1
|
Qin Q, Li T, Sun X, Pei A, Jia Y, He H, Gao F, Wang P, Wu Q, Liu R, Dai S, Lin H, Zhang Q, Zhao Y, Chen G. Unveiling the Gold Facet Effect in Selective Oxidation of 5-Hydroxymethylfurfural and Hydrogen Production. NANO LETTERS 2024. [PMID: 39661397 DOI: 10.1021/acs.nanolett.4c04786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Direct oxidation of 5-hydroxymethylfurfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA), crucial for medical supply production, is hindered by overoxidation. We synthesized gold nanomaterials with distinct single-crystal facets, {111} in octahedra (OC), {100} in nanocubes (NCs), and {110} in rhombic dodecahedra (RD), to investigate the facet-dependent HMF oxidation. The Au RD achieved the spontaneous oxidation of HMF to HMFCA with stoichiometric hydrogen production, maintaining 95% carbon balance, 91% yield, and 98% selectivity. In contrast, Au OC and NCs were inert. The superior performance is due to the absence of a C-H activation energy barrier on the Au(110) facet. Furthermore, gas chromatography and isotope experiments supported that the intermediate is oxidized to produce H2 via H- transfer, rather than H2O via H+ transfer. Oxygen was essential for scavenging electrons, thereby closing the reaction loop. The Au RD exhibited remarkable stability, operating for 240 h without performance degradation, indicating its potential for efficient HMFCA production.
Collapse
Affiliation(s)
- Qizhen Qin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Tan Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - An Pei
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Yanyan Jia
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Hongpeng He
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian 361005, China
| | - Fan Gao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Qiqi Wu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Renfeng Liu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Sheng Dai
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200030, China
| | - Haixin Lin
- College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Fujian 361005, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Xia T, Yang J, Ren Q, Fu Y, Zhang Z, Li Z, Shao M, Duan X. Promoting Alcohols Electrooxidation Coupled with Hydrogen Production via Asymmetric Pulse Potential Strategy. Angew Chem Int Ed Engl 2024:e202420992. [PMID: 39648147 DOI: 10.1002/anie.202420992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Electrocatalytic organic oxidation coupled with hydrogen (H2) production emerges as a profitable solution to simultaneously reduce overall energy consumption of H2 production and synthetic high-value chemicals. Noble metal catalysts are highly efficient electrocatalysts in oxidation reactions, but they deactivate easily weakening the benefit in actual production. Herein, we report a universal asymmetric pulse potential strategy to achieve long-term stable operation of noble metals for various alcohol oxidation reactions and noble metal catalysts. For example, by pulsed potentials between 0.8 V and 0 V vs. RHE, palladium (Pd)-catalyzed glycerol (GLY) electrooxidation can continuously proceed for more than 2800 h with glyceric acid (GLA) selectivity of >70 %. Whereas, Pd electrocatalyst becomes nearly deactivated within 6 h of reaction under conventional potentiostatic strategy. Experimental and theoretical calculation results reveal that the generated electrophilic OH* from H2O/OH- oxidation on Pd (denoted as Pd-OH*) acts as main active species for GLY oxidation. However, Pd-OH* is prone to be oxidized to PdOx resulting in performance decay. When a short reduction potential (e.g., 0 V vs. RHE for 5 s) is powered, PdOx can be reversibly reduced to restore the current. Moreover, we tested the feasibility of this strategy in a flow electrolyzer, verifying the practical application potential.
