1
|
Paul E, Raza R, Dhara SR, Baildya N, Ghosh K. 6-Aminocoumarin-derived Schiff base gelators: aggregation and sensing of CN -, Fe 3+, Cu 2+ and CO 2 under different conditions. RSC Adv 2024; 14:32759-32770. [PMID: 39429939 PMCID: PMC11484512 DOI: 10.1039/d4ra05503a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Herein, we report the synthesis, characterization, supramolecular gelation and multiple applications of 6-aminocoumarin-derived Schiff bases 1 and 2. Both Schiff bases underwent gelation in DMF-H2O (2 : 1, v/v), DMSO-H2O (2 : 1, v/v) and dioxane-H2O (2 : 1, v/v) involving weak forces. Furthermore, the gels were stable and exhibited good viscoelastic properties. The storage modulus (G') of each gel was considerably higher than its loss modulus (G''). The higher value of the crossover point and lower value of tan δ for the gel of Schiff base 2 compared to the gel of Schiff base 1 demonstrated the better gelation behaviour of 2 than that of 1 in DMF-H2O (2 : 1, v/v). Further, iodo-analogue 2 exhibited cross-linked helical morphology, whereas non-iodo analogue 1 exhibited long chain fibrous morphology, as observed via FESEM. These differences in morphology and viscoelastic behaviors were attributed to the iodo group present in 2, which influenced its aggregation involving halogen bonding. To demonstrate their application, the DMF-H2O (2 : 1, v/v) gels of both 1 and 2 recognized CN- over a series of other anions by exhibiting a gel-to-sol phase change. Besides anion sensing, gels 1 and 2 selectively detected Fe3+ and Cu2+ ions over other metal ions via a gel-to-gel colour change. Finally, CN--treated solutions of 1 and 2 allowed the successful detection of CO2 by the naked eye. Moreover, the detection was possible using a test-kit method.
Collapse
Affiliation(s)
- Eshani Paul
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Rameez Raza
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Subrata Ranjan Dhara
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Nabajyoti Baildya
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| | - Kumaresh Ghosh
- Department of Chemistry, University of Kalyani Kalyani 741235 India +91 3325828282 +91 3325828750-305
| |
Collapse
|
2
|
Lin B, Liu H, Scott HM, Karki I, Vik EC, Madukwe DO, Pellechia PJ, Shimizu KD. Transition State Stabilizing Effects of Oxygen and Sulfur Chalcogen Bond Interactions. Chemistry 2024; 30:e202402011. [PMID: 39024522 DOI: 10.1002/chem.202402011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Non-covalent chalcogen bond (ChB) interactions have found utility in many fields, including catalysis, organic semiconductors, and crystal engineering. In this study, the transition stabilizing effects of ChB interactions of oxygen and sulfur were experimentally measured using a series of molecular rotors. The rotors were designed to form ChB interactions in their bond rotation transition states. This enabled the kinetic influences to be assessed by monitoring changes in the rotational barriers. Despite forming weaker ChB interactions, the smaller chalcogens were able to stabilize transition states and had measurable kinetic effects on the rotational barriers. Sulfur stabilized the bond rotation transition state by as much as -7.2 kcal/mol without electron-withdrawing groups. The key was to design a system where the sulfur σ ${\sigma }$ -hole was aligned with the lone pairs of the chalcogen bond acceptor. Oxygen rotors also could form transition state stabilizing ChB interactions but required electron-withdrawing groups. For both oxygen and sulfur ChB interactions, a strong correlation was observed between transition state stabilizing abilities and electrostatic potential (ESP) of the chalcogen, providing a useful predictive parameter for the rational design of future ChB systems.
Collapse
Affiliation(s)
- Binzhou Lin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Harrison M Scott
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ishwor Karki
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Erik C Vik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Daniel O Madukwe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
3
|
Docker A, Min Tay H. Determining Ion-Pair Binding Affinities of Heteroditopic Receptor Systems. Chemistry 2024:e202402844. [PMID: 39186476 DOI: 10.1002/chem.202402844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Determining ion-pair affinities in heteroditopic receptor systems presents a persistent and significant challenge. The plethora of technical and experimental problems implicated in measuring ion-pair affinities have encouraged the use of several expedient experimental practices as a means of characterising ion-pair recognition behaviour. Exploiting a model heteroditopic receptor system, we interrogate the reliability of these methods and demonstrate that these commonly used techniques can be highly questionable and without extreme care can lead to incorrect conclusions.
Collapse
Affiliation(s)
- Andrew Docker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Hui Min Tay
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
4
|
Taylor AJ, Beer PD. Halogen bonding aza-BODIPYs for anion sensing and anion binding-modulated singlet oxygen generation. Chem Commun (Camb) 2024; 60:7983-7986. [PMID: 38920113 DOI: 10.1039/d4cc02330g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Two novel aza-BODIPY based anion sensors, decorated with halogen bonding recognition sites, are capable of detecting halide anions at biologically-relevant near-IR wavelengths. With potential application for improving the selectivity of photodynamic therapy agents, unprecedented supramolecular host-guest anion binding-modulated singlet oxygen generation is demonstrated.
Collapse
Affiliation(s)
- Andrew J Taylor
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
5
|
Beckmann JL, Tiessen N, Neumann B, Stammler HG, Hoge B, Mitzel NW. Polydentate chalcogen bonding: anion trapping with a water-stable host compound carrying Se-CF 3 functions. Dalton Trans 2024; 53:12234-12239. [PMID: 38979556 DOI: 10.1039/d4dt01730g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bidentate and tetradentate chalcogen bonding host systems with SeCF3 functions as σ-hole donors in close proximity at the alkyne functions of 1,8-diethynylanthracene and its syn-dimer were prepared in quantitative yield by tin-selenium exchange reactions of the corresponding trimethylstannyl precursors with ClSeCF3. The bidentate system shows chalcogen bonding interactions with THF, but does not bind halide ions. The tetradentate system cooperatively chelates chloride, bromide and iodide ions with its four CC-SeCF3 units by rotating the four σ-holes towards the halide ion. The structures of these halide ion adducts were determined by X-ray diffraction. The hydrobromide and -iodide salts of the ethyl derivative of Schwesinger's phosphazene superbase served as halide salts with very weakly coordinating cations.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Natalia Tiessen
- Inorganic Chemistry ACII, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Berthold Hoge
- Inorganic Chemistry ACII, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| |
Collapse
|
6
|
Docker A, Tse YC, Tay HM, Zhang Z, Beer PD. Ammonium halide selective ion pair recognition and extraction with a chalcogen bonding heteroditopic receptor. Dalton Trans 2024; 53:11141-11146. [PMID: 38888623 DOI: 10.1039/d4dt01376j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The first example of a heteroditopic receptor capable of cooperative recognition and extraction of ammonium salt (NH4X) ion-pairs is described. Consisting of a bidentate 3,5-bis-tellurotriazole chalcogen bond donor binding cleft, the appendage of benzo-15-crown-5 (B15C5) substituents to the tellurium centres facilitates binding of the ammonium cation via a co-facial bis-B15C5 sandwich complex, which serves to switch on chalcogen bonding-mediated anion binding potency. Extensive quantitative ion-pair recognition 1H NMR titration studies in CD3CN/CDCl3 (1 : 1, v/v) solvent media reveal impressive ion-pair binding affinities towards a variety of ammonium halide, nitrate and thiocyanate salts, with the heteroditopic receptor displaying notable ammonium halide salt selectivity. The prodigious solution phase NH4X recognition also translates to efficient solid-liquid and liquid-liquid extraction capabilities.
