-1 bar-1 ) and Mg2+ /Li+ selectivity (23.2) of the modified membranes are about 4 times and 2 times higher than the pristine membrane, and they remain stable in a 30-days test. The permeance is the highest among all analogous nanofiltration membranes. The tagged-modification method enables the preparation of large-area membranes and modules that produce high-purity lithium carbonate (Li2 CO3 ) from simulated brine.
Collapse
Affiliation(s)
- Huawen Peng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Xufei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Yafei Su
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Jiapeng Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, P. R. China
| |
Collapse
|
12
|
Zhao X, Sun J, Cheng X, Qiu Q, Ma G, Jiang C, Pan J. Colloidal 2D Covalent Organic Framework-Tailored Nanofiltration Membranes for Precise Molecular Sieving. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53924-53934. [PMID: 37938868 DOI: 10.1021/acsami.3c12106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Covalent organic frameworks (COFs) with tunable pore sizes and ordered structures are ideal materials for engineering nanofiltration (NF) membranes. However, most of the COFs prepared by solvothermal synthesis are unprocessable powders and fail to form well-structured membranes, which seriously hinders the development of COF NF membranes. Herein, colloidal 2D-COFs with processable membrane formation ability were synthesized by oil-in-water emulsion interfacial polymerization technology. COF NF membranes with tailored thickness and surface charge were fabricated via a layer-by-layer (LBL) assembly strategy. The prepared COF NF membrane achieved precise sieving of dye molecules with high permeance (85 L·m-2·h-1·bar-1). In this work, the strategy of prepared COF NF membranes based on colloid 2D-COF LBL assembly is proposed for the first time, which provides a new idea for the on-demand design and preparation of COF membranes for precise molecular sieving.
Collapse
Affiliation(s)
- Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jinshan Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinhao Cheng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qingqing Qiu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guangming Ma
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chunyu Jiang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
13
|
Feng JD, Zhang WD, Liu Y, Han WK, Zhu RM, Gu ZG. A 3D Covalent Organic Framework with In-situ Formed Pd Nanoparticles for Efficient Electrochemical Oxygen Reduction. Chemistry 2023; 29:e202302201. [PMID: 37565784 DOI: 10.1002/chem.202302201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yong Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wang-Kang Han
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ruo-Meng Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
14
|
Sun X, Di M, Liu J, Gao L, Yan X, He G. Continuous Covalent Organic Frameworks Membranes: From Preparation Strategies to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303757. [PMID: 37381640 DOI: 10.1002/smll.202303757] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Mengting Di
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Li Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
15
|
Joseph V, Nagai A. Recent advancements of covalent organic frameworks (COFs) as proton conductors under anhydrous conditions for fuel cell applications. RSC Adv 2023; 13:30401-30419. [PMID: 37849707 PMCID: PMC10578502 DOI: 10.1039/d3ra04855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Recent electrochemical energy conversion devices require more advanced proton conductors for their broad applications, especially, proton exchange membrane fuel cell (PEMFC) construction. Covalent organic frameworks (COFs) are an emerging class of organic porous crystalline materials that are composed of organic linkers and connected by strong covalent bonds. The unique characteristics including well-ordered and tailorable pore channels, permanent porosity, high degree of crystallinity, excellent chemical and thermal stability, enable COFs to be the potential proton conductors in fuel cell devices. Generally, proton conduction of COFs is dependent on the amount of water (extent of humidity). So, the constructed fuel cells accompanied complex water management system which requires large radiators and airflow for their operation at around 80 °C to avoid overheating and efficiency roll-off. To overcome such limitations, heavy-duty fuel cells require robust proton exchange membranes with stable proton conduction at elevated temperatures. Thus, proton conducting COFs under anhydrous conditions are in high demand. This review summarizes the recent progress in emerging COFs that exhibit proton conduction under anhydrous conditions, which may be prospective candidates for solid electrolytes in fuel cells.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- Ensemble3 - Centre of Excellence Wólczyńska 133 01-919 Warszawa Poland
| |
Collapse
|
16
|
Khan NA, Luo M, Zha X, Azad CS, Lu J, Chen J, Fan C, Rahman AU, Olson MA, Jiang Z, Wang D. Water/Vapor Assisted Fabrication of Large-Area Superprotonic Conductive Covalent Organic Framework Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303131. [PMID: 37344349 DOI: 10.1002/smll.202303131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Indexed: 06/23/2023]
Abstract
Fabrication of large-area ionic covalent organic framework membranes (iCOMs) remains a grand challenge. Herein, the authors report the liquid water and water vapor-assisted fabrication of large-area superprotonic conductive iCOMs. A mixed monomer solution containing 1,3,5-triformylphloroglucinol (TFP) in 1,4-dioxane and p-diaminobenzenesulfonic acid (DABA) in water is first polymerized to obtain a pristine membrane which subsequently underwent crystallization process in mixed vapors containing water vapor. During the polymerization stage, water played a role of a diluting agent, weakening the Coulombic repulsion between sulfonic acid groups. During the crystallization stage, water vapor played a role of a structure-directing agent to facilitate the formation of highly crystalline, large-area iCOMs. The resulting membranes achieved a proton conductivity value of 0.76 S cm-1 at 90 °C under 100% relative humidity, which is among the highest ever reported. Using liquid water and water vapor as versatile additives open a novel avenue to the fabrication of large-area membranes from covalent organic frameworks and other kinds of crystalline organic framework materials.