Collapse
Affiliation(s)
- Tian Xia
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiangrong Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qinghui Ren
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Fu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiyuan Zhang
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| | - Zhenhua Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| | - Mingfei Shao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| | - Xue Duan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000, China
| |
Collapse
|
3
|
Tian B, Wang F, Ran P, Dai L, Lv Y, Sun Y, Mu Z, Sun Y, Tang L, Goddard WA, Ding M. Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation. Nat Commun 2024; 15:10145. [PMID: 39578431 PMCID: PMC11584659 DOI: 10.1038/s41467-024-54318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024] Open
Abstract
Electro-selective-oxidation using water as a green oxygen source demonstrates promising potential towards efficient and sustainable chemical upgrading. However, surface micro-kinetics regarding co-adsorption and reaction between organic and oxygen intermediates remain unclear. Here we systematically study the electro-oxidation of aldehydes, alcohols, and amines on Co/Ni-oxyhydroxides with multiple characterizations. Utilizing Fourier transformed alternating current voltammetry (FTacV) measurements, we show the identification and quantification of two key operando parameters (ΔIharmonics/IOER and ΔVharmonics) that can be fundamentally linked to the altered surface coverage ( Δ θ OH * / θ OH * OER ) and the changes in adsorption energy of vital oxygenated intermediates (Δ G OH * EOOR - Δ G OH * OER ), under the influence of organic adsorption/oxidation. Mechanistic analysis based on these descriptors reveals distinct optimal oxyhydroxide surface states for each organics, and elucidates the critical catalyst design principles: balancing organic and M3+δ-OH* coverages and fine-tuning ΔG for key elementary steps, e.g., via precise modulation of chemical compositions, crystallinity, defects, electronic structures, and/or surface bimolecular interactions.
Collapse
Affiliation(s)
- Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Fangyuan Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Pan Ran
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Luhan Dai
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yang Lv
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yuxia Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - William A Goddard
- Materials and Process Simulation Center (MSC) and Liquid Sunlight Alliance (LiSA), California Institute of Technology, Pasadena, CA, USA
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Cao X, Qin H, Zhang J, Chen X, Jiao L. Regulation of Oxide Pathway Mechanism for Sustainable Acidic Water Oxidation. J Am Chem Soc 2024; 146:32049-32058. [PMID: 39529602 DOI: 10.1021/jacs.4c12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The advancement of acid-stable oxygen evolution reaction (OER) electrocatalysts is crucial for efficient hydrogen production through proton exchange membrane (PEM) water electrolysis. Unfortunately, the activity of electrocatalysts is constrained by a linear scaling relationship in the adsorbed evolution mechanism, while the lattice-oxygen-mediated mechanism undermines stability. Here, we propose a heterogeneous dual-site oxide pathway mechanism (OPM) that avoids these limitations through direct dioxygen radical coupling. A combination of Lewis acid (Cr) and Ru to form solid solution oxides (CrxRu1-xO2) promotes OH adsorption and shortens the dual-site distance, which facilitates the formation of *O radical and promotes the coupling of dioxygen radical, thereby altering the OER mechanism to a Cr-Ru dual-site OPM. The Cr0.6Ru0.4O2 catalyst demonstrates a lower overpotential than that of RuO2 and maintains stable operation for over 350 h in a PEM water electrolyzer at 300 mA cm-2. This mechanism regulation strategy paves the way for an optimal catalytic pathway, essential for large-scale green hydrogen production.
Collapse
Affiliation(s)
- Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Jinyang Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaojie Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Huang Y, Zhou W, Xie L, Meng X, Li J, Gao J, Zhao G, Qin Y. Self-sacrificing and self-supporting biomass carbon anode-assisted water electrolysis for low-cost hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2316352121. [PMID: 39541345 PMCID: PMC11588069 DOI: 10.1073/pnas.2316352121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Electrooxidation of renewable and CO2-neutral biomass for low-cost hydrogen production is a promising and green technology. Various biomass platform molecules (BPMs) oxidation assisted hydrogen production technologies have obtained noticeable progress. However, BPMs anodic oxidation is highly dependent on electrocatalysts, and the oxidation mechanism is ambiguous. Meanwhile, the complexity and insolubility of natural biomass severely constrain the efficient utilization of biomass resources. Here, we develop a self-sacrificing and self-supporting carbon anode (SSCA) using waste corncobs. The combined results from multiple characterizations reveal that the structure-property-activity relationship of SSCA in carbon oxidation reaction (COR). Theoretical calculations demonstrate that carbon atoms with a high spin density play a pivotal role in reducing the adsorption energy of the reactive oxygen intermediate (*OH) during the transition from OH- to *OH, thereby promoting COR. Additionally, the HER||COR system allows driving a current density of 400 [Formula: see text] at 1.24 V at 80 °C, with a hydrogen production electric consumption of 2.96 kWh Nm-3 (H2). The strategy provides a ground-breaking perspective on the large-scale utilization of biomass and low-energy water electrolysis for hydrogen production.