Collapse
Affiliation(s)
- Andrew Docker
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuen Cheong Tse
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Hui Min Tay
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Zongyao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
7
|
Patrick SC, Beer PD, Davis JJ. Solvent effects in anion recognition. Nat Rev Chem 2024; 8:256-276. [PMID: 38448686 DOI: 10.1038/s41570-024-00584-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
Anion recognition is pertinent to a range of environmental, medicinal and industrial applications. Recent progress in the field has relied on advances in synthetic host design to afford a broad range of potent recognition motifs and novel supramolecular structures capable of effective binding both in solution and at derived molecular films. However, performance in aqueous media remains a critical challenge. Understanding the effects of bulk and local solvent on anion recognition by host scaffolds is imperative if effective and selective detection in real-world media is to be viable. This Review seeks to provide a framework within which these effects can be considered both experimentally and theoretically. We highlight proposed models for solvation effects on anion binding and discuss approaches to retain strong anion binding in highly competitive (polar) solvents. The synthetic design principles for exploiting the aforementioned solvent effects are explored.
Collapse
Affiliation(s)
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Oxford, UK
| | - Jason J Davis
- Department of Chemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Islam AS, Pramanik S, Mondal S, Ghosh R, Ghosh P. Selective recognition and extraction of iodide from pure water by a tripodal selenoimidazol(ium)-based chalcogen bonding receptor. iScience 2024; 27:108917. [PMID: 38327780 PMCID: PMC10847689 DOI: 10.1016/j.isci.2024.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/20/2023] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
A selenium-based tripodal chalcogen bond (ChB) donor TPI-3Se is demonstrated for the recognition and extraction of I- from 100% water medium. NMR and ITC studies with the halides reveal that the ChB donor selectively binds with the large, weakly hydrated I-. Interestingly, I- crystallizes out selectively in the presence of other halides supporting the superiority of the selective recognition of I-. The X-ray structure of the ChB-iodide complex manifests both the μ1 and μ2 coordinated interactions, which is rare in the C-Se···I chalcogen bonding. Furthermore, to validate the selective I- binding potency of TPI-3Se in pure water, comparisons are made with its hydrogen and halogen bond donor analogs. The computational analysis also provides the mode of I- recognition by TPI-3Se. Importantly, this receptor is capable of extracting I- from pure water through selenium sigma-hole and I- interaction with a high degree of efficiency (∼70%).
Collapse
Affiliation(s)
- Abu S.M. Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sourav Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sahidul Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Rajib Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
9
|
Cao L, Chen H, Fu H, Xian J, Cao H, Pan X, Wu J. Bidentate selenium-based chalcogen bond catalyzed cationic polymerization of p-methoxystyrene. Chem Commun (Camb) 2024; 60:1321-1324. [PMID: 38197262 DOI: 10.1039/d3cc05516g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The application of selenium-based non-covalent bond catalysis in living cationic polymerization has rarely been reported. In this work, the cationic polymerization of p-methoxystyrene (pMOS) was performed using a bidentate selenium bond catalyst - a new water-tolerant Lewis acid catalyst. A polymer with controllable molecular weight and narrow molecular weight distribution can be obtained at room temperature, with a maximum molecular weight of 23.3 kDa. This selenium bond compound can also catalyze the controllable cationic polymerization of p-methoxy styrene under environmental conditions. By changing the monomer feeding ratio, a secondary feeding experiment and DFT analysis, it is shown that the selenium bond catalyst can induce polymer chain growth by reversibly activating dormant covalent bonds (C-OH).
Collapse
Affiliation(s)
- Luya Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Hao Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Hongjun Fu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Ji Xian
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Hongzhang Cao
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China.
| |
Collapse
|
10
|
Jain S, Satpute SS, Jha RK, Patel MS, Kumar S. Bidentate Ligand Driven Intramolecularly Te…O Bonded Organotellurium Cations from Synthesis, Stability to Catalysis. Chemistry 2024; 30:e202303089. [PMID: 37966430 DOI: 10.1002/chem.202303089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
A new series of unsymmetrical phenyl tellurides derived from 2-N-(quinolin-8-yl) benzamide ligand has been synthesized in a practical manner by the copper-catalyzed method by using diaryl ditelluride and Mg as a reductant at room temperature. In order to augment the Lewis acidity of these newly formed unsymmetrical monotellurides, these have been transformed into corresponding unsymmetrical 2-N-(quinolin-8-yl)benzamide tellurium cations. Subsequently, these Lewis acidic tellurium cations were used as chalcogen bonding catalysts, enabling the synthesis of various substituted 1,2-dihydroquinolines by activating ketones with anilines under mild conditions. Moreover, the synthesized 2-N-(quinolin-8-yl)benzamide phenyl tellurium cation has also catalyzed the formation of β-amino alcohols in high regioselectivity by effectively activating epoxides at room temperature. Mechanistic insight by 1 H and 19 F NMR study, electrostatic surface potential (ESP map), control reaction in which tellurium cation reacted explosively with epoxide, suggested that the enhanced Lewis acidity of tellurium center seems responsible for efficient catalytic activities under mild conditions enabling β-amino alcohols with excellent regioselectivity and 1,2-dihydroquinolines with trifluoromethyl, nitro, and pyridylsubstitution, which were difficult to access.
Collapse
Affiliation(s)
- Saket Jain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Saurabh Sandip Satpute
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Mili Sanjeev Patel
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri By-pass Road, Bhopal, 462 066, Madhya Pradesh, India
| |
Collapse
|
11
|
Chvojka M, Madea D, Valkenier H, Šindelář V. Tuning CH Hydrogen Bond-Based Receptors toward Picomolar Anion Affinity via the Inductive Effect of Distant Substituents. Angew Chem Int Ed Engl 2023:e202318261. [PMID: 38063265 DOI: 10.1002/anie.202318261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Inspired by nature, artificial hydrogen bond-based anion receptors have been developed to achieve high anion selectivity; however, their binding affinity is usually low. The potency of these receptors is usually increased by the introduction of aryl substituents, which withdraw electrons from their binding site through the resonance effect. Here, we show that the polarization of the C(sp3 )-H binding site of bambusuril receptors, and thus their potency to bind anions, can be modulated by the inductive effect. The presence of electron-withdrawing groups on benzyl substituents of bambusurils significantly increases their binding affinities to halides, resulting in the strongest iodide receptor reported to date with an association constant greater than 1013 M-1 in acetonitrile. A Hammett plot showed that while the bambusuril affinity toward halides linearly increases with the electron-withdrawing power of their substituents, their binding selectivity remains essentially unchanged.
Collapse
Affiliation(s)
- Matúš Chvojka
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Engineering of Molecular NanoSystems, École polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium
| | - Dominik Madea
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Hennie Valkenier
- Engineering of Molecular NanoSystems, École polytechnique de Bruxelles, Université libre de Bruxelles, Avenue F.D. Roosevelt 50, CP165/64, 1050, Brussels, Belgium
| | - Vladimír Šindelář
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| |
Collapse
|
12
|
Narsimhulu G, Samuel C, Palani S, Dasari SHK, Krishnamoorthy K, Baskar V. Electrocatalytic hydrogen evolution mediated by an organotelluroxane macrocycle stabilized through secondary interactions. Dalton Trans 2023; 52:17242-17248. [PMID: 37966305 DOI: 10.1039/d3dt02746e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
A discrete liphophilic organotelluroxane macrocycle has been found to catalyse the hydrogen evolution reaction (HER) by proton reduction efficiently. The macrocycle is synthesized via chloride abstraction from bis(p-methoxyphenyl) tellurium dichloride (p-MeOC6H5)2TeCl2 (1) by silver salts AgMX4 (MX4 = BF4-, and ClO4-) resulting in in situ generated di-cationic tetraorganoditelluroxane units; two such units are held together by two weak anions μ2-MX4, bridging to form 12-membered di-cationic macrocycles [((p-MeO-C6H4)2Te)2(μ-O)(μ2-F2BF2)2]2+ (2) and [((p-MeO-C6H4)2Te)2(μ-O)(μ2-O2ClO2)2]2+ (3) stabilized via Te-(μ2-BF4/ClO4), with secondary interactions. The charge is balanced by the presence of two more anions, one above and another below the plane of the macrocycle. Similar reaction at higher temperatures leads to the formation of telluronium salts R3TeX [X = BF4- (4), ClO4- (5)] as a major product. The BF4- anion containing macrocycle and telluronium salt were monitored using 19F NMR. HRMS confirmed the structural stability of all the compounds in the solution state. The organotelluroxane macrocycle 2 has been found to act as an efficient electrocatalyst for proton reduction in an organic medium in the presence of p-toluene sulfonic acid as a protic source.