Collapse
Affiliation(s)
- Niaz Ali Khan
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Mengying Luo
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xinlin Zha
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Jing Lu
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Jiahui Chen
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ata Ur Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, 25000, Pakistan
| | - Mark A Olson
- Department of Physical & Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, 78412, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, P. R. China
| | - Dong Wang
- Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
17
|
Zhang C, Xiao T, He J, Lu B, Li X, Zhai J, Fan X. Room-Temperature Synthesis of a COFs Membrane Via LBL Self-Assembly Strategy for Energy Harvesting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301512. [PMID: 37154221 DOI: 10.1002/smll.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/02/2023] [Indexed: 05/10/2023]
Abstract
The covalent organic frameworks (COFs) membrane with ordered and confined one-dimensional channel has been considered as a promising material to harvest the salinity gradient energy from the seawater and river water. However, the application of the COFs in the field of energy conversion still faces the challenges in membrane preparation. Herein, energy harvesting is achieved by taking advantage of a COFs membrane where TpDB-HPAN is synthesized via layer-by-layer self-assembly strategy at room temperature. The carboxy-rich TpDB COFs can be expediently assembled onto the substrate with an environmental-friendly method. The increased open-circuit voltage (Voc ) endows TpDB-HPAN membrane with a remarkable energy harvesting performance. More importantly, the application perspective is also illuminated by the cascade system. With the advantages of green synthesis, the TpDB-HPAN membrane can be considered as a low-cost and promising candidate for energy conversion.
Collapse
Affiliation(s)
- Caili Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
18
|
Liu X, Li Y, Chen Z, Yang H, Wang S, Tang Z, Wang X. Recent progress of covalent organic frameworks membranes: Design, synthesis, and application in water treatment. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:117-130. [PMID: 38074995 PMCID: PMC10702902 DOI: 10.1016/j.eehl.2023.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 01/19/2024]
Abstract
To date, significant efforts have been devoted to eliminating hazardous components to purify wastewater through the development of various nanomaterials. Covalent organic frameworks (COFs), an important branch of the porous crystalline family, possess the peculiarity of ultrahigh surface area, adjustable pore size, and facile functionality. Exciting studies from design fabrication to potential applications in water treatment by COF-based membranes (COMs) have emerged. This review summarizes various preparation strategies and synthesis mechanisms for COMs, including layer-by-layer stacking, in situ growth, interfacial polymerization, and electrochemical synthesis, and briefly describes the advanced characterization techniques for COMs. Moreover, the application of COMs in heavy metal removal, dye separation, purification of radionuclides, pollutant detection, sea water desalination, and so on, is described and discussed. Finally, the perspectives on future opportunities for designing COMs in water purification have been proposed.
Collapse
Affiliation(s)
- Xiaolu Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yang Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenwu Tang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xiangke Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
19
|
Zhou K, Jia Z, Zhou Y, Ding G, Ma XQ, Niu W, Han ST, Zhao J, Zhou Y. Covalent Organic Frameworks for Neuromorphic Devices. J Phys Chem Lett 2023; 14:7173-7192. [PMID: 37540588 DOI: 10.1021/acs.jpclett.3c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Neuromorphic computing could enable the potential to break the inherent limitations of conventional von Neumann architectures, which has led to widespread research interest in developing novel neuromorphic memory devices, such as memristors and bioinspired artificial synaptic devices. Covalent organic frameworks (COFs), as crystalline porous polymers, have tailorable skeletons and pores, providing unique platforms for the interplay with photons, excitons, electrons, holes, ions, spins, and molecules. Such features encourage the rising research interest in COF materials in neuromorphic electronics. To develop high-performance COF-based neuromorphic memory devices, it is necessary to comprehensively understand materials, devices, and applications. Therefore, this Perspective focuses on discussing the use of COF materials for neuromorphic memory devices in terms of molecular design, thin-film processing, and neuromorphic applications. Finally, we provide an outlook for future directions and potential applications of COF-based neuromorphic electronics.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Ziqi Jia
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Yao Zhou
- College of Materials Science and Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Guanglong Ding
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Xin-Qi Ma
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Wenbiao Niu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| | - Jiyu Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Avenue, Shenzhen 518060, P. R. China
| |
Collapse
|
20
|
Wang S, Li M, Yan G, Yang Z, Guo Y, Sun X, Wang Y, Feng Y, Ding H, Zhang X. Squaraine-linked zwitterionic COF modified LLZTO nanoparticles for high performance polymer composite electrolytes in Li-S batteries. NANOSCALE 2023; 15:12961-12971. [PMID: 37462542 DOI: 10.1039/d3nr01942j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Lithium-sulfur (Li-S) batteries are severely restricted for practical application due to the polysulfide shuttle effect, Li dendrites and thermal runaway. The use of PEO-based polymer composite electrolytes (PCEs) as an alternative strategy suffers from limited lithium-ion conductivity with deficient long-range transfer route. Herein, Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles modified with an in situ-synthesized zwitterionic covalent organic framework layer (denoted as LLZTO@HUT4) were introduced into PEO-based PCEs. Zwitterionic HUT4 modified the lithiophobic LiOH/Li2CO3 layer on the surface of LLZTO nanoparticles, which could notably promote Li+ ion transport for superior electrochemical performance of PCEs. Additionally, the intermediate layer HUT4 located between LLZTO and PEO could further improve the mechanical properties of electrolytes due to the enhanced inorganic/organic interface compatibility and intermolecular interaction. As a result, the obtained LLZTO@HUT4-15%/PEO electrolyte exhibited a competent ionic conductivity of 0.73 mS cm-1 with a Li+ transference number of up to 0.74 at 60 °C. The assembled S@CNT|LLZTO@HUT4-15%/PEO|Li coin cell delivered a considerable initial discharge capacity of 1018 mA h g-1 at 0.2 C, with approximately 92.1% capacity retention after 100 cycles, elucidating an obviously suppressed shuttle effect.