Collapse
Affiliation(s)
- Yuming Huang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Wei Zhou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Liang Xie
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Xiaoxiao Meng
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Junfeng Li
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Jihui Gao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Guangbo Zhao
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| | - Yukun Qin
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin150001, Heilongjiang, People’s Republic of China
| |
Collapse
|
6
|
Li J, Du L, Guo S, Chang J, Wu D, Jiang K, Gao Z. Molybdenum iron carbide-copper hybrid as efficient electrooxidation catalyst for oxygen evolution reaction and synthesis of cinnamaldehyde/benzalacetone. J Colloid Interface Sci 2024; 673:616-627. [PMID: 38897063 DOI: 10.1016/j.jcis.2024.06.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Oxygen evolution reaction (OER) is the efficiency limiting half-reaction in water electrolysis for green hydrogen production due to the 4-electron multistep process with sluggish kinetics. The electrooxidation of thermodynamically more favorable organics accompanied by CC coupling is a promising way to synthesize value-added chemicals instead of OER. Efficient catalyst is of paramount importance to fulfill such a goal. Herein, a molybdenum iron carbide-copper hybrid (Mo2C-FeCu) was designed as anodic catalyst, which demonstrated decent OER catalytic capability with low overpotential of 238 mV at response current density of 10 mA cm-2 and fine stability. More importantly, the Mo2C-FeCu enabled electrooxidation assisted aldol condensation of phenylcarbinol with α-H containing alcohol/ketone in weak alkali electrolyte to selective synthesize cinnamaldehyde/benzalacetone at reduced potential. The hydroxyl and superoxide intermediate radicals generated at high potential are deemed to be responsible for the electrooxidation of phenylcarbinol and aldol condensation reactions to afford cinnamaldehyde/benzalacetone. The current work showcases an electrochemical-chemical combined CC coupling reaction to prepare organic chemicals, we believe more widespread organics can be synthesized by tailored electrochemical reactions.
Collapse
Affiliation(s)
- Jinzhou Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Lan'ge Du
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Songtao Guo
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| |
Collapse
|
7
|
Jiang Y, Zhang F, Mei Y, Li T, Li Y, Zheng K, Guo H, Yang G, Zhou Y. Fe─S Bond-Mediated Efficient Electron Transfer in Quantum Dots/Metal-Organic Frameworks for Boosting Photoelectrocatalytic Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405512. [PMID: 39233536 DOI: 10.1002/smll.202405512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Effective electron supply to produce ammonia in photoelectrochemical nitrogen reduction reaction (PEC NRR) remains challenging due to the sluggish multiple proton-coupled electron transfer and unfavorable carrier recombination. Herein, InP quantum dots decorated with sulfur ligands (InP QDs-S2-) bound to MIL-100(Fe) as a benchmark catalyst for PEC NRR is reported. It is found that MIL-100(Fe) can combined with InP QDs-S2- via Fe─S bonds as bridge to facilitate the electron transfer by experimental results. The formation of Fe─S bonds can facilitate electron transfer from inorganic S2- ligands of InP QDs to the Fe metal sites of MIL-100(Fe) within 52 ps, ensuring a more efficient electron transfer and electron-hole separation confirmed by the time-resolved spectroscopy. More importantly, the process of photo-induced carrier transfer can be traced by in situ attenuated total reflection surface-enhanced infrared tests, certifying that the effective electron transfer can promote N≡N dissociation and N2 hydrogenation. As a result, InP QDs-S2-/MIL-100(Fe) exhibits prominent performance with an outstanding NH3 yield of 0.58 µmol cm-2 h-1 (3.09 times higher than that of MIL-100(Fe)). This work reveals an important ultrafast dynamic mechanism for PEC NRR in QDs modified metal-organic frameworks, providing a new guideline for the rational design of efficient MOFs photocathodes.