Collapse
Affiliation(s)
- Gujju Narsimhulu
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Calvin Samuel
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | - Sathishkumar Palani
- Polymer Science and Engineering Division, CSIR-National Laboratory, Dr Homi Bhabha Road, Pune - 411008, India
| | | | - Kothandam Krishnamoorthy
- Polymer Science and Engineering Division, CSIR-National Laboratory, Dr Homi Bhabha Road, Pune - 411008, India
| | - Viswanathan Baskar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
13
|
Scheiner S, Michalczyk M, Zierkiewicz W. Influence of Internal Angular Arrangement on Pnicogen Bond Strength. Inorg Chem 2023. [PMID: 38016913 DOI: 10.1021/acs.inorgchem.3c03141] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The three Z-X covalent bonds of a ZX3 unit (Z = P, As, Sb, Bi) are normally arranged in a pyramidal structure. Quantum chemical calculations show that pnicogen bonds (ZBs) to the central Z are weakened if ZX3 is flattened, as in the opening of an umbrella. The partial closing of the umbrella has the opposite effect of substantially strengthening these ZBs, even amounting to a 2- or 3-fold magnification in certain cases. The strongest such bonds, wherein Sb and Bi are in a strained configuration within a ZO3CH model system, have interaction energies of 20 kcal/mol with an NH3 base. Most of these systems, whether flattened or more pyramidal, are capable of engaging in three ZBs simultaneously, despite a certain amount of negative cooperativity.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
14
|
Beckmann JL, Krieft J, Vishnevskiy YV, Neumann B, Stammler HG, Mitzel NW. A Bidentate Antimony Pnictogen Bonding Host System. Angew Chem Int Ed Engl 2023; 62:e202310439. [PMID: 37773008 DOI: 10.1002/anie.202310439] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023]
Abstract
A bidentate pnictogen bonding host-system based on 1,8-diethynylanthracene was synthesized by a selective tin-antimony exchange reaction and investigated regarding its ability to act as a Lewis acidic host component for the complexation of Lewis basic or anionic guests. In this work, the novel C≡C-Sb(C2 F5 )2 unit was established to study the potential of antimony(III) sites as representatives for the scarcely explored pnictogen bonding donors. The capability of this partly fluorinated host system was investigated towards halide anions (Cl- , Br- , I- ), dimethyl chalcogenides Me2 Y (Y=O, S, Se, Te), and nitrogen heterocycles (pyridine, pyrimidine). Insights into the adduct formation behavior as well as the bonding situation of such E⋅⋅⋅Sb-CF moieties were obtained in solution by means of NMR spectroscopy, in the solid state by X-ray diffraction, by elemental analyses, and by computational methods (DFT, QTAIM, IQA), respectively.
Collapse
Affiliation(s)
- J Louis Beckmann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Jonas Krieft
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Norbert W Mitzel
- Chair of Inorganic and Structural Chemistry, Center for Molecular Materials CM2 Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
15
|
Radiush EA, Wang H, Chulanova EA, Ponomareva YA, Li B, Wei QY, Salnikov GE, Petrakova SY, Semenov NA, Zibarev AV. Halide Complexes of 5,6-Dicyano-2,1,3-Benzoselenadiazole with 1 : 4 Stoichiometry: Cooperativity between Chalcogen and Hydrogen Bonding. Chempluschem 2023; 88:e202300523. [PMID: 37750466 DOI: 10.1002/cplu.202300523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
The [M4 -Hal]- (M=the title compound; Hal=Cl, Br, and I) complexes were isolated in the form of salts of [Et4 N]+ cation and characterized by XRD, NMR, UV-Vis, DFT, QTAIM, EDD, and EDA. Their stoichiometry is caused by a cooperative interplay of σ-hole-driven chalcogen (ChB) and hydrogen (HB) bondings. In the crystal, [M4 -Hal]- are connected by the π-hole-driven ChB; overall, each [Hal]- is six-coordinated. In the ChB, the electrostatic interaction dominates over orbital and dispersion interactions. In UV-Vis spectra of the M+[Hal]- solutions, ChB-typical and [Hal]- -dependent charge-transfer bands are present; they reflect orbital interactions and allow identification of the individual [Hal]- . However, the structural situation in the solutions is not entirely clear. Particularly, the UV-Vis spectra of the solutions are different from the solid-state spectra of the [Et4 N]+ [M4 -Hal]- ; very tentatively, species in the solutions are assigned [M-Hal]- . It is supposed that the formation of the [M4 -Hal]- proceeds during the crystallization of the [Et4 N]+ [M4 -Hal]- . Overall, M can be considered as a chromogenic receptor and prototype sensor of [Hal]- . The findings are also useful for crystal engineering and supramolecular chemistry.
Collapse
Affiliation(s)
- Ekaterina A Radiush
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Hui Wang
- School of Physical Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P. R. China
| | - Elena A Chulanova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Current address: Institute for Applied Physics, University of Tübingen, 72076, Tübingen, Germany
| | - Yana A Ponomareva
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
- Department of Natural Sciences, National Research University - Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Bin Li
- School of Physical Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P. R. China
| | - Qiao Yu Wei
- School of Physical Science and Technology, Southwest Jiaotong University, 610031, Chengdu, P. R. China
| | - Georgy E Salnikov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Svetlana Yu Petrakova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Nikolay A Semenov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Andrey V Zibarev
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
16
|
Radzhabov AD, Ledneva AI, Soldatova NS, Fedorova II, Ivanov DM, Ivanov AA, Yusubov MS, Kukushkin VY, Postnikov PS. Halogen Bond-Involving Self-Assembly of Iodonium Carboxylates: Adding a Dimension to Supramolecular Architecture. Int J Mol Sci 2023; 24:14642. [PMID: 37834088 PMCID: PMC10573078 DOI: 10.3390/ijms241914642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
We designed 0D, 1D, and 2D supramolecular assemblies made of diaryliodonium salts (functioning as double σ-hole donors) and carboxylates (as σ-hole acceptors). The association was based on two charge-supported halogen bonds (XB), which occurred between IIII sites of the iodonium cations and the carboxylate anions. The sequential introduction of the carboxylic groups in the aryl ring of the benzoic acid added a dimension to the 0D supramolecular organization of the benzoate, which furnished 1D-chained and 2D-layered structures when terephthalate and trimesate anions, correspondingly, were applied as XB acceptors. The structure-directing XB were studied using DFT calculations under periodic boundary conditions and were followed by the one-electron-potential analysis and the Bader atoms-in-molecules topological analysis of electron density. These theoretical methods confirmed the existence of the XB and verified the philicities of the interaction partners in the designed solid-state structures.
Collapse
Affiliation(s)
- Amirbek D. Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Alyona I. Ledneva
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Natalia S. Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Irina I. Fedorova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Department of Mathematics and Mechanics, Saint Petersburg State University, Saint Petersburg 199034, Russia
| | - Daniil M. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
| | - Alexey A. Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia (V.Y.K.)
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russia
| | - Pavel S. Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russia (N.S.S.); (D.M.I.); (M.S.Y.)