Collapse
Affiliation(s)
- Shuo Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Zhipeng Yang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yuchao Guo
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Xi Sun
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yue Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Huili Ding
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300400, P. R. China.
| |
Collapse
|
21
|
Chen X, Kong L, Mehrez JAA, Fan C, Quan W, Zhang Y, Zeng M, Yang J, Hu N, Su Y, Wei H, Yang Z. Outstanding Humidity Chemiresistors Based on Imine-Linked Covalent Organic Framework Films for Human Respiration Monitoring. NANO-MICRO LETTERS 2023; 15:149. [PMID: 37286913 PMCID: PMC10247948 DOI: 10.1007/s40820-023-01107-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/20/2023] [Indexed: 06/09/2023]
Abstract
Human metabolite moisture detection is important in health monitoring and non-invasive diagnosis. However, ultra-sensitive quantitative extraction of respiration information in real-time remains a great challenge. Herein, chemiresistors based on imine-linked covalent organic framework (COF) films with dual-active sites are fabricated to address this issue, which demonstrates an amplified humidity-sensing signal performance. By regulation of monomers and functional groups, these COF films can be pre-engineered to achieve high response, wide detection range, fast response, and recovery time. Under the condition of relative humidity ranging from 13 to 98%, the COFTAPB-DHTA film-based humidity sensor exhibits outstanding humidity sensing performance with an expanded response value of 390 times. Furthermore, the response values of the COF film-based sensor are highly linear to the relative humidity in the range below 60%, reflecting a quantitative sensing mechanism at the molecular level. Based on the dual-site adsorption of the (-C=N-) and (C-N) stretching vibrations, the reversible tautomerism induced by hydrogen bonding with water molecules is demonstrated to be the main intrinsic mechanism for this effective humidity detection. In addition, the synthesized COF films can be further exploited to effectively detect human nasal and oral breathing as well as fabric permeability, which will inspire novel designs for effective humidity-detection devices.
Collapse
Affiliation(s)
- Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Lingwei Kong
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Chao Fan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Wenjing Quan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yanjie Su
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hao Wei
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
22
|
Yang L, Niu C, Cao X, Wang Y, Zhu Z, Sun H, Liang W, Li J, Li A. Mechanically robust conjugated microporous polymer membranes prepared using polyvinylpyrrolidone (PVP) electrospun nanofibers as a template for efficient PM capture. J Colloid Interface Sci 2023; 637:305-316. [PMID: 36706726 DOI: 10.1016/j.jcis.2023.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Air pollution has become a challenging environmental problem worldwide due to rapid industrial development and excessive emissions of vehicle exhaust. Herein, we report a preparation of conjugated microporous polymer membranes (CMPM) with a hierarchical porous structure by electrospun polyvinylpyrrolidone (PVP) nanofibers as a template for effective removal of PM from airborne and vehicle exhaust. CMP membranes have hierarchical holes, where the macropores are from electrospun nanofiber membranes and the mesopores are from polymer synthesis. Taking advantage of its inherent physicochemical and thermal stability and hierarchical hole characteristics, the CMPM-based filter can work continuously for up to 36 h and still maintains a high removal efficiency (>99.56%), and also has a high filtration efficiency in the treatment of vehicle exhausts, with 95.18% for PM0.3, 98% for PM0.5 and >99% for PM2.5-10.0. The superior mechanical properties of CMPM allow the filter to be cleaned and reused. After three cycles, the filtration effectiveness of CMPM is still 94.83% for respirable particulate matter. Under high humidity (RH ≥ 95%) conditions, the CMPM-based filter showed higher than 95.37% filtration of PM0.3-10, and the oil adsorption rate could be maintained at 284% at high speed, proving the great potential of CMPM to clean air in complex situations.
Collapse
Affiliation(s)
- Lijuan Yang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Cheng Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Xiaoyin Cao
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Yunjia Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Zhaoqi Zhu
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Hanxue Sun
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Weidong Liang
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - Jiyan Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China
| | - An Li
- College of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, PR China.
| |
Collapse
|
23
|
Zhu QH, Zhang GH, Zhang L, Wang SL, Fu J, Wang YH, Ma L, He L, Tao GH. Solvent-Responsive Reversible and Controllable Conversion between a Polyimine Membrane and an Organic Molecule Cage. J Am Chem Soc 2023; 145:6177-6183. [PMID: 36857470 DOI: 10.1021/jacs.2c12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Adaptive bionic self-correcting behavior offers an attractive property for chemical systems. Here, based on the dynamic feature of imine formation, we propose a solvent-responsive strategy for smart switching between an amorphous ionic polyimine membrane and a crystalline organic molecule cage without the addition of other building blocks. To adapt to solvent environmental constraints, the aldehyde and amine components undergo self-correction to form a polymer network or a molecular cage. Studies have shown that the amorphous film can be switched in acetonitrile to generate a discrete cage with bright birefringence under polarized light. Conversely, the membrane from the cage crystal conversion can be regained in ethanol. Such a membrane-cage interconversion can be cycled continuously at least 5 times by switching the two solvents. This work builds a bridge between the polymer network and crystalline molecules and offers prospects for smart dynamic materials.
Collapse
Affiliation(s)
- Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | | | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuan-Hao Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
24
|
Zhu L, Su Y, Liu Z, Fang Y. Shape-Controlled Synthesis of Covalent Organic Frameworks Enabled by Polymerization-Induced Phase Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205501. [PMID: 36538755 DOI: 10.1002/smll.202205501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
The shape and morphology modulations of covalent organic frameworks (COFs) are both difficult, but are of significance to tackle to realize high-performance and practical applications. Here, a two-step method is reported that separates the phase separation and crystallization processes for the shape-controlled synthesis of COFs. The insight into the polymerization-induced phase separation (PIPS) allows for the flexible shaping of COFs into column, rod, film and others, as well as for constructing hierarchically porous structure. The as-synthesized COF monoliths are crack-free, no powder detaching, and show 214 MPa of compressive modulus. The resulting good permeability and mechanical flexibility enable COF films to apply for flow-through adsorption and extraction of pollutants at high flow rates. This work successfully resolves the contradiction between PIPS and crystallization, offering a general approach for scalable production of COFs with desired shapes, sizes, and morphologies.