Collapse
Affiliation(s)
- Yuman Jiang
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Fengying Zhang
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yanglin Mei
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Tingsong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yixuan Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Kaibo Zheng
- Department of Chemical Physics and NanoLund Chemical Center, Lund University, P.O. Box 124, Lund, 22100, Sweden
- Department of Chemistry, Technical University of Denmark, DK-2800 Kongens, Lyngby, Denmark
| | - Heng Guo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Guidong Yang
- Oxford International Joint Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Zhou
- National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
8
|
Akilarasan M, Ehsan MA, Tahir MN, Shah MA, Farooq W, Morris Princey J. In Situ Electrochemical Conversion of Biomass-Derived 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid by Time-Controlled Aerosol-Assisted Chemical Vapor Deposited FeNi Catalyst. ACS OMEGA 2024; 9:42766-42777. [PMID: 39464458 PMCID: PMC11500110 DOI: 10.1021/acsomega.4c04274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
The conversion of 5-hydroxymethylfurfural (HMF) into valuable chemicals, such as 2,5-furandicarboxylic acid (FDCA), is pivotal for sustainable chemical production, offering a renewable pathway to biodegradable plastics and high-value organic compounds. This pioneering study explores the synthesis of FeNi nanostructures via aerosol-assisted chemical vapor deposition (AACVD) for the electrochemical oxidation of HMF to FDCA. By adjusting the deposition time, we developed two distinct nanostructures: FeNi-40, which features nanowires with spherical terminations, and FeNi-80, which features aggregated spherical structures. X-ray diffraction (XRD) confirmed that both nanostructures possess a phase-pure face-centered cubic (FCC) crystal structure. Electrochemical tests conducted using FeNi nanocatalysts on Ni foam revealed that FeNi-40 requires a significantly lower onset potential for HMF oxidation (1.32 V vs RHE) compared to FeNi-80 (1.40 V vs RHE). This difference is attributed to the unique nanowire morphology of FeNi-40, which provides a higher density of active sites and a larger electrochemically active surface area, thereby enhancing the efficiency of the electrochemical process. When tested in an H-type electrolyzer with a Nafion membrane, FeNi-40 demonstrated a remarkable Faradaic efficiency of 96.42% and a high product yield, underscoring the potential of morphology-controlled FeNi nanostructures to enhance the efficiency of sustainable electrochemical processes significantly.
Collapse
Affiliation(s)
- Muthumariappan Akilarasan
- Interdisciplinary
Research Centre for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Muhammad Ali Ehsan
- Interdisciplinary
Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Muhammad Nawaz Tahir
- Interdisciplinary
Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia
- Chemistry
Department, King Fahd University of Petroleum
& Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Mudasir Akbar Shah
- Department
of Chemical Engineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Wasif Farooq
- Interdisciplinary
Research Centre for Refining and Advanced Chemicals (IRC-RAC), King Fahd University of Petroleum & Minerals, Dhahran 31261, Kingdom of Saudi Arabia
- Department
of Chemical Engineering, King Fahd University
of Petroleum & Minerals, Dhahran 31261, Kingdom
of Saudi Arabia
| | - Jerome Morris Princey
- PG&Research
Department of Chemistry, Holy Cross College
(Autonomous), Tiruchirappalli, Tamil Nadu 620002, India
| |
Collapse
|
9
|
Yin Y, Lv X, Lv Z, Fang L, Fan T, Wang M, Chen Z, Lyu N, Gou G, Zhang L, Zheng G, Li L. Hydrogen-Bond-Assisted Electrocatalytic Semi-Oxidation of 5-Hydroxymethylfurfural into 2,5-Diformylfuran by Operando Dissociated N-Oxyl Mediator. CHEMSUSCHEM 2024:e202401760. [PMID: 39375533 DOI: 10.1002/cssc.202401760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
The conversion of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) is a promising approach for enhancing biomass utilization. Nevertheless, traditional methods using noble metal catalysts face challenges due to high costs and poor selectivity towards DFF. Herein, we developed a novel catalytic electrode integrating N-hydroxyphthalimide (NHPI) into a metal-organic framework on a hydrophilic carbon cloth. This design significantly enhances the selective adsorption of HMF due to stronger hydrogen-bond interaction between the electrode's hydrophilic surface and the C(sp3)-OH group in HMF compared to the C(sp2)=O in DFF. Additionally, the electro-driven dissociation of the NHPI-linker generates stabilized N-Oxyl radicals that promote selective semi-oxidation of HMF under neutral conditions. As a result, this approach achieves a high yield rate of 138.2 mol molcat -1 h-1 with a selectivity of 96.7 % for the HMF-to-DFF conversion. This work introduces a novel strategy for designing catalytic electrodes with stabilized N-Oxyl radicals, and offers a promising method for electrocatalytic DFF synthesis, leveraging hydrogen-bond interaction between electrode surface and HMF.