- Department of Solid State Engineering, Institute of Chemical Technology, 16628 Prague, Czech Republic
| |
Collapse
|
17
|
Sun J, Decato DA, Bryantsev VS, John EA, Berryman OB. The interplay between hydrogen and halogen bonding: substituent effects and their role in the hydrogen bond enhanced halogen bond. Chem Sci 2023; 14:8924-8935. [PMID: 37621436 PMCID: PMC10445465 DOI: 10.1039/d3sc02348f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
The hydrogen bond enhanced halogen bond (HBeXB) has recently been used to effectively improve anion binding, organocatalysis, and protein structure/function. In this study, we present the first systematic investigation of substituent effects in the HBeXB. NMR analysis confirmed intramolecular HBing between the amine and the electron-rich belt of the XB donor (N-H⋯I). Gas-phase density functional theory studies showed that the influence of HBing on the halogen atom is more sensitive to substitution on the HB donor ring (R1). The NMR studies revealed that the intramolecular HBing had a significant impact on receptor performance, resulting in a 50-fold improvement. Additionally, linear free energy relationship (LFER) analysis was employed for the first time to study the substituent effect in the HBeXB. The results showed that substituents on the XB donor ring (R2) had a competing effect where electron donating groups strengthened the HB and weakened the XB. Therefore, selecting an appropriate substituent on the adjacent HB donor ring (R1) could be an alternative and effective way to enhance an electron-rich XB donor. X-ray crystallographic analysis demonstrated that intramolecular HBing plays an important role in the receptor adopting the bidentate conformation. Taken together, the findings imply that modifying distal substituents that affect neighboring noncovalent interactions can have a similar impact to conventional para substitution substituent effects.
Collapse
Affiliation(s)
- Jiyu Sun
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| | - Daniel A Decato
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| | | | - Eric A John
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| | - Orion B Berryman
- Department of Chemistry and Biochemistry, University of Montana, 32 Campus Drive Missoula MT 59812 USA
| |
Collapse
|
18
|
Amonov A, Scheiner S. Competition between Binding to Various Sites of Substituted Imidazoliums. J Phys Chem A 2023. [PMID: 37490696 DOI: 10.1021/acs.jpca.3c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The imidazolium cation has a number of different sites that can interact with a nucleophile. Adding a halogen atom (X) or a chalcogen (YH) group introduces the possibility of an NX···nuc halogen or NY···nuc chalcogen bond, which competes against the various H-bonds (NH and CH donors) as well as the lone pair···π interaction wherein the nucleophile lies above the plane of the cation. Substituted imidazoliums are paired with the NH3 base, and the various different complexes are evaluated by density functional theory (DFT) calculations. The strength of XB and YB increases quickly along with the size and polarizability of the X/Y atom, and this sort of bond is the strongest for the heavier Br, I, Se, and Te atoms, followed by the NH···N H-bond, but this order reverses for Cl and S. The various CH···N H-bonds are comparable to one another and to the lone pair···π bond, all with interaction energies of 10-13 kcal/mol, values which show very little dependence upon the substituent placed on the imidazolium.
Collapse
Affiliation(s)
- Akhtam Amonov
- Department of Optics and Spectroscopy, Engineering Physics Institute, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
19
|
Adhav V, Saikrishnan K. The Realm of Unconventional Noncovalent Interactions in Proteins: Their Significance in Structure and Function. ACS OMEGA 2023; 8:22268-22284. [PMID: 37396257 PMCID: PMC10308531 DOI: 10.1021/acsomega.3c00205] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
Proteins and their assemblies are fundamental for living cells to function. Their complex three-dimensional architecture and its stability are attributed to the combined effect of various noncovalent interactions. It is critical to scrutinize these noncovalent interactions to understand their role in the energy landscape in folding, catalysis, and molecular recognition. This Review presents a comprehensive summary of unconventional noncovalent interactions, beyond conventional hydrogen bonds and hydrophobic interactions, which have gained prominence over the past decade. The noncovalent interactions discussed include low-barrier hydrogen bonds, C5 hydrogen bonds, C-H···π interactions, sulfur-mediated hydrogen bonds, n → π* interactions, London dispersion interactions, halogen bonds, chalcogen bonds, and tetrel bonds. This Review focuses on their chemical nature, interaction strength, and geometrical parameters obtained from X-ray crystallography, spectroscopy, bioinformatics, and computational chemistry. Also highlighted are their occurrence in proteins or their complexes and recent advances made toward understanding their role in biomolecular structure and function. Probing the chemical diversity of these interactions, we determined that the variable frequency of occurrence in proteins and the ability to synergize with one another are important not only for ab initio structure prediction but also to design proteins with new functionalities. A better understanding of these interactions will promote their utilization in designing and engineering ligands with potential therapeutic value.
Collapse
Affiliation(s)
- Vishal
Annasaheb Adhav
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
20
|
Bąk KM, Patrick SC, Li X, Beer PD, Davis JJ. Engineered Binding Microenvironments in Halogen Bonding Polymers for Enhanced Anion Sensing. Angew Chem Int Ed Engl 2023; 62:e202300867. [PMID: 36749115 PMCID: PMC10946961 DOI: 10.1002/anie.202300867] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Mimicking Nature's polymeric protein architectures by designing hosts with binding cavities screened from bulk solvent is a promising approach to achieving anion recognition in competitive media. Accomplishing this, however, can be synthetically demanding. Herein we present a synthetically tractable approach, by directly incorporating potent supramolecular anion-receptive motifs into a polymeric scaffold, tuneable through a judicious selection of the co-monomer. A comprehensive analysis of anion recognition and sensing is demonstrated with redox-active, halogen bonding polymeric hosts. Notably, the polymeric hosts consistently outperform their monomeric analogues, with especially large halide binding enhancements of ca. 50-fold observed in aqueous-organic solvent mixtures. These binding enhancements are rationalised by the generation and presentation of low dielectric constant binding microenvironments from which there is appreciable solvent exclusion.
Collapse
Affiliation(s)
- Krzysztof M. Bąk
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Sophie C. Patrick
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Xiaoxiong Li
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| | - Jason J. Davis
- Department of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QZUK
| |
Collapse
|
21
|
de Azevedo Santos L, Ramalho TC, Hamlin TA, Bickelhaupt FM. Intermolecular Covalent Interactions: Nature and Directionality. Chemistry 2023; 29:e202203791. [PMID: 36478415 DOI: 10.1002/chem.202203791] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Quantum chemical methods were employed to analyze the nature and the origin of the directionality of pnictogen (PnB), chalcogen (ChB), and halogen bonds (XB) in archetypal Fm Z⋅⋅⋅F- complexes (Z=Pn, Ch, X), using relativistic density functional theory (DFT) at ZORA-M06/QZ4P. Quantitative Kohn-Sham MO and energy decomposition analyses (EDA) show that all these intermolecular interactions have in common that covalence, that is, HOMO-LUMO interactions, provide a crucial contribution to the bond energy, besides electrostatic attraction. Strikingly, all these bonds are directional (i.e., F-Z⋅⋅⋅F- is approximately linear) despite, and not because of, the electrostatic interactions which, in fact, favor bending. This constitutes a breakdown of the σ-hole model. It was shown how the σ-hole model fails by neglecting both, the essential physics behind the electrostatic interaction and that behind the directionality of electron-rich intermolecular interactions. Our findings are general and extend to the neutral, weaker ClI⋅⋅⋅NH3 , HClTe⋅⋅⋅NH3 , and H2 ClSb⋅⋅⋅NH3 complexes.
