1
|
Zhang Z, Wan T, Quan Q, Zang Y, Xu J, Tang S, Wang N, Cai L, Song L. Triple C-H Activation/Annulation: In Situ Construction of Fluorescent Peptides. Org Lett 2024; 26:10915-10920. [PMID: 39632563 DOI: 10.1021/acs.orglett.4c04081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we report a Rh(III)-catalyzed triple C-H activation-annulation of Phe-based peptides with alkynes for the preparation of fluorescent peptides. The robustness of this protocol is reflected by a broad substrate scope, high atom- and step-economy, and excellent chemo- and site-selectivity. An in situ generated polycyclic aromatic hydrocarbon carbocation as a fluorophore exhibits good fluorescence properties (maximum emission wavelength up to 628 nm) and low cell cytotoxicity. The synthetic utility of this method is further demonstrated by versatile product applications in bioconjugation with the protein BSA and specifically targeting lysosomes and mitochondria of live mammalian cells.
Collapse
Affiliation(s)
- Zhefan Zhang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Tianyan Wan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Qi Quan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yiqi Zang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Jinyuan Xu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Shuo Tang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Nanxi Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
2
|
Wang X, Yang Y, Yang H, Dong H. The Intrinsic Fluorescence of Peptide Self-Assemblies Across pH Levels. Angew Chem Int Ed Engl 2024:e202420567. [PMID: 39668729 DOI: 10.1002/anie.202420567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
The regulation of solution pH on the structural and optical properties of peptide self-assemblies remains a critical yet unresolved issue in peptide research. This study investigates the heptapeptide Ac-IHIHIQI-NH2 and its intrinsic fluorescence across a range of pH levels, demonstrating that variations in pH lead to significant changes in the morphology of the self-assembled structures. While the position of the fluorescence emission remains constant-due to the stability provided by the hydrogen bonding network of the peptide backbone-the intensity of the fluorescence exhibits a direct correlation with the degree of self-assembly. This finding underscores a dynamic relationship between structural morphology and optical properties. Notably, the ability of the peptide to self-assemble under diverse pH conditions is a novel observation that contrasts with previously reported literature. By employing a computationally driven approach, complemented by rigorous experimental validation, this work establishes a new paradigm for studying complex interacting systems such as peptide self-assembly. Our findings enhance the understanding of how environmental factors influence peptide behavior and pave the way for the design of innovative peptide-based materials with tunable optical characteristics, with potential applications in bioluminescent probes and diagnostic tools for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Yuqing Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Haokun Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Centre (ChemBIC), ChemBioMed Interdisciplinary Research Centre at Nanjing University, and Institute for Brain Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
3
|
Xin EYH, Kwek G, An X, Sun C, Liu S, Qing NS, Lingesh S, Jiang L, Liu G, Xing B. Enzymes in Synergy: Bacteria Specific Molecular Probe for Locoregional Imaging of Urinary Tract Infection in vivo. Angew Chem Int Ed Engl 2024; 63:e202406843. [PMID: 38828878 DOI: 10.1002/anie.202406843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/05/2024]
Abstract
Uropathogenic Escherichia coli (UPECs) is a leading cause for urinary tract infections (UTI), accounting for 70-90 % of community or hospital-acquired bacterial infections owing to high recurrence, imprecision in diagnosis and management, and increasing prevalence of antibiotic resistance. Current methods for clinical UPECs detection still rely on labor-intensive urine cultures that impede rapid and accurate diagnosis for timely UTI therapeutic management. Herein, we developed a first-in-class near-infrared (NIR) UPECs fluorescent probe (NO-AH) capable of specifically targeting UPECs through its collaborative response to bacterial enzymes, enabling locoregional imaging of UTIs both in vitro and in vivo. Our NO-AH probe incorporates a dual protease activatable moiety, which first reacts with OmpT, an endopeptidase abundantly present on the outer membrane of UPECs, releasing an intermediate amino acid residue conjugated with a NIR hemicyanine fluorophore. Such liberated fragment would be subsequently recognized by aminopeptidase (APN) within the periplasm of UPECs, activating localized fluorescence for precise imaging of UTIs in complex living environments. The peculiar specificity and selectivity of NO-AH, facilitated by the collaborative action of bacterial enzymes, features a timely and accurate identification of UPECs-infected UTIs, which could overcome misdiagnosis in conventional urine tests, thus opening new avenues towards reliable UTI diagnosis and personalized antimicrobial therapy management.