Collapse
Affiliation(s)
- Lin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yajiao Su
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhongshan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
25
|
Kim SY, Kang M, Kang DW, Kim H, Choe JH, Yun H, Hong CS. Electronic Effect-Modulated Enhancements of Proton Conductivity in Porous Organic Polymers. Angew Chem Int Ed Engl 2023; 62:e202214301. [PMID: 36367202 DOI: 10.1002/anie.202214301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/13/2022]
Abstract
We proposed a new strategy to maximize the density of acidic groups by modulating the electronic effects of the substituents for high-performance proton conductors. The conductivity of the sulfonated 1-MeL40-S with methyl group corresponds to 2.29×10-1 S cm-1 at 80 °C and 90 % relative humidity, remarkably an 22100-fold enhancement over the nonsulfonated 1-MeL40. 1-MeL40-S maintains long-term conductivity for one month. We confirm that this synthetic method is generalized to the extended version POPs, 2-MeL40-S and 3-MeL40-S. In particular, the conductivities of the POPs compete with those of top-level porous organic conductors. Moreover, the activation energy of the POPs is lower than that of the top-performing materials. This study demonstrates that systematic alteration of the electronic effects of substituents is a useful route to improve the conductivity and long-term durability of proton-conducting materials.
Collapse
Affiliation(s)
- Sun Young Kim
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Hyojin Kim
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Hongryeol Yun
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea university, Seoul, 02841, Republic of Korea
| |
Collapse
|
26
|
Tang J, Liang Z, Qin H, Liu X, Zhai B, Su Z, Liu Q, Lei H, Liu K, Zhao C, Cao R, Fang Y. Large-area Free-standing Metalloporphyrin-based Covalent Organic Framework Films by Liquid-air Interfacial Polymerization for Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202214449. [PMID: 36344440 DOI: 10.1002/anie.202214449] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/09/2022]
Abstract
Synthesizing large-area free-standing covalent organic framework (COF) films is of vital importance for their applications but is still a big challenge. Herein, we reported the synthesis of large metalloporphyrin-based COF films and their applications for oxygen electrocatalysis. The reaction of meso-benzohydrazide-substituted metal porphyrins with tris-aldehyde linkers afforded free-standing COF films at the liquid-air interface. These films can be scaled up to 3000 cm2 area and display great mechanical stability and structural integrity. Importantly, the Co-porphyrin-based films are efficient for electrocatalytic O2 reduction and evolution reactions. A flexible, all-solid-state Zn-air battery was assembled using the films and showed high performance with a charge-discharge voltage gap of 0.88 V at 1 mA cm-2 and high stability under bent conditions (0° to 180°). This work thus presents a strategy to synthesize functionalized COF films with high quality for uses in flexible electronics.
Collapse
Affiliation(s)
- Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haonan Qin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Binbin Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhen Su
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Qianqian Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
27
|
Zhao S, Chen K, Niu Y, Yuan B, Jiang C, Wang M, Li P, Hou Y, Sun H, Xia D, Niu QJ. Heterogeneous polyamide composite membranes based on aromatic poly(amidoamine) dendrimer for molecular sieving. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Yao L, Ma C, Sun L, Zhang D, Chen Y, Jin E, Song X, Liang Z, Wang KX. Highly Crystalline Polyimide Covalent Organic Framework as Dual-Active-Center Cathode for High-Performance Lithium-Ion Batteries. J Am Chem Soc 2022; 144:23534-23542. [PMID: 36512747 DOI: 10.1021/jacs.2c10534] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyimide covalent organic framework (PI-COF) materials that can realize intrinsic redox reactions by changing the charge state of their electroactive sites are considered as emerging electrode materials for rechargeable devices. However, the highly crystalline PI-COFs with hierarchical porosity are less reported due to the rapid reaction between monomers and the poor reversibility of the polyimidization reaction. Here, we developed a water-assistant synthetic strategy to adjust the reaction rate of polyimidization, and PI-COF (COFTPDA-PMDA) with kgm topology consisting of dual active centers of N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine (TPDA) and pyromellitic dianhydride (PMDA) ligands was successfully synthesized with high crystallinity and porosity. The COFTPDA-PMDA possesses hierarchical micro-/mesoporous channels with the largest surface area (2669 m2/g) in PI-COFs, which can promote the Li+ ions and bulky bis(trifluoromethanesulfonyl)imide (TFSI-) ions in organic electrolyte to sufficiently interact with the dual active sites on COF skeleton to increase the specific capacity of cathode materials. As a cathode material for lithium-ion batteries, COFTPDA-PMDA@50%CNT which integrated high surface area and dual active center of COFTPDA-PMDA with carbon nanotubes via π-π interactions gave a high initial charge capacity of 233 mAh/g (0.5 A/g) and maintains at 80 mAh/g even at a high current density of 5.0 A/g after 1800 cycles.