Collapse
Affiliation(s)
- Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ximeng Lv
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Zhuoran Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ziyang Chen
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Naixin Lyu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lijuan Zhang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
10
|
Liu X, Wang X, Mao C, Qiu J, Wang R, Liu Y, Chen Y, Wang D. Ligand-Hybridization Activates Lattice-Hydroxyl-Groups of NiCo(OH) x Nanowires for Efficient Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202408109. [PMID: 38997792 DOI: 10.1002/anie.202408109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 07/11/2024] [Indexed: 07/14/2024]
Abstract
Electrochemical dehydrogenation of hydroxides plays a crucial role in the formation of high-valence metal active sites toward 5-hydroxymethylfurfural oxidation reaction (HMFOR) to produce the value-added chemical of 2,5-furandicarboxylic (FDCA). Herein, we construct benzoic acid ligand-hybridized NiCo(OH)x nanowires (BZ-NiCo(OH)x) with ample electron-deficient Ni/Co sites for HMFOR. The robust electron-withdrawing capability of benzoic acid ligands in BZ-NiCo(OH)x speeds up the electrochemical activation and dehydrogenation of lattice-hydroxyl-groups (M2+-O-H⇌M3+-O), boosting the formation of abundant electron-deficient and high-valence Ni/Co sites. DFT calculation reveals that the deintercalation proton is prone to establishing a hydrogen bridge with the carbonyl group in benzoic acid, facilitating the proton transfer. Coupled with the synergistic oxidation of Ni/Co sites on hydroxyl and aldehyde groups, BZ-NiCo(OH)x delivers a remarkable current density of 111.20 mA cm-2 at 1.4 V for HMFOR, exceeding that of NiCo(OH)x by approximately fourfold. And the FDCA yield and Faraday efficiency are as high as 95.24 % and 95.39 %, respectively. The ligand-hybridized strategy in this work introduces a novel perspective for designing high-performance transition metal-based electrocatalysts for biomass conversion.
Collapse
Affiliation(s)
- Xupo Liu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Xihui Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Chenxing Mao
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Jiayao Qiu
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Ran Wang
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Yi Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ye Chen
- Henan Engineering Research Center of Design and Recycle for Advanced Electrochemical Energy Storage Materials, School of Materials Science and Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Zhang Z, Leng BL, Zhang SN, Xu D, Li QY, Lin X, Chen JS, Li XH. Electrocatalytic Aromatic Alcohols Splitting to Aldehydes and H 2 Gas. J Am Chem Soc 2024; 146:27179-27185. [PMID: 39298293 DOI: 10.1021/jacs.4c10685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Selective electrocatalytic transformation of alcohols to aldehydes offers an efficient and environmentally friendly platform for the simultaneous production of fine chemicals and pure hydrogen gas. However, traditional alcohol oxidation reactions (AORs) in aqueous electrolyte unavoidably face competitive reactions (e.g., water oxidation and overoxidations reactions) for the presence of active oxygen species from water oxidation, causing an unwanted decrease in final efficiency and selectivity. Here, we developed an integrated all-solid proton generator-transfer electrolyzer to trigger the pure alcohol splitting reaction (ASR). In this splitting process, only O-H and C-H bonds can be cleaved at the proton generator (Pt nanoparticles), thereby completely avoiding all competitive reactions involving oxygen active species to give a > 99% selectivity to aldehydes. The as-generated protons are transported to the cathode by a three-dimensional (3D) conducting network (assemblies of ionomers and carbon spheres) for efficient hydrogen production. Unlike the poor selectivity (<22%) and durability (<3 h) of a conventional AOR electrolyzer, this ASR electrolyzer could be continuously operated at a low cell voltage of 1.2 V for at least 10 days to give a high Faradaic efficiency of 80-93% for aldehyde production.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Bing-Liang Leng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Qi-Yuan Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xiu Lin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformation Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