Collapse
Affiliation(s)
- Evelias Yan Hui Xin
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| | - Germain Kwek
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| | - Xiaoyu An
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xiangan Road, Xiang'an District, Xiamen, Fujian, 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 4221 Xianganan Road, Xiang'an District, Xiamen, Fujian, 361102, China
| | - Caixia Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| | - Ng Shuang Qing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| | - Shonya Lingesh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| | - Lai Jiang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xiangan Road, Xiang'an District, Xiamen, Fujian, 361102, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 260 Baichuan Road, Fuyang District, Hangzhou, Zhejiang, 311402, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, 4221 Xiangan Road, Xiang'an District, Xiamen, Fujian, 361102, China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 4221 Xianganan Road, Xiang'an District, Xiamen, Fujian, 361102, China
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, S637371, Singapore, Singapore
| |
Collapse
|
4
|
Mirloup A, Berthomé Y, Riché S, Wagner P, Hanser F, Laurent A, Iturrioz X, Llorens-Cortes C, Karpenko J, Bonnet D. Alared: Solvatochromic and Fluorogenic Red Amino Acid for Ratiometric Live-Cell Imaging of Bioactive Peptides. Chemistry 2024; 30:e202401296. [PMID: 38641990 DOI: 10.1002/chem.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
To fill the need for environmentally sensitive fluorescent unnatural amino acids able to operate in the red region of the spectrum, we have designed and synthesized Alared, a red solvatochromic and fluorogenic amino acid derived from the Nile Red chromophore. The new unnatural amino acid can be easily integrated into bioactive peptides using classical solid-phase peptide synthesis. The fluorescence quantum yield and the emission maximum of Alared-labeled peptides vary in a broad range depending on the peptide's environment, making Alared a powerful reporter of biomolecular interactions. Due to its red-shifted absorption and emission spectra, Alared-labeled peptides could be followed in living cells with minimal interference from cellular autofluorescence. Using ratiometric fluorescence microscopy, we were able to track the fate of the Alared-labeled peptide agonists of the apelin G protein-coupled receptor upon receptor activation and internalization. Due to its color-shifting environmentally sensitive emission, Alared allowed for distinguishing the fractions of peptides that are specifically bound to the receptor or unspecifically bound to different cellular membranes.
Collapse
Affiliation(s)
- Antoine Mirloup
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Yann Berthomé
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Stéphanie Riché
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Patrick Wagner
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Fabien Hanser
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Arthur Laurent
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Xavier Iturrioz
- Université Paris Saclay, CEA, INRAE, Medicines and Technologies for Health Department, SIMoS, F-91190, Gif-sur-Yvette, France
| | - Catherine Llorens-Cortes
- Université Paris Saclay, CEA, INRAE, Medicines and Technologies for Health Department, SIMoS, F-91190, Gif-sur-Yvette, France
- Laboratory of Central Neuropeptides in the Regulation of Body Fluid Homeostasis and Cardiovascular Functions, College de France, INSERM U1050/CNRS UMR7241, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Julie Karpenko
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/, Université de Strasbourg, Institut du Médicament de Strasbourg, 74 route du Rhin, F-67000, Strasbourg, France
| |
Collapse
|
5
|
Bertolini M, Mendive-Tapia L, Ghashghaei O, Reese A, Lochenie C, Schoepf AM, Sintes M, Tokarczyk K, Nare Z, Scott AD, Knight SR, Aithal AR, Sachdeva A, Lavilla R, Vendrell M. Nonperturbative Fluorogenic Labeling of Immunophilins Enables the Wash-free Detection of Immunosuppressants. ACS CENTRAL SCIENCE 2024; 10:969-977. [PMID: 38799658 PMCID: PMC11117681 DOI: 10.1021/acscentsci.3c01590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 05/29/2024]
Abstract
Immunosuppressants are clinically approved drugs to treat the potential rejection of transplanted organs and require frequent monitoring due to their narrow therapeutic window. Immunophilins are small proteins that bind immunosuppressants with high affinity, yet there are no examples of fluorogenic immunophilins and their potential application as optical biosensors for immunosuppressive drugs in clinical biosamples. In the present work, we designed novel diazonium BODIPY salts for the site-specific labeling of tyrosine residues in peptides via solid-phase synthesis as well as for late-stage functionalization of whole recombinant proteins. After the optimization of a straightforward one-step labeling procedure for immunophilins PPIA and FKBP12, we demonstrated the application of a fluorogenic analogue of FKBP12 for the selective detection of the immunosuppressant drug tacrolimus, including experiments in urine samples from patients with functioning renal transplants. This chemical methodology opens new avenues to rationally design wash-free immunophilin-based biosensors for rapid therapeutic drug monitoring.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Ouldouz Ghashghaei
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Abigail Reese
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Charles Lochenie
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| | - Anna M. Schoepf
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Miquel Sintes
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Karolina Tokarczyk
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Zandile Nare
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Andrew D. Scott
- Concept
Life Sciences Ltd, Edinburgh Bioquarter, Edinburgh EH16 4UX, U.K.