Collapse
Affiliation(s)
- Liyi Yao
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Libo Sun
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Daliang Zhang
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 400044, P. R. China
| | - Yuze Chen
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Enquan Jin
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xiaowei Song
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiqiang Liang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kai-Xue Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Khalil S, Meyer MD, Alazmi A, Samani MHK, Huang PC, Barnes M, Marciel AB, Verduzco R. Enabling Solution Processable COFs through Suppression of Precipitation during Solvothermal Synthesis. ACS NANO 2022; 16:20964-20974. [PMID: 36413762 DOI: 10.1021/acsnano.2c08580] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline, nanoporous materials of interest for various applications, but current COF synthetic routes lead to insoluble aggregates which precludes processing for practical implementation. Here, we report a COF synthesis method that produces a stable, homogeneous suspension of crystalline COF nanoparticles that enables the preparation of COF monoliths, membranes, and films using conventional solution-processing techniques. Our approach involves the use of a polar solvent, diacid catalyst, and slow reagent mixing procedure at elevated temperatures which altogether enable access to crystalline COF nanoparticle suspension that does not aggregate or precipitate when kept at elevated temperatures. On cooling, the suspension undergoes a thermoreversible gelation transition to produce crystalline and highly porous COF materials. We further show that the modified synthesis approach is compatible with various COF chemistries, including both large- and small-pore imine COFs, hydrazone-linked COFs, and COFs with rhombic and hexagonal topologies, and in each case, we demonstrate that the final product has excellent crystallinity and porosity. The final materials contain both micro- and macropores, and the total porosity can be tuned through variation of sample annealing. Dynamic light scattering measurements reveal the presence of COF nanoparticles that grow with time at room temperature, transitioning from a homogeneous suspension to a gel. Finally, we prepare imine COF membranes and measure their rejection of polyethylene glycol (PEG) polymers and oligomers, and these measurements exhibit size-dependent rejection and adsorption of PEG solutes. This work demonstrates a versatile processing strategy to create crystalline and porous COF materials using solution-processing techniques and will greatly advance the development of COFs for various applications.
Collapse
Affiliation(s)
- Safiya Khalil
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Matthew D Meyer
- Shared Equipment Authority, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Abdullah Alazmi
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Mohammad H K Samani
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Po-Chun Huang
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Morgan Barnes
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-364, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, MS-364, Houston, Texas 77005, United States
| |
Collapse
|
30
|
Cao L, Chen IC, Li Z, Liu X, Mubashir M, Nuaimi RA, Lai Z. Switchable Na + and K + selectivity in an amino acid functionalized 2D covalent organic framework membrane. Nat Commun 2022; 13:7894. [PMID: 36550112 PMCID: PMC9780323 DOI: 10.1038/s41467-022-35594-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Biological cell membranes can efficiently switch Na+/K+ selectivity in response to external stimuli, but achieving analogous functions in a single artificial membrane is challenging. Here, we report highly crystalline covalent organic framework (COF) membranes with well-defined nanochannels and coordinative sites (i. e., amino acid) that act as ion-selective switches to manipulate Na+ and K+ transport. The ion selectivity of the COF membrane is dynamic and can be switched between K+-selective and Na+-selective in a single membrane by applying a pH stimulus. The experimental results combined with molecular dynamics simulations reveal that the switchable Na+/K+ selectivity originates from the differentiated coordination interactions between ions and amino acids. Benefiting from the switchable Na+/K+ selectivity, we further demonstrate the membrane potential switches by varying electrolyte pH, miming the membrane polarity reversal during neural signal transduction in vivo, suggesting the great potential of these membranes for in vitro biomimetic applications.
Collapse
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Muhammad Mubashir
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Reham Al Nuaimi
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, 4700 King Abdullah, University of Science and Technology (KAUST), Thuwal, 23955-6900 Kingdom of Saudi Arabia
| |
Collapse
|
31
|
Martín‐Illán JÁ, Sierra L, Ocón P, Zamora F. Electrochemical Double-Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angew Chem Int Ed Engl 2022; 61:e202213106. [PMID: 36184949 PMCID: PMC9828764 DOI: 10.1002/anie.202213106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/05/2022]
Abstract
High energy demand results in comprehensive research of novel materials for energy sources and storage applications. Covalent organic frameworks (COFs) possess appropriate features such as long-range order, permanent porosity, tunable pore size, and ion diffusion pathways to be competitive electrode materials. Herein, we present a deep electrochemical study of two COF-aerogels shaped into flexible COF-electrodes (ECOFs) by a simple compression method to fabricate an electrochemical double-layer capacitor (EDLC). This energy storage system has considerable interest owing to its high-power density and long cycle life compared with batteries. Our result confirmed the outstanding behavior of ECOFs as EDLC devices with a capacity retention of almost 100 % after 10 000 charge/discharge cycles and, to our knowledge, the highest areal capacitance (9.55 mF cm-2 ) in aqueous electrolytes at higher scan rates (1000 mV s-1 ) for COFs. More importantly, the hierarchical porosity observed in the ECOFs increases ion transport, which permits a fast interface polarization (low τ0 values). The complete sheds light on using ECOFs as novel electrode material to fabricate EDLC devices.