12
|
Xia X, Xu J, Yu X, Yang J, Li AZ, Ji K, Li L, Ma M, Shao Q, Ge R, Duan H. Electro-oxidation of 5-hydroxymethylfurfural in a low-concentrated alkaline electrolyte by enhancing hydroxyl adsorption over a single-atom supported catalyst. Sci Bull (Beijing) 2024; 69:2870-2880. [PMID: 38942696 DOI: 10.1016/j.scib.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), a sustainable strategy to produce bio-based plastic monomer, is always conducted in a high-concentration alkaline solution (1.0 mol L-1 KOH) for high activity. However, such high concentration of alkali poses challenges including HMF degradation and high operation costs associated with product separation. Herein, we report a single-atom-ruthenium supported on Co3O4 (Ru1-Co3O4) as a catalyst that works efficiently in a low-concentration alkaline electrolyte (0.1 mol L-1 KOH), exhibiting a low potential of 1.191 V versus a reversible hydrogen electrode to achieve 10 mA cm-2 in 0.1 mol L-1 KOH, which outperforms previous catalysts. Electrochemical studies demonstrate that single-atom-Ru significantly enhances hydroxyl (OH-) adsorption with insufficient OH- supply, thus improving HMF oxidation. To showcase the potential of Ru1-Co3O4 catalyst, we demonstrate its high efficiency in a flow reactor under industrially relevant conditions. Eventually, techno-economic analysis shows that substitution of the conventional 1.0 mol L-1 KOH with 0.1 mol L-1 KOH electrolyte may significantly reduce the minimum selling price of FDCA by 21.0%. This work demonstrates an efficient catalyst design for electrooxidation of biomass working without using strong alkaline electrolyte that may contribute to more economic biomass electro-valorization.
Collapse
Affiliation(s)
- Xiaoxia Xia
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jingyi Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinru Yu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jing Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - An-Zhen Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kaiyue Ji
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lei Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Min Ma
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qian Shao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruixiang Ge
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Liu X, Wang Y, Duan H. Recent Progress in Electrocatalytic Conversion of Lignin: From Monomers, Dimers, to Raw Lignin. PRECISION CHEMISTRY 2024; 2:428-446. [PMID: 39478938 PMCID: PMC11524326 DOI: 10.1021/prechem.4c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 11/02/2024]
Abstract
Lignin, as the second largest renewable biomass resource in nature, has increasingly received significant interest for its potential to be transformed into valuable chemicals, potentially contributing to carbon neutrality. Among different approaches, renewable electricity-driven biomass conversion holds great promise to substitute a petroleum resource-driven one, owing to its characteristics of environmental friendliness, high energy efficiency, and tunable reactivity. The challenges lie on the polymeric structure and complex functional groups in lignin, requiring the development of efficient electrocatalysts for lignin valorization with enhanced activity and selectivity toward targeted chemicals. In this Review, we focus on the advancement of electrocatalytic valorization of lignin, from monomers, to dimers and to raw lignin, toward various value-added chemicals, with emphasis on catalyst design, reaction innovation, and mechanistic study. The general strategies for catalyst design are also summarized, offering insights into enhancing the activity and selectivity. Finally, challenges and perspectives for the electrocatalytic conversion of lignin are proposed.