| | - Stephen R. Knight
- Renal
Transplant Unit, Queen Elizabeth Hospital, 1345 Govan Road, Glasgow G51 4TF, U.K.
| | - Advait R. Aithal
- School of
Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Amit Sachdeva
- School of
Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Rodolfo Lavilla
- Laboratory
of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences and
Institute of Biomedicine UB (IBUB), University
of Barcelona, Catalunya, Spain 08007
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, U.K.
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU Edinburgh, U.K.
| |
Collapse
|
6
|
Yang J, Li G, Chen S, Su X, Xu D, Zhai Y, Liu Y, Hu G, Guo C, Yang HB, Occhipinti LG, Hu FX. Machine Learning-Assistant Colorimetric Sensor Arrays for Intelligent and Rapid Diagnosis of Urinary Tract Infection. ACS Sens 2024; 9:1945-1956. [PMID: 38530950 DOI: 10.1021/acssensors.3c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Urinary tract infections (UTIs), which can lead to pyelonephritis, urosepsis, and even death, are among the most prevalent infectious diseases worldwide, with a notable increase in treatment costs due to the emergence of drug-resistant pathogens. Current diagnostic strategies for UTIs, such as urine culture and flow cytometry, require time-consuming protocols and expensive equipment. We present here a machine learning-assisted colorimetric sensor array based on recognition of ligand-functionalized Fe single-atom nanozymes (SANs) for the identification of microorganisms at the order, genus, and species levels. Colorimetric sensor arrays are built from the SAN Fe1-NC functionalized with four types of recognition ligands, generating unique microbial identification fingerprints. By integrating the colorimetric sensor arrays with a trained computational classification model, the platform can identify more than 10 microorganisms in UTI urine samples within 1 h. Diagnostic accuracy of up to 97% was achieved in 60 UTI clinical samples, holding great potential for translation into clinical practice applications.
Collapse
Affiliation(s)
- Jianyu Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ge Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Shihong Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, Taizhou, Zhejiang 317502, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310022, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital, Taizhou, Zhejiang 317502, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuhang Liu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guangxuan Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunxian Guo
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luigi G Occhipinti
- Department of Engineering, University of Cambridge, 9 J J Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Fang Xin Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
7
|
Reese A, de Moliner F, Mendive-Tapia L, Benson S, Kuru E, Bridge T, Richards J, Rittichier J, Kitamura T, Sachdeva A, McSorley HJ, Vendrell M. Inserting "OFF-to-ON" BODIPY Tags into Cytokines: A Fluorogenic Interleukin IL-33 for Real-Time Imaging of Immune Cells. ACS CENTRAL SCIENCE 2024; 10:143-154. [PMID: 38292608 PMCID: PMC10823590 DOI: 10.1021/acscentsci.3c01125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024]
Abstract
The essential functions that cytokine/immune cell interactions play in tissue homeostasis and during disease have prompted the molecular design of targeted fluorophores to monitor their activity in real time. Whereas activatable probes for imaging immune-related enzymes are common, many immunological functions are mediated by binding events between cytokines and their cognate receptors that are hard to monitor by live-cell imaging. A prime example is interleukin-33 (IL-33), a key cytokine in innate and adaptive immunity, whose interaction with the ST2 cell-surface receptor results in downstream signaling and activation of NF-κB and AP-1 pathways. In the present work, we have designed a chemical platform to site-specifically introduce OFF-to-ON BODIPY fluorophores into full cytokine proteins and generate the first nativelike fluorescent analogues of IL-33. Among different incorporation strategies, chemical aminoacylation followed by bioorthogonal derivatization led to the best labeling results. Importantly, the BODIPY-labeled IL-33 derivatives-unlike IL-33-GFP constructs-exhibited ST2-specific binding and downstream bioactivity profiles comparable to those of the wild-type interleukin. Real-time fluorescence microscopy assays under no wash conditions confirmed the internalization of IL-33 through ST2 receptors and its intracellular trafficking through the endosomal pathway. We envision that the modularity and versatility of our BODIPY labeling platform will facilitate the synthesis of minimally tagged fluorogenic cytokines as the next generation of imaging reagents for real-time visualization of signaling events in live immune cells.