Collapse
Affiliation(s)
| | - Laura Sierra
- Departamento de Química-Fisica AplicadaUniversidad Autónoma de Madrid28049MadridSpain
| | - Pilar Ocón
- Departamento de Química-Fisica AplicadaUniversidad Autónoma de Madrid28049MadridSpain
| | - Félix Zamora
- Departamento de Química InorgánicaUniversidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
32
|
Cao L, Chen IC, Liu X, Li Z, Zhou Z, Lai Z. An Ionic Diode Covalent Organic Framework Membrane for Efficient Osmotic Energy Conversion. ACS NANO 2022; 16:18910-18920. [PMID: 36283039 DOI: 10.1021/acsnano.2c07813] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterogeneous membranes that exhibit an ionic diode effect are promising candidates for osmotic energy conversion. However, existing heterogeneous membranes lack molecular-level designed ion channels, thereby limiting their power densities. Here, we demonstrate ionic diode covalent organic framework (COF) membranes with well-defined ion channels, asymmetric geometry and surface charge polarity as high-performance osmotic power generators. The COF diode membranes are comprised of heterojunctions combining a positively charged ultrathin COF layer and a negatively charged COF layer supported by a porous COF nanofiber scaffold, exhibiting an ionic diode effect that effectuates fast unidirectional ion diffusion and anion selectivity. Density functional theory calculations reveal that the differentiated interactions between anions and COF channels contributed to superior I- transport over other anions. Consequently, the COF diode membranes achieved high output power densities of 19.2 and 210.1 W m-2 under a 50-fold NaCl and NaI gradient, respectively, outperforming state-of-the-art heterogeneous membranes. This work suggests the great potential of COF diode membranes for anion transport and energy-related applications.
Collapse
Affiliation(s)
- Li Cao
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - I-Chun Chen
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Xiaowei Liu
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Zhen Li
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Zongyao Zhou
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| | - Zhiping Lai
- Division of Physical Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
34
|
Qiu TY, Zhao YN, Tang WS, Tan HQ, Sun HY, Kang ZH, Zhao X, Li YG. Smart Covalent Organic Framework with Proton-Initiated Switchable Photocatalytic Aerobic Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tian-Yu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ying-Nan Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wen-Si Tang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hui-Ying Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhen-Hui Kang
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Xia Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
35
|
Li Y, Liu M, Wu J, Li J, Yu X, Zhang Q. Highly stable β-ketoenamine-based covalent organic frameworks (COFs): synthesis and optoelectrical applications. FRONTIERS OF OPTOELECTRONICS 2022; 15:38. [PMID: 36637691 PMCID: PMC9756274 DOI: 10.1007/s12200-022-00032-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/09/2022] [Indexed: 05/15/2023]
Abstract
Covalent organic frameworks (COFs) are one class of porous materials with permanent porosity and regular channels, and have a covalent bond structure. Due to their interesting characteristics, COFs have exhibited diverse potential applications in many fields. However, some applications require the frameworks to possess high structural stability, excellent crystallinity, and suitable pore size. COFs based on β-ketoenamine and imines are prepared through the irreversible enol-to-keto tautomerization. These materials have high crystallinity and exhibit high stability in boiling water, with strong resistance to acids and bases, resulting in various possible applications. In this review, we first summarize the preparation methods for COFs based on β-ketoenamine, in the form of powders, films and foams. Then, the effects of different synthetic methods on the crystallinity and pore structure of COFs based on β-ketoenamine are analyzed and compared. The relationship between structures and different applications including fluorescence sensors, energy storage, photocatalysis, electrocatalysis, batteries and proton conduction are carefully summarized. Finally, the potential applications, large-scale industrial preparation and challenges in the future are presented.
Collapse
Affiliation(s)
- Yaqin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Maosong Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Jinjun Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Junbo Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430074, China
| | - Xianglin Yu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430074, China.
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hongkong, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hongkong, Hong Kong SAR, 999077, China.
| |
Collapse
|
36
|
Bu R, Lu Y, Zhang B. Covalent Organic Frameworks Based Single-site Electrocatalysts for Oxygen Reduction Reaction. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Controllable Construction of Amino-Functionalized Dynamic Covalent Porous Polymers for High-Efficiency CO 2 Capture from Flue Gas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185853. [PMID: 36144589 PMCID: PMC9502662 DOI: 10.3390/molecules27185853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
The design of high-efficiency CO2 adsorbents with low cost, high capacity, and easy desorption is of high significance for reducing carbon emissions, which yet remains a great challenge. This work proposes a facile construction strategy of amino-functional dynamic covalent materials for effective CO2 capture from flue gas. Upon the dynamic imine assembly of N-site rich motif and aldehyde-based spacers, nanospheres and hollow nanotubes with spongy pores were constructed spontaneously at room temperature. A commercial amino-functional molecule tetraethylenepentamine could be facilely introduced into the dynamic covalent materials by virtue of the dynamic nature of imine assembly, thus inducing a high CO2 capacity (1.27 mmol·g-1) from simulated flue gas at 75 °C. This dynamic imine assembly strategy endowed the dynamic covalent materials with facile preparation, low cost, excellent CO2 capacity, and outstanding cyclic stability, providing a mild and controllable approach for the development of competitive CO2 adsorbents.
Collapse
|
38
|
Deng Y, Wang Y, Xiao X, Saucedo BJ, Zhu Z, Xie M, Xu X, Yao K, Zhai Y, Zhang Z, Chen J. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202928. [PMID: 35986438 DOI: 10.1002/smll.202202928] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) hybrid materials are a class of porous crystalline materials that integrate MOFs and COFs with hierarchical pore structures. As an emerging porous frame material platform, MOF/COF hybrid materials have attracted tremendous attention, and the field is advancing rapidly and extending into more diverse fields. Extensive studies have shown that a broad variety of MOF/COF hybrid materials with different structures and specific properties can be synthesized from diverse building blocks via different chemical reactions, driving the rapid growth of the field. The allowed complementary utilization of π-conjugated skeletons and nanopores for functional exploration has endowed these hybrid materials with great potential in challenging energy and environmental issues. It is necessary to prepare a "family tree" to accurately trace the developments in the study of MOF/COF hybrid materials. This review comprehensively summarizes the latest achievements and advancements in the design and synthesis of MOF/COF hybrid materials, including COFs covalently bonded to the surface functional groups of MOFs (MOF@COF), MOFs grown on the surface of COFs (COF@MOF), bridge reaction between COF and MOF (MOF+COF), and their various applications in catalysis, energy storage, pollutant adsorption, gas separation, chemical sensing, and biomedicine. It concludes with remarks concerning the trend from the structural design to functional exploration and potential applications of MOF/COF hybrid materials.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Brett Jacob Saucedo
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhijun Zhu
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingsen Xie
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Kun Yao
- Shenzhen Zhongxing New Material Technology Company Ltd., Shenzhen, 518000, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrics, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
39
|
Zhang Z, Xiao A, Yin C, Wang X, Shi X, Wang Y. Heterostructured two-dimensional covalent organic framework membranes for enhanced ion separation. Chem Commun (Camb) 2022; 58:7136-7139. [PMID: 35666182 DOI: 10.1039/d2cc01749k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterostructured covalent organic framework (COF) membrane is synthesized via in situ linker exchange. Narrowed pores can be formed at the interface between two types of COFs by adjusting the linker exchange duration. The resultant COF membrane demonstrates a high rejection rate toward Na2SO4 of up to 97%.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Congcong Yin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, P. R. China.
