1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Cowell TW, Jing W, Noh H, Han HS. Drop-by-Drop Addition of Reagents to a Double Emulsion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404121. [PMID: 39101620 DOI: 10.1002/smll.202404121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/08/2024] [Indexed: 08/06/2024]
Abstract
Developments in droplet microfluidics have facilitated an era of high-throughput, sensitive single-cell, or single-molecule measurements capable of tackling the heterogeneity present in biological systems. Relying on single emulsion (SE) compartments, droplet assays achieve absolute quantification of nucleic acids, massively parallel single-cell profiling, and more. Double emulsions (DEs) have seen recent interest for their potential to build upon SE techniques. DEs are compatible with flow cytometry enabling high-throughput multi-parameter drop screening and eliminate content mixing due to coalescence during lengthy workflows. Despite these strengths, DEs lack important technical functions that exist in SEs such as methods for adding reagents to droplets on demand. Consequently, DEs cannot be used for multistep workflows which has limited their adoption in assay development. Here, strategies to enable reagent addition and other active manipulations on DEs are reported by converting DE inputs to SEs on chip. After conversion, drops are manipulated using existing SE techniques, including reagent addition, before reforming a DE at the outlet. Device designs and operation conditions achieving drop-by-drop reagent addition to DEs are identified and used as part of a multi-step aptamer screening assay performed entirely in DE drops. This work enables the further development of multistep DE droplet assays.
Collapse
Affiliation(s)
- Thomas W Cowell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Matthews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr., Urbana, IL, 61801, USA
| | - Wenyang Jing
- Department of Biophysics, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
| | - Heewon Noh
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Matthews Ave, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois at Urbana-Champaign, 505 South Matthews Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory Dr., Urbana, IL, 61801, USA
- Department of Biophysics, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Matthews Ave, Urbana, IL, 61801, USA
| |
Collapse
|
3
|
Siquenique S, Ackerman S, Schroeder A, Sarmento B. Bioengineering lipid-based synthetic cells for therapeutic protein delivery. Trends Biotechnol 2024:S0167-7799(24)00216-6. [PMID: 39209601 DOI: 10.1016/j.tibtech.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Synthetic cells (SCs) offer a promising approach for therapeutic protein delivery, combining principles from synthetic biology and drug delivery. Engineered to mimic natural cells, SCs provide biocompatibility and versatility, with precise control over their architecture and composition. Protein production is essential in living cells, and SCs aim to replicate this process using compartmentalized cell-free protein synthesis systems within lipid bilayers. Lipid bilayers serve as favored membranes in SC design due to their similarity to the biological cell membrane. Moreover, engineering lipidic membranes enable tissue-specific targeting and immune evasion, while stimulus-responsive SCs allow for triggered protein production and release. This Review explores lipid-based SCs as platforms for therapeutic protein delivery, discussing their design principles, functional attributes, and translational challenges and potential.
Collapse
Affiliation(s)
- Sónia Siquenique
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Shanny Ackerman
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; IUCS-CESPU - Instituto Universitário de Ciências da Saúde, Gandra, Portugal.
| |
Collapse
|
4
|
Park H, Jin H, Kim D, Lee J. Cell-Free Systems: Ideal Platforms for Accelerating the Discovery and Production of Peptide-Based Antibiotics. Int J Mol Sci 2024; 25:9109. [PMID: 39201795 PMCID: PMC11354240 DOI: 10.3390/ijms25169109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Peptide-based antibiotics (PBAs), including antimicrobial peptides (AMPs) and their synthetic mimics, have received significant interest due to their diverse and unique bioactivities. The integration of high-throughput sequencing and bioinformatics tools has dramatically enhanced the discovery of enzymes, allowing researchers to identify specific genes and metabolic pathways responsible for producing novel PBAs more precisely. Cell-free systems (CFSs) that allow precise control over transcription and translation in vitro are being adapted, which accelerate the identification, characterization, selection, and production of novel PBAs. Furthermore, these platforms offer an ideal solution for overcoming the limitations of small-molecule antibiotics, which often lack efficacy against a broad spectrum of pathogens and contribute to the development of antibiotic resistance. In this review, we highlight recent examples of how CFSs streamline these processes while expanding our ability to access new antimicrobial agents that are effective against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Hyeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
| | - Haneul Jin
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Dayeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, Pohang 37673, Republic of Korea;
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea; (H.J.); (D.K.)
| |
Collapse
|
5
|
Almeida JR. The Century-Long Journey of Peptide-Based Drugs. Antibiotics (Basel) 2024; 13:196. [PMID: 38534631 DOI: 10.3390/antibiotics13030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
The pioneering medical application of peptides as therapeutics began approximately a century ago; however, they remain clinically relevant candidates garnering more attention on the drug development agenda [...].