Collapse
Affiliation(s)
- Xiang Liu
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
| | - Ye Wang
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
| | - Haohong Duan
- Department
of Chemistry, Tsinghua University, 30 Shuangqing Rd, Beijing 100084, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Engineering
Research Center of Advanced Rare Earth Materials, (Ministry of Education),
Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Duan Y, Lu X, Fan O, Xu H, Zhang Z, Si C, Xu T, Du H, Li X. Non-Noble Metal Catalysts for Electrooxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2024:e202401487. [PMID: 39278837 DOI: 10.1002/cssc.202401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/25/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
2,5-Furandicarboxylic acid (FDCA) is a class of valuable biomass-based platform compounds. The creation of FDCA involves the catalytic oxidation of 5-hydroxymethylfurfural (HMF). As a novel catalytic method, electrocatalysis has been utilized in the 5-hydroxymethylfurfural oxidation reaction (HMFOR). Common noble metal catalysts show catalytic activity, which is limited by price and reaction conditions. Non-noble metal catalyst is known for its environmental friendliness, affordability and high efficiency. The development of energy efficient non-noble metal catalysts plays a crucial role in enhancing the HMFOR process. It can greatly upgrade the demand of industrial production, and has important research significance for electrocatalytic oxidation of HMF. In this paper, the reaction mechanism of HMF undergoes electrocatalytic oxidation to produce FDCA are elaborately summarized. There are two reaction pathways and two oxidation mechanisms of HMFOR discussed deeply. In addition, the speculation on the response of the electrode potential to HMFOR is presented in this paper. The main non-noble metal electrocatalysts currently used are classified and summarized by targeting metal element species. Finally, the paper focus on the mechanistic effects of non-noble metal catalysts in the reaction, and provide the present prospects and challenges in the electrocatalytic oxidation reaction of HMF.
Collapse
Affiliation(s)
- Yanfeng Duan
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Xuebin Lu
- School of Traffic and Environment, Shenzhen Institute of Information Technology, Shenzhen, 518172, PR China
| | - Ouyang Fan
- Department of Chemical Engineering, Auburn University, Auburn, AL-36849, USA
| | - Haocheng Xu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Zhengxiong Zhang
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Chuanling Si
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, PR China
| | - Ting Xu
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibet Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, PR China
| | - Haishun Du
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, PR China
| | - Xiaoyun Li
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
15
|
Chen L, Yu C, Song X, Dong J, Mu J, Qiu J. Integrated electrochemical and chemical system for ampere-level production of terephthalic acid alternatives and hydrogen. Nat Commun 2024; 15:8072. [PMID: 39277577 PMCID: PMC11401954 DOI: 10.1038/s41467-024-51937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024] Open
Abstract
2,5-Furandicarboxylic acid (FDCA), a critical polymer platform molecule that can potentially replace terephthalic acid, coupled hydrogen coproduction holds great prospects via electrolysis. However, the electrosynthesis of FDCA faces challenges in product separation from complex electrolytes and unclear electrochemical and nonelectrochemical reactions during the 5-hydroxymethylfurfural (HMF) oxidation. Herein, an electrochemical/chemical integrated system of alkaline HMF-H2O co-electrolysis is proposed, achieving distillation-free synthesis of high-purity FDCA by acidic separation/purification and hydrogen coproduction. This system achieves ampere-level current densities of 812 and 1290 mA cm-2 at potentials of 1.50 and 1.60 V, with nearly 100% FDCA yield and HMF conversion in only 6 min at 1.50 V. The electrooxidation of HMF involves a coupling of electrochemical and nonelectrochemical reactions, wherein the aldehyde group is dehydrogenated and oxidized, followed by dehydrated and oxidized of the hydroxyl group, ultimately forming FDCA. Concurrently, nonelectrochemical reactions of intermolecular electron transfer occur in HMF and aldehyde group-containing intermediates.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Xuedan Song
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Junting Dong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jiawei Mu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
16
|
He Y, Ma C, Mo S, Dong CL, Chen W, Chen S, Pang H, Ma RZ, Wang S, Zou Y. Unilamellar MnO 2 nanosheets confined Ru-clusters combined with pulse electrocatalysis for biomass electrooxidation in neutral electrolytes. Sci Bull (Beijing) 2024:S2095-9273(24)00647-9. [PMID: 39299873 DOI: 10.1016/j.scib.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/17/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024]
Abstract
The electrochemical oxidation of 5-hydroxymethylfurfural (HMFOR) in alkaline electrolyte is a promising strategy for producing high-value chemicals from biomass derivatives. However, the disproportionation of aldehyde groups under strong alkaline conditions and the polymerization of HMF to form humic substances can impact the purity of 2,5-furandicarboxylic acid (FDCA) products. The use of neutral electrolytes offers an alternative environment for electrolysis, but the lack of OH- ions in the electrolyte often leads to low current density and low yields of FDCA. In this study, a sandwich-structured catalyst, consisting of Ru clusters confined between unilamellar MnO2 nanosheets (S-Ru/MnO2), was used in conjunction with an electrochemical pulse method to realize the electrochemical conversion of 5-hydroxymethylfurfural into FDCA in neutral electrolytes. Pulse electrolysis and the strong electron transfer between Ru clusters and MnO2 nanosheets help maintain Ru in a low oxidation state, ensuring high activity. The increased *OH generation led to a groundbreaking current density of 47 mA/cm2 at 1.55 V vs. reversible hydrogen electrode (RHE) and an outstanding yield rate of 98.7 % for FDCA in a neutral electrolyte. This work provides a strategy that combines electrocatalyst design with an electrolysis technique to achieve remarkable performance in neutral HMFOR.