Collapse
Affiliation(s)
- Lucas de Azevedo Santos
- Department of Theoretical Chemistry, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - Teodorico C Ramalho
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras CEP, 37200-900, Lavras, MG, Brazil.,Center for Basic and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands.,Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.,Department of Chemical Sciences, University of Johannesburg Auckland Park, Johannesburg, 2006, South Africa
| |
Collapse
|
22
|
Novikov AS, Bolotin DS. Xenon Derivatives as Aerogen Bond-Donating Catalysts for Organic Transformations: A Theoretical Study on the Metaphorical "Spherical Cow in a Vacuum" Provides Insights into Noncovalent Organocatalysis. J Org Chem 2023; 88:1936-1944. [PMID: 35679603 DOI: 10.1021/acs.joc.2c00680] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Computations indicate that cationic and noncharged xenon derivatives should exhibit higher catalytic activity than their iodine-based noncovalent organocatalytic congeners. Perfluorophenyl xenonium(II) is expected to demonstrate the best balance between catalytic activity and chemical stability for use in organocatalysis. Comparing its catalytic activity with that of isoelectronic perfluoroiodobenzene indicates that the high catalytic activity of cationic noncovalent organocatalysts is predominantly attributed to the electrostatic interactions with the reaction substrates, which cause the polarization of ligated species during the reaction progress. In contrast, the electron transfer and covalent contributions to the bonding between the catalyst and substrate have negligible effects. The dominant effect of electrostatic interactions results in a strong negative correlation between the calculated Gibbs free energies of activation for the modeled reactions and the highest potentials of the σ-holes on the central atoms of the catalysts. No such correlation is observed for noncharged catalysts.
Collapse
Affiliation(s)
- Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
23
|
Docker A, Johnson TG, Kuhn H, Zhang Z, Langton MJ. Multistate Redox-Switchable Ion Transport Using Chalcogen-Bonding Anionophores. J Am Chem Soc 2023; 145:2661-2668. [PMID: 36652378 PMCID: PMC9896566 DOI: 10.1021/jacs.2c12892] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Indexed: 01/19/2023]
Abstract
Synthetic supramolecular transmembrane anionophores have emerged as promising anticancer chemotherapeutics. However, key to their targeted application is achieving spatiotemporally controlled activity. Herein, we report a series of chalcogen-bonding diaryl tellurium-based transporters in which their anion binding potency and anionophoric activity are controlled through reversible redox cycling between Te oxidation states. This unprecedented in situ reversible multistate switching allows for switching between ON and OFF anion transport and is crucially achieved with biomimetic chemical redox couples.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Toby G. Johnson
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Heike Kuhn
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Zongyao Zhang
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| | - Matthew J. Langton
- Department of Chemistry,
Chemistry Research Laboratory, University
of Oxford, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
24
|
Taylor AJ, Docker A, Beer PD. Allosteric and Electrostatic Cooperativity in a Heteroditopic Halogen Bonding Receptor System. Chem Asian J 2023; 18:e202201170. [PMID: 36516344 PMCID: PMC10107604 DOI: 10.1002/asia.202201170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
A halogen bonding (XB) heteroditopic receptor, consisting of a 1,3-bis-iodo-triazole benzene XB anion binding site covalently appended via a flexible methylene group with two benzo-15-crown-5 (B15C5) cation binding moieties, and its hydrogen bonding receptor analogue, are used to delineate the mechanisms of cooperativity for alkali metal halide ion-pair recognition. Extensive cation, anion and ion-pair 1 H NMR titration investigations demonstrate the combination of allosteric pre-organisation, via 1 : 1 stoichiometric intramolecular potassium and rubidium metal cation bis-B15C5 sandwich complexation, in concert with favourable electrostatics and XB potency, results in a remarkable enhancement of halide anion binding affinity by a factor of at least 700. By contrast, a notably diminished halide anion affinity enhancement factor of just 15 is observed with the corresponding 1 : 1 stoichiometric sodium cation complexed receptor system, where the smaller sized cation singly occupies one B15C5 unit and only an electrostatic contribution to cooperativity is possible. These observations serve to illustrate that allosteric pre-organisation capability, electrostatic attraction and XB mediated anion recognition are important strategic design features to incorporate in future high-fidelity heteroditopic ion-pair receptor development.
Collapse
Affiliation(s)
- Andrew J Taylor
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
25
|
Duan HY, Han ST, Zhan TG, Liu LJ, Zhang KD. Visible-Light-Switchable Tellurium-Based Chalcogen Bonding: Photocontrolled Anion Binding and Anion Abstraction Catalysis. Angew Chem Int Ed Engl 2023; 62:e202212707. [PMID: 36383643 DOI: 10.1002/anie.202212707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
Exploring new noncovalent bonding motifs with reversibly tunable binding affinity is of fundamental importance in manipulating the properties and functions of supramolecular self-assembly systems and materials. Herein, for the first time, we demonstrate a unique visible-light-switchable telluro-triazole/triazolium-based chalcogen bonding (ChB) system in which the Te moieties are connected by azobenzene cores. The binding strengths between these azo-derived ChB receptors and the halide anions (Cl- , Br- ) could be reversibly regulated upon irradiation by visible light of different wavelengths. The cis-bidentate ChB receptors exhibit enhanced halide anion binding ability compared to the trans-monodentate receptors. In particular, the telluro-triazolium-based ChB receptor can achieve both high and significantly photoswitchable binding affinities for halide anions, which enable it to serve as an efficient photocontrolled organocatalyst for ChB-assisted halide abstraction in a Friedel-Crafts alkylation benchmark reaction.
Collapse
Affiliation(s)
- Hong-Ying Duan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Shi-Tao Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Tian-Guang Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Li-Juan Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| | - Kang-Da Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, P. R. China
| |
Collapse
|
26
|
Abstract
Quantum calculations study the manner in which the involvement of a halogen atom as a proton acceptor in one or more H bonds (HBs) affects the strength of the halogen bond (XB) it can form with a nucleophile aligned with the X σ-hole. A variety of Lewis acids wherein X = F, Cl, Br, and I are attached to a tetrel atom C or Ge engaged in a XB with nucleophile NH3. One, two, and three HF molecules were positioned perpendicular to the XB axis so that they could form a HB to the X atom. Each such HB strengthened the XB by an increment of 1 kcal/mol or more that does not attenuate as each new HB is added, potentially increasing the interaction energy manyfold. Additionally, the presence of one or more HBs facilitates the formation of a XB by molecules which are reluctant to engage in such a bond in the absence of these auxiliary interactions. Even the F atom, which avoids such a XB, can be coaxed to participate in a XB of moderate strength by one or more of these external HBs.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
27
|
Docker A, Tse YC, Tay HM, Taylor AJ, Zhang Z, Beer PD. Anti-Hofmeister Anion Selectivity via a Mechanical Bond Effect in Neutral Halogen-Bonding [2]Rotaxanes. Angew Chem Int Ed Engl 2022; 61:e202214523. [PMID: 36264711 PMCID: PMC10100147 DOI: 10.1002/anie.202214523] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 11/18/2022]
Abstract
Exceptionally strong halogen bonding (XB) donor-chloride interactions are exploited for the chloride anion template synthesis of neutral XB [2]rotaxane host systems which contain perfluoroaryl-functionalised axle components, including a remarkably potent novel 4,6-dinitro-1,3-bis-iodotriazole motif. Halide anion recognition properties in aqueous-organic media, determined via extensive 1 H NMR halide anion titration experiments, reveal the rotaxane host systems exhibit dramatically enhanced affinities for hydrophilic Cl- and Br- , but conversely diminished affinities for hydrophobic I- , relative to their non-interlocked axle counterparts. Crucially, this mechanical bond effect induces a binding selectivity which directly opposes Hofmeister bias. Free-energy analysis of this mechanical bond enhancement demonstrates anion recognition by neutral XB interlocked host systems as a rare and general strategy to engineer anti-Hofmeister bias anion selectivity in synthetic receptor design.