Collapse
Affiliation(s)
- José R Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 7 Via Muyuna, Tena 150101, Ecuador
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| |
Collapse
|
6
|
Steinkühler J, Peruzzi JA, Krüger A, Villaseñor CG, Jacobs ML, Jewett MC, Kamat NP. Improving Cell-Free Expression of Model Membrane Proteins by Tuning Ribosome Cotranslational Membrane Association and Nascent Chain Aggregation. ACS Synth Biol 2024; 13:129-140. [PMID: 38150067 DOI: 10.1021/acssynbio.3c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Cell-free gene expression (CFE) systems are powerful tools for transcribing and translating genes outside of a living cell. Synthesis of membrane proteins is of particular interest, but their yield in CFE is substantially lower than that for soluble proteins. In this paper, we study the CFE of membrane proteins and develop a quantitative kinetic model. We identify that ribosome stalling during the translation of membrane proteins is a strong predictor of membrane protein synthesis due to aggregation between the ribosome nascent chains. Synthesis can be improved by the addition of lipid membranes, which incorporate protein nascent chains and, therefore, kinetically compete with aggregation. We show that the balance between peptide-membrane association and peptide aggregation rates determines the yield of the synthesized membrane protein. We define a membrane protein expression score that can be used to rationalize the engineering of lipid composition and the N-terminal domain of a native and computationally designed membrane proteins produced through CFE.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Bio-Inspired Computation, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Justin A Peruzzi
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Citlayi G Villaseñor
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Baranova MN, Pilipenko EA, Gabibov AG, Terekhov SS, Smirnov IV. Animal Microbiomes as a Source of Novel Antibiotic-Producing Strains. Int J Mol Sci 2023; 25:537. [PMID: 38203702 PMCID: PMC10779147 DOI: 10.3390/ijms25010537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Natural compounds continue to serve as the most fruitful source of new antimicrobials. Analysis of bacterial genomes have revealed that the biosynthetic potential of antibiotic producers by far exceeds the number of already discovered structures. However, due to the repeated discovery of known substances, it has become necessary to change both approaches to the search for antibiotics and the sources of producer strains. The pressure of natural selection and the diversity of interactions in symbiotic communities make animal microbiomes promising sources of novel substances. Here, microorganisms associated with various animals were examined in terms of their antimicrobial agents. The application of alternative cultivation techniques, ultrahigh-throughput screening, and genomic analysis facilitated the investigation of compounds produced by unique representatives of the animal microbiota. We believe that new strategies of antipathogen defense will be discovered by precisely studying cell-cell and host-microbe interactions in microbiomes in the wild.
Collapse
Affiliation(s)
- Margarita N. Baranova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Ekaterina A. Pilipenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Stanislav S. Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ivan V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (M.N.B.); (A.G.G.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
8
|
Pourmasoumi F, Hengoju S, Beck K, Stephan P, Klopfleisch L, Hoernke M, Rosenbaum MA, Kries H. Analysing Megasynthetase Mutants at High Throughput Using Droplet Microfluidics. Chembiochem 2023; 24:e202300680. [PMID: 37804133 DOI: 10.1002/cbic.202300680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are giant enzymatic assembly lines that deliver many pharmaceutically valuable natural products, including antibiotics. As the search for new antibiotics motivates attempts to redesign nonribosomal metabolic pathways, more robust and rapid sorting and screening platforms are needed. Here, we establish a microfluidic platform that reliably detects production of the model nonribosomal peptide gramicidin S. The detection is based on calcein-filled sensor liposomes yielding increased fluorescence upon permeabilization. From a library of NRPS mutants, the sorting platform enriches the gramicidin S producer 14.5-fold, decreases internal stop codons 250-fold, and generates enrichment factors correlating with enzyme activity. Screening for NRPS activity with a reliable non-binary sensor will enable more sophisticated structure-activity studies and new engineering applications in the future.
Collapse
Affiliation(s)
- Farzaneh Pourmasoumi
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Sundar Hengoju
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Katharina Beck
- Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität, Hermann-Herder-Str. 9, 79104, Freiburg i. Br., Germany
| | - Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Lukas Klopfleisch
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Maria Hoernke
- Faculty of Chemistry and Pharmacy, Albert-Ludwigs-Universität, Hermann-Herder-Str. 9, 79104, Freiburg i. Br., Germany
- Faculty of Chemistry, Martin-Luther-Universität, Von-Danckelmann-Platz 4, 06108, Halle (S.), Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|
9
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
10
|
Cell-free protein synthesis system for bioanalysis: Advances in methods and applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
11
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
12
|
Heiligenthal L, van der Loh M, Polack M, Blaha ME, Moschütz S, Keim A, Sträter N, Belder D. Analysis of double-emulsion droplets with ESI mass spectrometry for monitoring lipase-catalyzed ester hydrolysis at nanoliter scale. Anal Bioanal Chem 2022; 414:6977-6987. [PMID: 35995875 PMCID: PMC9436884 DOI: 10.1007/s00216-022-04266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/11/2022]
Abstract
Microfluidic double-emulsion droplets allow the realization and study of biphasic chemical processes such as chemical reactions or extractions on the nanoliter scale. Double emulsions of the rare type (o1/w/o2) are used here to realize a lipase-catalyzed reaction in the non-polar phase. The surrounding aqueous phase induces the transfer of the hydrophilic product from the core oil phase, allowing on-the-fly MS analysis in single double droplets. A microfluidic two-step emulsification process is developed to generate the (o1/w/o2) double-emulsion droplets. In this first example of microfluidic double-emulsion MS coupling, we show in proof-of-concept experiments that the chemical composition of the water layer can be read online using ESI–MS. Double-emulsion droplets were further employed as two-phase micro-reactors for the hydrolysis of the lipophilic ester p-nitrophenyl palmitate catalyzed by the Candida antarctica lipase B (CalB). Finally, the formation of the hydrophilic reaction product p-nitrophenol within the double-emulsion droplet micro-reactors is verified by subjecting the double-emulsion droplets to online ESI–MS analysis.