Collapse
Affiliation(s)
- Abigail
E. Reese
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Fabio de Moliner
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Lorena Mendive-Tapia
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Sam Benson
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Erkin Kuru
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, United States
| | - Thomas Bridge
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Josh Richards
- Division
of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Jonathan Rittichier
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Takanori Kitamura
- Centre
for Reproductive Health, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
| | - Amit Sachdeva
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Henry J. McSorley
- Division
of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Marc Vendrell
- Centre
for Inflammation Research, The University
of Edinburgh, EH16 4UU Edinburgh, United Kingdom
- IRR
Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Torii K, Benson S, Hori Y, Vendrell M, Kikuchi K. No-wash fluorogenic labeling of proteins for reversible photoswitching in live cells. Chem Sci 2024; 15:1393-1401. [PMID: 38274070 PMCID: PMC10806661 DOI: 10.1039/d3sc04953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Photoswitchable fluorescent molecules (PSFMs) are positioned as valuable tools for biomolecule localization tracking and super-resolution imaging technologies due to their unique ability to reversibly control fluorescence intensity upon light irradiation. Despite the high demand for PSFMs that are suitable for live-cell imaging, no general method has been reported that enables reversible fluorescence control on proteins of interest in living cells. Herein, we have established a platform to realize reversible fluorescence switching in living cells by adapting a protein labeling system. We have developed a new PSFM, named HTL-Trp-BODIPY-FF, which exhibits strong fluorogenicity upon recognition of Halo-tag protein and reversible fluorescence photoswitching in living cells. This is the first example of a PSFM that can be applicable to a general-purpose Halo-tag protein labeling system for no-wash live-cell imaging.
Collapse
Affiliation(s)
- Kenji Torii
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Yuichiro Hori
- Faculty of Science, Kyushu University Fukuoka Fukuoka 819-0395 Japan
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
9
|
Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev 2023; 52:5352-5372. [PMID: 37376918 PMCID: PMC10424634 DOI: 10.1039/d2cs00928e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 06/29/2023]
Abstract
T cells are an essential part of the immune system with crucial roles in adaptive response and the maintenance of tissue homeostasis. Depending on their microenvironment, T cells can be differentiated into multiple states with distinct functions. This myriad of cellular activities have prompted the development of numerous smart probes, ranging from small molecule fluorophores to nanoconstructs with variable molecular architectures and fluorescence emission mechanisms. In this Tutorial Review, we summarize recent efforts in the design, synthesis and application of smart probes for imaging T cells in tumors and inflammation sites by targeting metabolic and enzymatic biomarkers as well as specific surface receptors. Finally, we briefly review current strategies for how smart probes are employed to monitor the response of T cells to anti-cancer immunotherapies. We hope that this Review may help chemists, biologists and immunologists to design the next generation of molecular imaging probes for T cells and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Man Sing Wong
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
10
|
Tang J, Lu F, Geng Y, Liu Y, Zhang E. Site-Selective Modification of Peptides via Late-Stage Pd-Catalyzed Tandem Reaction of Phenylalanine with Benzoquinone. Org Lett 2023; 25:5378-5382. [PMID: 37439546 DOI: 10.1021/acs.orglett.3c01952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
An efficient and straightforward approach for site-selective functionalization of phenylalanine and phenylalanine-containing peptide via a Pd-catalyzed tandem reaction has been developed. The robust method underwent dual C-H activation, including C-C coupling with benzoquinone and intramolecular C-N cyclization, providing a feasible and rapid synthetic route to incorporate 4-benzoquinone-indoline fragments into peptides.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yanxia Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
11
|
Mendive‐Tapia L, Miret‐Casals L, Barth ND, Wang J, de Bray A, Beltramo M, Robert V, Ampe C, Hodson DJ, Madder A, Vendrell M. Acid-Resistant BODIPY Amino Acids for Peptide-Based Fluorescence Imaging of GPR54 Receptors in Pancreatic Islets. Angew Chem Int Ed Engl 2023; 62:e202302688. [PMID: 36917014 PMCID: PMC10947197 DOI: 10.1002/anie.202302688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/15/2023]
Abstract
The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.