Collapse
Affiliation(s)
- Andrew Docker
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Yuen Cheong Tse
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Hui Min Tay
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Andrew J. Taylor
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Zongyao Zhang
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
28
|
Kerckhoffs A, Christensen KE, Langton MJ. Fast relaxing red and near-IR switchable azobenzenes with chalcogen and halogen substituents: periodic trends, tuneable thermal half-lives and chalcogen bonding. Chem Sci 2022; 13:11551-11559. [PMID: 36320400 PMCID: PMC9555560 DOI: 10.1039/d2sc04601f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/18/2022] [Indexed: 11/08/2023] Open
Abstract
Molecular photoswitches operating in the red to near-IR region with controllable thermal relaxation rates are attractive components for photo-regulating biological processes. Herein, we report the synthesis of red-shifted azobenzenes functionalised with the heavier chalcogens and halogens that meet these requirements for biological application; namely fatigue-resistant photo-switching with red and near IR light and functional handles for further functionalisation for application. We report robust periodic trends for the chalcogen and halogen azobenzene series, and exploit intramolecular chalcogen bonding to tune and redshift the absorption maxima, supported by photo-physical measurements and solid-state structural analysis. Remarkably, the rate of the Z → E thermal isomerisation can be tuned over timescales spanning 107 s by judicious choice of chalcogen and halogen substituents.
Collapse
Affiliation(s)
- Aidan Kerckhoffs
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Kirsten E Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Matthew J Langton
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
29
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier J, Costa RD, Bonifazi D. Supramolecular Chalcogen-Bonded Semiconducting Nanoribbons at Work in Lighting Devices. Angew Chem Int Ed Engl 2022; 61:e202202137. [PMID: 35274798 PMCID: PMC9544418 DOI: 10.1002/anie.202202137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 11/24/2022]
Abstract
This work describes the design and synthesis of a π-conjugated telluro[3,2-β][1]-tellurophene-based synthon that, embodying pyridyl and haloaryl chalcogen-bonding acceptors, self-assembles into nanoribbons through chalcogen bonds. The ribbons π-stack in a multi-layered architecture both in single crystals and thin films. Theoretical studies of the electronic states of chalcogen-bonded material showed the presence of a local charge density between Te and N atoms. OTFT-based charge transport measurements showed hole-transport properties for this material. Its integration as a p-type semiconductor in multi-layered CuI -based light-emitting electrochemical cells (LECs) led to a 10-fold increase in stability (38 h vs. 3 h) compared to single-layered devices. Finally, using the reference tellurotellurophene congener bearing a C-H group instead of the pyridyl N atom, a herringbone solid-state assembly is formed without charge transport features, resulting in LECs with poor stabilities (<1 h).
Collapse
Affiliation(s)
- Deborah Romito
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Elisa Fresta
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Luca M. Cavinato
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Hanspeter Kählig
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Heinz Amenitsch
- Graz University of TechnologyInstitute for Inorganic ChemistryStremayergasse 9/V8010GrazAustria
| | - Laura Caputo
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Yusheng Chen
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS8 allée Gaspard Monge67000StrasbourgFrance
| | - Jean‐Christophe Charlier
- Institute of Condensed Matter and NanosciencesUniversité catholique de Louvain (UCLouvain)Chemin des étoiles 81348Louvain-la-NeuveBelgium
| | - Rubén D. Costa
- Technical University of MunichChair of Biogenic Functional MaterialsSchulgasse 2294315StraubingGermany
| | - Davide Bonifazi
- Department of Organic ChemistryFaculty of ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| |
Collapse
|
30
|
Docker A, Marques I, Kuhn H, Zhang Z, Félix V, Beer PD. Selective Potassium Chloride Recognition, Sensing, Extraction, and Transport Using a Chalcogen-Bonding Heteroditopic Receptor. J Am Chem Soc 2022; 144:14778-14789. [PMID: 35930460 PMCID: PMC9394446 DOI: 10.1021/jacs.2c05333] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Chalcogen bonding (ChB) is rapidly rising to prominence
in supramolecular
chemistry as a powerful sigma (σ)-hole-based noncovalent interaction,
especially for applications in the field of molecular recognition.
Recent studies have demonstrated ChB donor strength and potency to
be remarkably sensitive to local electronic environments, including
redox-switchable on/off anion binding and sensing capability. Influencing
the unique electronic and geometric environment sensitivity of ChB
interactions through simultaneous cobound metal cation recognition,
herein, we present the first potassium chloride-selective heteroditopic
ion-pair receptor. The direct conjugation of benzo-15-crown-5 ether
(B15C5) appendages to Te centers in a bis-tellurotriazole framework
facilitates alkali metal halide (MX) ion-pair binding through the
formation of a cofacial intramolecular bis-B15C5 M+ (M+ = K+, Rb+, Cs+) sandwich
complex and bidentate ChB···X– formation.
Extensive quantitative 1H NMR ion-pair affinity titration
experiments, solid–liquid and liquid–liquid extraction,
and U-tube transport studies all demonstrate unprecedented KCl selectivity
over all other group 1 metal chlorides. It is demonstrated that the
origin of the receptor’s ion-pair binding cooperativity and
KCl selectivity arises from an electronic polarization of the ChB
donors induced by the cobound alkali metal cation. Importantly, the
magnitude of this switch on Te-centered electrophilicity, and therefore
anion-binding affinity, is shown to correlate with the inherent Lewis
acidity of the alkali metal cation. Extensive computational DFT investigations
corroborated the experimental alkali metal cation–anion ion-pair
binding observations for halides and oxoanions.
Collapse
Affiliation(s)
- Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Igor Marques
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Heike Kuhn
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Zongyao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| | - Vítor Félix
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U. K
| |
Collapse
|
31
|
Il'in MV, Novikov AS, Bolotin DS. Sulfonium and Selenonium Salts as Noncovalent Organocatalysts for the Multicomponent Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:10199-10207. [PMID: 35858372 DOI: 10.1021/acs.joc.2c01141] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonium and selenonium salts, represented by S-aryl dibenzothiophenium and Se-aryl dibenzoselenophenium triflates, were found to exhibit remarkable catalytic activity in the model Groebke-Blackburn-Bienaymé reaction. Kinetic analysis and density functional theory (DFT) calculations indicated that their catalytic effect is induced by the ligation of the reaction substrates to the σ-holes on the S or Se atom of the cations. The experimental data indicated that although 10-fold excess of the chloride totally inhibits the catalytic activity of the sulfonium salts, the selenonium salt remains catalytically active, which can be explained by the experimentally found lower binding constant of the selenonium derivative to chloride in comparison with the sulfonium analogue. Both types of salts exhibit lower catalytic activity in the model reaction than dibenziodolium species.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation.,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St. 6, Moscow 117198, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
32
|