| |
Collapse
|
40
|
Yang J, Cao Y, Si W, Zhang J, Wang J, Qu Y, Qin W. Covalent Organic Frameworks Doped with Different Ratios of OMe/OH as Fluorescent and Colorimetric Sensors. CHEMSUSCHEM 2022; 15:e202200100. [PMID: 35322938 DOI: 10.1002/cssc.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Improving the luminescence properties of covalent organic frameworks (COFs) has always been an important issue. Here, a series of COFs (([OMe]x -TzDa (TzDa is composed only by monomerics Tz and Da, OMe represents the incorporation of monomeric Dm)) with different ratios of OMe and OH were designed and synthesized. The photochemical behavior of [OMe]x -TzDa changed significantly due to the synergistic effect of aggregation induced emission (AIE), intramolecular charge transfer (ICT), and excited-state intramolecular proton transfer (ESIPT) effects. [OMe]2 -TzDa, which contained a ratio of 2/1 of OMe/OH, showed the strongest fluorescence emission in water and the best linear relationship for the detection of pH. Furthermore, [OMe]2 -TzDa was used to monitor HCl and NH3 gases and showed a color change, visible to the naked eye. Therefore, a "confidential pigment" was successfully made. Moreover, [OMe]2 -TzDa was also applied to detect N2 H4 . The work indicates the [OMe]2 -TzDa can serve as the first fluorescence sensor to detect pH, HCl and NH3 gases, which also shows a good response to N2 H4 .
Collapse
Affiliation(s)
- Jilu Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuping Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenbo Si
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jiemin Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi Qu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wenwu Qin
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
41
|
Khan NA, Zhang R, Wang X, Cao L, Azad CS, Fan C, Yuan J, Long M, Wu H, Olson MA, Jiang Z. Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport. Nat Commun 2022; 13:3169. [PMID: 35672299 PMCID: PMC9174484 DOI: 10.1038/s41467-022-30647-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fabrication of covalent organic framework (COF) membranes for molecular transport has excited highly pragmatic interest as a low energy and cost-effective route for molecular separations. However, currently, most COF membranes are assembled via a one-step procedure in liquid phase(s) by concurrent polymerization and crystallization, which are often accompanied by a loosely packed and less ordered structure. Herein, we propose a two-step procedure via a phase switching strategy, which decouples the polymerization process and the crystallization process to assemble compact and highly crystalline COF membranes. In the pre-assembly step, the mixed monomer solution is casted into a pristine membrane in the liquid phase, along with the completion of polymerization process. In the assembly step, the pristine membrane is transformed into a COF membrane in the vapour phase of solvent and catalyst, along with the completion of crystallization process. Owing to the compact and highly crystalline structure, the resultant COF membranes exhibit an unprecedented permeance (water ≈ 403 L m-2 bar-1 h-1 and acetonitrile ≈ 519 L m-2 bar-1 h-1). Our two-step procedure via phase switching strategy can open up a new avenue to the fabrication of advanced organic crystalline microporous membranes.
Collapse
Affiliation(s)
- Niaz Ali Khan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China. .,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China.
| | - Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Chandra S Azad
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Mengying Long
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, 300072, Tianjin, China.
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Dr., Corpus Christi, TX, 78412, USA
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China. .,Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China.
| |
Collapse
|
42
|
Lei R, Zha Z, Hao Z, Wang J, Wang Z, Zhao S. Ultrathin and high-performance covalent organic frameworks composite membranes generated by oligomer triggered interfacial polymerization. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Shi X, Zhang Z, Wei M, Wang X, Wang J, Zhang Y, Wang Y. Three-Dimensional Covalent Organic Framework Membranes: Synthesis by Oligomer Interfacial Ripening and Application in Precise Separations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Mingjie Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
44
|
Xu F, Wang Y, Lian C, Xu Z. Fast proton-selective transport through covalent organic frameworks in aqueous phase. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Charged nanochannels endow COF membrane with weakly concentration-dependent methanol permeability. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
Martín‐Illán JÁ, Suárez JA, Gómez‐Herrero J, Ares P, Gallego‐Fuente D, Cheng Y, Zhao D, Maspoch D, Zamora F. Ultralarge Free-Standing Imine-Based Covalent Organic Framework Membranes Fabricated via Compression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104643. [PMID: 35038248 PMCID: PMC8895050 DOI: 10.1002/advs.202104643] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Demand continues for processing methods to shape covalent organic frameworks (COFs) into macroscopic objects that are needed for their practical applications. Herein, a simple compression method to prepare large-scale, free-standing homogeneous and porous imine-based COF-membranes with dimensions in the centimeter range and excellent mechanical properties is reported. This method entails the compression of imine-based COF-aerogels, which undergo a morphological change from an elastic to plastic material. The COF-membranes fabricated upon compression show good performances for the separation of gas mixtures of industrial interest, N2 /CO2 and CH4 /CO2 . It is believed that the new procedure paves the way to a broader range of COF-membranes.