Collapse
Affiliation(s)
- Laura Heiligenthal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Marie van der Loh
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Maximilian E Blaha
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany
| | - Susanne Moschütz
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Antje Keim
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Norbert Sträter
- Institute of Bioanalytical Chemistry, Leipzig University, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Rolf J, Ngo ACR, Lütz S, Tischler D, Rosenthal K. Cell-Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor. Chembiochem 2022; 23:e202200121. [PMID: 35593146 PMCID: PMC9401864 DOI: 10.1002/cbic.202200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.
Collapse
Affiliation(s)
- Jascha Rolf
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Anna Christina Reyes Ngo
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Stephan Lütz
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Dirk Tischler
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| |
Collapse
|
14
|
Al Nahas K, Fletcher M, Hammond K, Nehls C, Cama J, Ryadnov MG, Keyser UF. Measuring Thousands of Single-Vesicle Leakage Events Reveals the Mode of Action of Antimicrobial Peptides. Anal Chem 2022; 94:9530-9539. [PMID: 35760038 PMCID: PMC9280716 DOI: 10.1021/acs.analchem.1c03564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Host defense or antimicrobial
peptides hold promise for providing
new pipelines of effective antimicrobial agents. Their activity quantified
against model phospholipid membranes is fundamental to a detailed
understanding of their structure–activity relationships. However,
classical characterization assays often lack the ability to achieve
this insight. Leveraging a highly parallelized microfluidic platform
for trapping and studying thousands of giant unilamellar vesicles,
we conducted quantitative long-term microscopy studies to monitor
the membrane-disruptive activity of archetypal antimicrobial peptides
with a high spatiotemporal resolution. We described the modes of action
of these peptides via measurements of the disruption of the vesicle
population under the conditions of continuous peptide dosing using
a range of concentrations and related the observed modes to the molecular
activity mechanisms of these peptides. The study offers an effective
approach for characterizing membrane-targeting antimicrobial agents
in a standardized manner and for assigning specific modes of action
to the corresponding antimicrobial mechanisms.
Collapse
Affiliation(s)
- Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,London Centre for Nanotechnology, University College London, London WC1H 0AH, U.K
| | - Christian Nehls
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, Borstel 23845, Germany
| | - Jehangir Cama
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,Department of Physics, King's College London, Strand Lane, London WC2R 2LS, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
15
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
16
|
Cama J, Al Nahas K, Fletcher M, Hammond K, Ryadnov MG, Keyser UF, Pagliara S. An ultrasensitive microfluidic approach reveals correlations between the physico-chemical and biological activity of experimental peptide antibiotics. Sci Rep 2022; 12:4005. [PMID: 35256720 PMCID: PMC8901753 DOI: 10.1038/s41598-022-07973-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance challenges the ability of modern medicine to contain infections. Given the dire need for new antimicrobials, polypeptide antibiotics hold particular promise. These agents hit multiple targets in bacteria starting with their most exposed regions-their membranes. However, suitable approaches to quantify the efficacy of polypeptide antibiotics at the membrane and cellular level have been lacking. Here, we employ two complementary microfluidic platforms to probe the structure-activity relationships of two experimental series of polypeptide antibiotics. We reveal strong correlations between each peptide's physicochemical activity at the membrane level and biological activity at the cellular level. We achieve this knowledge by assaying the membranolytic activities of the compounds on hundreds of individual giant lipid vesicles, and by quantifying phenotypic responses within clonal bacterial populations with single-cell resolution. Our strategy proved capable of detecting differential responses for peptides with single amino acid substitutions between them, and can accelerate the rational design and development of peptide antimicrobials.
Collapse
Affiliation(s)
- Jehangir Cama
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter, EX4 4QF, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
| | - Kareem Al Nahas
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Marcus Fletcher
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
- Department of Physics, King's College London, Strand Lane, London, WC2R 2LS, UK
| | - Ulrich F Keyser
- Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|