Hein R, Beer PD. Halogen bonding and chalcogen bonding mediated sensing. Chem Sci 2022; 13:7098-7125. [PMID: 35799814 PMCID: PMC9214886 DOI: 10.1039/d2sc01800d] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Sigma-hole interactions, in particular halogen bonding (XB) and chalcogen bonding (ChB), have become indispensable tools in supramolecular chemistry, with wide-ranging applications in crystal engineering, catalysis and materials chemistry as well as anion recognition, transport and sensing. The latter has very rapidly developed in recent years and is becoming a mature research area in its own right. This can be attributed to the numerous advantages sigma-hole interactions imbue in sensor design, in particular high degrees of selectivity, sensitivity and the capability for sensing in aqueous media. Herein, we provide the first detailed overview of all developments in the field of XB and ChB mediated sensing, in particular the detection of anions but also neutral (gaseous) Lewis bases. This includes a wide range of optical colorimetric and luminescent sensors as well as an array of electrochemical sensors, most notably redox-active host systems. In addition, we discuss a range of other sensor designs, including capacitive sensors and chemiresistors, and provide a detailed overview and outlook for future fundamental developments in the field. Importantly the sensing concepts and methodologies described herein for the XB and ChB mediated sensing of anions, are generically applicable for the development of supramolecular receptors and sensors in general, including those for cations and neutral molecules employing a wide array of non-covalent interactions. As such we believe this review to be a useful guide to both the supramolecular and general chemistry community with interests in the fields of host-guest recognition and small molecule sensing. Moreover, we also highlight the need for a broader integration of supramolecular chemistry, analytical chemistry, synthetic chemistry and materials science in the development of the next generation of potent sensors.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
33
|
Jena S, Dutta J, Tulsiyan KD, Sahu AK, Choudhury SS, Biswal HS. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev 2022; 51:4261-4286. [PMID: 35560317 DOI: 10.1039/d2cs00133k] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding the noncovalent interactions (NCIs) among the residues of proteins and nucleic acids, and between drugs and proteins/nucleic acids, etc., has extraordinary relevance in biomolecular structure and function. It helps in interpreting the dynamics of complex biological systems and enzymatic activity, which is esential for new drug design and efficient drug delivery. NCIs like hydrogen bonding (H-bonding) and π-stacking have been researchers' delight for a long time. Prominent among the recently discovered NCIs are halogen, chalcogen, pnictogen, tetrel, carbo-hydrogen, and spodium bonding, and n → π* interaction. These NCIs have caught the imaginations of various research groups in recent years while explaining several chemical and biological processes. At this stage, a holistic view of these new ideas and findings lying scattered can undoubtedly trigger our minds to explore more. The present review attempts to address NCIs beyond H-bonding and π-stacking, which are mainly n → σ*, n → π* and σ → σ* type interactions. Five of the seven NCIs mentioned earlier are linked to five non-inert end groups of the modern periodic table. Halogen (group-17) bonding is one of the oldest and most explored NCIs, which finds its relevance in biomolecules due to the phase correction and inhibitory properties of halogens. Chalcogen (group 16) bonding serves as a redox-active functional group of different active sites of enzymes and acts as a nucleophile in proteases and phosphates. Pnictogen (group 15), tetrel (group 14), triel (group 13) and spodium (group 12) bonding does exist in biomolecules. The n → π* interactions are linked to backbone carbonyl groups and protein side chains. Thus, they are crucial in determining the conformational stability of the secondary structures in proteins. In addition, a more recently discovered to and fro σ → σ* type interaction, namely carbo-hydrogen bonding, is also present in protein-ligand systems. This review summarizes these grand epiphanies routinely used to elucidate the structure and dynamics of biomolecules, their enzymatic activities, and their application in drug discovery. It also briefs about the future perspectives and challenges posed to the spectroscopists and theoreticians.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Shubhranshu Shekhar Choudhury
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
34
|
Hein R, Docker A, Davis JJ, Beer PD. Redox-Switchable Chalcogen Bonding for Anion Recognition and Sensing. J Am Chem Soc 2022; 144:8827-8836. [PMID: 35522996 PMCID: PMC9121379 DOI: 10.1021/jacs.2c02924] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inspired by the success of its related sigma-hole congener halogen bonding (XB), chalcogen bonding (ChB) is emerging as a powerful noncovalent interaction with a plethora of applications in supramolecular chemistry and beyond. Despite its increasing importance, the judicious modulation of ChB donor strength remains a formidable challenge. Herein, we present, for the first time, the reversible and large-scale modulation of ChB potency by electrochemical redox control. This is exemplified by both the switching-ON of anion recognition via ChB oxidative activation of a novel bis(ferrocenyltellurotriazole) anion host and switching-OFF reductive ChB deactivation of anion binding potency with a telluroviologen receptor. The direct linking of the redox-active center and ChB receptor donor sites enables strong coupling, which is reflected by up to a remarkable 3 orders of magnitude modulation of anion binding strength. This is demonstrated through large voltammetric perturbations of the respective receptor ferrocene and viologen redox couples, enabling, for the first time, ChB-mediated electrochemical anion sensing. The sensors not only display significant anion-binding-induced electrochemical responses in competitive aqueous-organic solvent systems but can compete with, or even outperform similar, highly potent XB and HB sensors. These observations serve to highlight a unique (redox) tunability of ChB and pave the way for further exploration of the reversible (redox) modulation of ChB in a wide range of applications, including anion sensors as well as molecular switches and machines.
Collapse
Affiliation(s)
- Robert Hein
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Andrew Docker
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason J Davis
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| | - Paul D Beer
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
35
|
Te⋯N secondary-bonding interactions in tellurium crystals: Supramolecular aggregation patterns and a comparison with their lighter congeners. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Romito D, Fresta E, Cavinato LM, Kählig H, Amenitsch H, Caputo L, Chen Y, Samorì P, Charlier JC, Costa R, Bonifazi D. Supramolecular Chalcogen‐Bonded Semiconducting Nanoribbons at work in Lighting Devices. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Deborah Romito
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 Vienna AUSTRIA
| | - Elisa Fresta
- Technical University Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Luca Maria Cavinato
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Hanspeter Kählig
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Organic Chemistry Währinger Straße 38 1090 vienna AUSTRIA
| | - Heinz Amenitsch
- Graz University of Technology: Technische Universitat Graz Institute for Inorganic Chemistry Stremayergasse 9/V 8010 Graz AUSTRIA
| | - Laura Caputo
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Yusheng Chen
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Paolo Samorì
- Universite de Strasbourg CNRS, ISIS 8 allée Gaspard Monge 67000 Strasbourg FRANCE
| | - Jean-Christophe Charlier
- UCLouvain Saint-Louis Bruxelles: Universite Saint-Louis - Bruxelles Institute of Condensed Matter and Nanosciences Chemin des étoiles 8 B-1348 Louvain-la-Neuve BELGIUM
| | - Rubén Costa
- Technical University of Munich: Technische Universitat Munchen Chair of Biogenic Functional Materials Schulgasse 22 94315 Straubing GERMANY
| | - Davide Bonifazi
- University of Vienna Faculty of Chemistry: Universitat Wien Fakultat fur Chemie Institute of Organic Chemistry Währinger Strasse 38 1090 Vienna AUSTRIA
| |
Collapse
|
37
|
Docker A, Martínez Martínez AJ, Kuhn H, Beer PD. Organotelluroxane molecular clusters assembled via Te⋯X - (X = Cl -, Br -) chalcogen bonding anion template interactions. Chem Commun (Camb) 2022; 58:3318-3321. [PMID: 35179155 DOI: 10.1039/d2cc00320a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The synthesis and characterisation of two novel molecular organotelluroxane clusters, comprising of an inorganic Te8O6X4 (X = Cl, Br) core structure are described. The integration of highly electron withdrawing 3,5-bis-trifluoromethylphenyl groups to the constituent Te(IV) centres is determined to be crucial in the chalcogen bonding (ChB) halide template directed assembly. Characterised by multi-nuclear 1H, 125Te, 19F NMR, UV-Vis, IR spectroscopies and X-ray crystal structure analysis, the discrete molecular clusters exhibit excellent organic solvent solubility and remarkable chemical stability. Furthermore, preliminary fluorescence investigations reveal the telluroxanes exhibit aggregation induced emission (AIE) behaviour in organic aqueous solvent mixtures.