Collapse
Affiliation(s)
| | - José Antonio Suárez
- Departamento de Química InorgánicaUniversidad Autónoma de MadridMadrid28049Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UAB BellaterraBarcelona08193Spain
| | - Julio Gómez‐Herrero
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadrid28049Spain
| | - Daniel Gallego‐Fuente
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Youdong Cheng
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)CSIC and BISTCampus UAB BellaterraBarcelona08193Spain
- ICREAPg. Lluís Companys 23Barcelona08010Spain
| | - Félix Zamora
- Departamento de Química InorgánicaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA‐Nanociencia)CantoblancoMadrid28049Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
47
|
Wang X, Shi B, Yang H, Guan J, Liang X, Fan C, You X, Wang Y, Zhang Z, Wu H, Cheng T, Zhang R, Jiang Z. Assembling covalent organic framework membranes with superior ion exchange capacity. Nat Commun 2022; 13:1020. [PMID: 35197451 PMCID: PMC8866435 DOI: 10.1038/s41467-022-28643-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/26/2022] [Indexed: 11/24/2022] Open
Abstract
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g−1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm−1, holding great promise in ion transport and ionic separation applications. Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity.
Collapse
Affiliation(s)
- Xiaoyao Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Hao Yang
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Jingyuan Guan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Chunyang Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Xinda You
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Yanan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China
| | - Zhe Zhang
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, 300072, Tianjin, China
| | - Tao Cheng
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China.
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 300072, Tianjin, China. .,Zhejiang Institute of Tianjin University, 315201, Ningbo, Zhejiang, China. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Binhai New City, Fuzhou, China.
| |
Collapse
|
48
|
Guo L, Zhang J, Huang Q, Zhou W, Jin S. Progress in synthesis of highly crystalline covalent organic frameworks and their crystallinity enhancement strategies. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Xu XQ, Cao LH, Yang Y, Zhao F, Bai XT, Zang SQ. Hybrid Nafion Membranes of Ionic Hydrogen-Bonded Organic Framework Materials for Proton Conduction and PEMFC Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56566-56574. [PMID: 34787996 DOI: 10.1021/acsami.1c15748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As the high-power density and environmentally friendly energy resources, proton exchange membrane fuel cells (PEMFCs) have a promising future in portable power generation. Herein, the hybrid Nafion membranes of ionic hydrogen-bonded organic frameworks (iHOFs) for PEMFC applications are demonstrated. By adjusting the position of sulfonic groups on naphthalene disulfonic acid compounds, four iHOFs with different types of hydrogen bonds were synthesized successfully based on 1,1'-diamino-4,4'-bipyridylium and naphthalene disulfonic acid. The formation of hydrogen bond interactions between amino and sulfonate groups provides a rich hydrogen bond network, which makes such iHOFs have high conductivity, and the maximum value is 2.76 × 10-3 S·cm-1 at 100 °C and 98% RH. Besides, composite membrane materials were obtained by mixing Nafion and iHOFs, and the maximum proton conductivity values can achieve 1.13 × 10-2 S·cm-1 for 6%-iHOF-3/Nafion and 2.87 × 10-3 S·cm-1 for 6%-iHOF-4/Nafion membranes at 100 °C under 98% RH. Through the H2/O2 fuel cell performance test by using iHOF/Nafion as the solid electrolyte, the maximum power and current density values of hybrid membranes are 0.36 W·cm-2 and 1.10 A·cm-2 for 6%-iHOF-3/Nafion and 0.42 W·cm-2 and 1.20 A·cm-2 for 6%-iHOF-4/Nafion at 80 °C and 100% RH. This work provides a practicable approach for establishing high-performance proton exchange hybrid membranes by doping high proton-conducting iHOFs into the Nafion matrix.
Collapse
Affiliation(s)
- Xiao-Qian Xu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
50
|
Tang X, Ma N, Xu H, Zhang H, Zhang Q, Cai L, Otake KI, Yin P, Kitagawa S, Horike S, Gu C. Construction of unimpeded proton-conducting pathways in solution-processed nanoporous polymer membranes. MATERIALS HORIZONS 2021; 8:3088-3095. [PMID: 34505856 DOI: 10.1039/d1mh01147b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing proton-conducting membranes with three-dimensional conductivity and expedited interfacial contact is requested in the field of fuel cells. Here, we present a design strategy by combining solution processing and material flexibility into amorphous and porous polymers. We design a nanoporous polymer whose skeleton contains dihydrophenazine as a proton-accepting site, and subsequently protonate these sites to produce abundant charges on the polymer skeletons, which enables ionic polymers to be well dispersed in organic solvents and guarantees that they can be fabricated into uniform and amorphous membranes in a solution-processed manner. Importantly, after protonation, the dihydrophenazines change to proton-donating sites, which exhibit dynamic local motions that assist proton exchange on the polymer skeletons and thus construct three-dimensional and unimpeded proton-conduction pathways, with a striking proton conductivity of 0.30 S cm-1 (298 K and 90% relative humidity), a low resistance of 3.02 Ω, and a H+ transport number of 0.98 that was very close to the upper limitation of 1.0.
Collapse
Affiliation(s)
- Xiaohui Tang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Nattapol Ma
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Huanhuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Qinglei Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
| | - Linkun Cai
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Satoshi Horike
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan.
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong 21210, Thailand
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China.
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|