Collapse
Affiliation(s)
| | - Laia Miret‐Casals
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Jinling Wang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Anne de Bray
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Massimiliano Beltramo
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Vincent Robert
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Christophe Ampe
- Department of Biomolecular MedicineFaculty of Medicine and Health SciencesGhent University9052GhentBelgium
| | - David J. Hodson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Annemieke Madder
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
12
|
Mendive‐Tapia L, Miret‐Casals L, Barth ND, Wang J, de Bray A, Beltramo M, Robert V, Ampe C, Hodson DJ, Madder A, Vendrell M. Acid-Resistant BODIPY Amino Acids for Peptide-Based Fluorescence Imaging of GPR54 Receptors in Pancreatic Islets. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202302688. [PMID: 38516305 PMCID: PMC10952496 DOI: 10.1002/ange.202302688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Indexed: 03/17/2023]
Abstract
The G protein-coupled kisspeptin receptor (GPR54 or KISS1R) is an important mediator in reproduction, metabolism and cancer biology; however, there are limited fluorescent probes or antibodies for direct imaging of these receptors in cells and intact tissues, which can help to interrogate their multiple biological roles. Herein, we describe the rational design and characterization of a new acid-resistant BODIPY-based amino acid (Trp-BODIPY PLUS), and its implementation for solid-phase synthesis of fluorescent bioactive peptides. Trp-BODIPY PLUS retains the binding capabilities of both short linear and cyclic peptides and displays notable turn-on fluorescence emission upon target binding for wash-free imaging. Finally, we employed Trp-BODIPY PLUS to prepare some of the first fluorogenic kisspeptin-based probes and visualized the expression and localization of GPR54 receptors in human cells and in whole mouse pancreatic islets by fluorescence imaging.
Collapse
Affiliation(s)
| | - Laia Miret‐Casals
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Jinling Wang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Anne de Bray
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Massimiliano Beltramo
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Vincent Robert
- Equipe Neuroendocrinologie Moleculaire de la ReproductionPhysiologie de la Reproduction et des ComportementsCentre INRA Val de Loire37380NouzillyFrance
| | - Christophe Ampe
- Department of Biomolecular MedicineFaculty of Medicine and Health SciencesGhent University9052GhentBelgium
| | - David J. Hodson
- Oxford Centre for DiabetesEndocrinology and Metabolism (OCDEM)Radcliffe Department of MedicineUniversity of OxfordOX3 7LEOxfordUK
| | - Annemieke Madder
- Department of Organic and Macromolecular ChemistryFaculty of SciencesGhent University9000GhentBelgium
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
13
|
Baruah M, Kwon HY, Cho H, Chang YT, Samanta A. A Photoinduced Electron Transfer-Based Hypochlorite-Specific Fluorescent Probe for Selective Imaging of Proinflammatory M1 in a Rheumatoid Arthritis Model. Anal Chem 2023; 95:4147-4154. [PMID: 36800528 DOI: 10.1021/acs.analchem.2c05218] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The differentiation of the distinct phenotypes of macrophages is essential for monitoring the stage of inflammatory diseases for accurate diagnosis and treatment. Recent studies revealed that the level of hypochlorite (OCl-) varies from activated M1 macrophages (killing pathogens) to M2 (resolution of inflammation) during inflammation. Thus, we developed a simple and efficient fluorescent probe for discriminating M1 from M0 and M2. Herein, fluorescent-based imaging is applied as an alternative to immunohistochemistry, which is challenging due to the tedious process and high cost. We developed a hypochlorite-specific probe PMS-T to differentiate M1 and M2, employing a metabolism-oriented live-cell distinction. This probe enables the detection of inflammatory rheumatoid arthritis in an ex vivo mouse model. Thus, it can be a potential chemical tool for monitoring inflammatory diseases, including rheumatoid arthritis, that may overcome the existing barriers of immunohistochemistry.
Collapse
Affiliation(s)
- Mousumi Baruah
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Haw-Young Kwon
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Heewon Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
14
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. Angew Chem Int Ed Engl 2023; 62:e202216231. [PMID: 36412996 PMCID: PMC10108274 DOI: 10.1002/anie.202216231] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
15
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216231. [PMID: 38515539 PMCID: PMC10952862 DOI: 10.1002/ange.202216231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
16
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
17
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|