Collapse
Affiliation(s)
- Andrew Docker
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Antonio J Martínez Martínez
- Supramolecular Organometallic and Main Group Chemistry Laboratory, CIQSO-Center for Research in Sustainable Chemistry and Department of Chemistry, University of Huelva, Campus El Carmen, ES-21007 Huelva, Spain
| | - Heike Kuhn
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| | - Paul D Beer
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
38
|
Il'in MV, Sysoeva AA, Novikov AS, Bolotin DS. Diaryliodoniums as Hybrid Hydrogen- and Halogen-Bond-Donating Organocatalysts for the Groebke-Blackburn-Bienaymé Reaction. J Org Chem 2022; 87:4569-4579. [PMID: 35176856 DOI: 10.1021/acs.joc.1c02885] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dibenziodolium and diphenyliodonium triflates display high catalytic activity for the multicomponent reaction that leads to a series of imidazopyridines. Density functional theory (DFT) calculations indicate that both the salts can play the role of hybrid hydrogen- and halogen-bond-donating organocatalysts, which electrophilically activate the carbonyl and imine groups during the reaction process. The ortho-H atoms in the vicinal position to the I atom play a dual role: forming additional noncovalent bonds with the ligated substrate and increasing the maximum electrostatic potential on the σ-hole at the iodine atom owing to the effects of polarization. Dibenziodolium triflate exhibits higher catalytic activity, and the results obtained from 1H nuclear magnetic resonance (NMR) titrations, in conjunction with those from DFT calculations, indicate that this could be explained in terms of the additional energy required for the rotation of the phenyl ring in the diphenyliodonium cation during ligation of the substrate.
Collapse
Affiliation(s)
- Mikhail V Il'in
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexandra A Sysoeva
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Dmitrii S Bolotin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| |
Collapse
|
39
|
Chiral Ferrocenyl–Iodotriazoles and –Iodotriazoliums as Halogen Bond Donors. Synthesis, Solid State Analysis and Catalytic Properties. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100927] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Yeo CI, Tan YS, Kwong HC, Lee VS, Tiekink ERT. I⋯N halogen bonding in 1 : 1 co-crystals formed between 1,4-diiodotetrafluorobenzene and the isomeric n-pyridinealdazines ( n = 2, 3 and 4): assessment of supramolecular association and influence upon solid-state photoluminescence properties. CrystEngComm 2022. [DOI: 10.1039/d2ce01165d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1 : 1 co-crystals formed between 1,4-diiodotetrafluorobenzene and each of the three isomeric n-pyridinealdazines (n = 2, 3 and 4), featuring I⋯N halogen bonding contacts within one-dimensional chains, are described.
Collapse
Affiliation(s)
- Chien Ing Yeo
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yee Seng Tan
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Huey Chong Kwong
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | | | - Edward R. T. Tiekink
- Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
41
|
Bunchuay T, Boonpalit K, Docker A, Ruengsuk A, Tantirungrotechai J, Sukwattanasinitt M, Surawatanawong P, Beer PD. Charge neutral halogen bonding tetradentate-iodotriazole macrocycles capable of anion recognition and sensing in highly competitive aqueous media. Chem Commun (Camb) 2021; 57:11976-11979. [PMID: 34708850 DOI: 10.1039/d1cc05037k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A series of neutral tetradentate halogen bonding (XB) macrocycles, comprising of two bis-iodotriazole XB donors were synthesised in 60-70% yields via a stepwise CuAAC-mediated cyclisation strategy. Extensive 1H NMR anion titration experiments reveal halide binding affinities are critically dependent on the substitution pattern of the xylyl spacer unit. The meta-substituted macrocycle remarkably displays cooperative tetradentate XB-halide anion recognition in highly competitive 40% aqueous-organic D2O/acetone-d6 (40 : 60, v/v) solvent mixtures. Integration of para-xylyl and naphthyl spacer units generates extended macrocyclic cavities, capable of selective oxalate recognition. Furthermore, preliminary fluorescence exeperiments reveal dicarboxylate specific sensing can be achieved through monitoring of the naphthylene centred emission.
Collapse
Affiliation(s)
- Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Kajjana Boonpalit
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Andrew Docker
- Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road, Oxford OX1 3TA, UK.
| | - Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Jonggol Tantirungrotechai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| | - Paul D Beer
- Department of Chemistry, University of Oxford Chemistry Research Laboratory Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
42
|
Docker A, Stevens JG, Beer PD. Halogen Bonding Heteroditopic Materials for Cooperative Sodium Iodide Binding and Extraction. Chemistry 2021; 27:14600-14604. [PMID: 34520586 PMCID: PMC8596695 DOI: 10.1002/chem.202102952] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 01/05/2023]
Abstract
A series of novel heteroditopic halogen bonding (XB) receptor functionalised silica based materials, containing mono- and bis-iodotriazole benzo-15-crown-5 groups are investigated for the cooperative binding and extraction of sodium halide ion-pair species from aqueous solution. Characterisation of the XB materials by CHN elemental analysis, 13 C CP/MAS NMR and ATR-FTIR spectroscopies confirms and quantifies the successful incorporation of the ion-pair receptor frameworks to the silica material. ICP-MS solid-liquid extraction studies demonstrate the bidentate XB functionalised material is capable of NaI extraction from water. Importantly, cooperative XB-mediated sodium halide ion-pair binding is determined to be crucial to the material's extraction capabilities, impressively demonstrating a two-fold enhancement in sodium iodide extraction efficiency relative to a heteroditopic hydrogen bonding receptor functionalised silica material analogue.
Collapse
Affiliation(s)
- Andrew Docker
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TA
| | | | - Paul D. Beer
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TA
| |
Collapse
|
43
|
Turner G, Docker A, Beer PD. Anion recognition by halogen bonding and hydrogen bonding bis(triazole)-imidazolium [2]rotaxanes. Dalton Trans 2021; 50:12800-12805. [PMID: 34581362 DOI: 10.1039/d1dt02414k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel halogen bonding (XB) bis(iodotriazole)-imidazolium motif is incorporated into the axle component of a [2]rotaxane via a discrete chloride anion template directed clipping methodology. 1H NMR anion titration experiments reveal the interlocked host is capable of strong halide and sulfate oxoanion binding in competitive aqueous-organic CDCl3/CD3OD/D2O (45 : 45 : 10 v/v) solvent mixtures. In comparison to a hydrogen bonding rotaxane analogue, which exhibited no pronounced selectivity between Cl-, I- and SO42-, the axle iodo-triazole donor motifs of the XB rotaxane modulate the anion recognition preference towards the lighter halides Cl- ≈ Br- > SO42- > I-.
Collapse
Affiliation(s)
- Grace Turner
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Andrew Docker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK.
| |
Collapse
|
44
|
Docker A, Guthrie CH, Kuhn H, Beer PD. Modulating Chalcogen Bonding and Halogen Bonding Sigma-Hole Donor Atom Potency and Selectivity for Halide Anion Recognition. Angew Chem Int Ed Engl 2021; 60:21973-21978. [PMID: 34297867 PMCID: PMC8518858 DOI: 10.1002/anie.202108591] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/20/2022]
Abstract
A series of acyclic anion receptors containing chalcogen bond (ChB) and halogen bond (XB) donors integrated into a neutral 3,5‐bis‐triazole pyridine scaffold are described, in which systematic variation of the electronic‐withdrawing nature of the aryl substituents reveal a dramatic modulation in sigma‐hole donor atom potency for anion recognition. Incorporation of strongly electron‐withdrawing perfluorophenyl units appended to the triazole heterocycle telluro‐ or iodo‐ donor atoms, or directly linked to the tellurium donor atom dramatically enhances the anion binding potency of the sigma‐hole receptors, most notably for the ChB and XB receptors displaying over thirty‐fold and eight‐fold increase in chloride anion affinity, respectively, relative to unfluorinated analogues. Linear free energy relationships for a series of ChB based receptors reveal the halide anion recognition behaviour of the tellurium donor is highly sensitive to local electronic environments. This is especially the case for those directly appended to the Te centre (3⋅ChB), where a remarkable enhancement of strength of binding and selectivity for the lighter halides is observed as the electron‐withdrawing ability of the Te‐bonded aryl group increases, highlighting the exciting opportunity to fine‐tune anion affinity and selectivity in ChB‐based receptor systems.
Collapse
Affiliation(s)
- Andrew Docker
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Charles H Guthrie
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Heike Kuhn
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | - Paul D Beer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|