Collapse
Affiliation(s)
- Yuanqing He
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Chongyang Ma
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Shiheng Mo
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei City 25137, China
| | - Wei Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China; State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Shuo Chen
- School of Materials Science and Engineering, Central South University, Changsha 410083, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Ren Zhi Ma
- International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, The National Supercomputer Centers in Changsha, Hunan University, Changsha 410082, China.
| |
Collapse
|
17
|
Chen C, Lv M, Hu H, Huai L, Zhu B, Fan S, Wang Q, Zhang J. 5-Hydroxymethylfurfural and its Downstream Chemicals: A Review of Catalytic Routes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311464. [PMID: 38808666 DOI: 10.1002/adma.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Biomass assumes an increasingly vital role in the realm of renewable energy and sustainable development due to its abundant availability, renewability, and minimal environmental impact. Within this context, 5-hydroxymethylfurfural (HMF), derived from sugar dehydration, stands out as a critical bio-derived product. It serves as a pivotal multifunctional platform compound, integral in synthesizing various vital chemicals, including furan-based polymers, fine chemicals, and biofuels. The high reactivity of HMF, attributed to its highly active aldehyde, hydroxyl, and furan ring, underscores the challenge of selectively regulating its conversion to obtain the desired products. This review highlights the research progress on efficient catalytic systems for HMF synthesis, oxidation, reduction, and etherification. Additionally, it outlines the techno-economic analysis (TEA) and prospective research directions for the production of furan-based chemicals. Despite significant progress in catalysis research, and certain process routes demonstrating substantial economics, with key indicators surpassing petroleum-based products, a gap persists between fundamental research and large-scale industrialization. This is due to the lack of comprehensive engineering research on bio-based chemicals, making the commercialization process a distant goal. These findings provide valuable insights for further development of this field.
Collapse
Affiliation(s)
- Chunlin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxin Lv
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hualei Hu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Huai
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhu
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shilin Fan
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuge Wang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, 315201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Chen J, Jiang M, Zhang F, Wang L, Yang J. Interstitial Boron Atoms in Pd Aerogel Selectively Switch the Pathway for Glycolic Acid Synthesis from Waste Plastics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401867. [PMID: 39073167 DOI: 10.1002/adma.202401867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Electro-reforming of poly(ethylene terephthalate) (PET) into valuable chemicals is garnering significant attention as it opens a mild avenue for waste resource utilization. However, achieving high activity and selectivity for valuable C2 products during ethylene glycol (EG) oxidation in PET hydrolysate on Pd electrocatalysts remains challenging. The strong interaction between Pd and carbonyl (*CO) intermediates leads to undesirable over-oxidation and poisoning of Pd sites, which hinders the highly efficient C2 products production. Herein, a nonmetallic alloying strategy is employed to fabricate a Pd-boron alloy aerogel (PdB), wherein B atoms are induced to regulate the electron structure and surface oxophilicity. This approach allows a remarkable mass activity of 6.71 A mgPd -1, glycolic acid (GA) Faradaic efficiency (FE) of 93.8%, and stable 100 h cyclic electrolysis. In situ experiments and density functional theory calculations reveal the contributions of B inserted in Pd lattice on highly effective EG-to-GA conversion. Interestingly, the heightened surface oxophilicity and regulated electronic structure by B incorporation weakened *CO intermediates adsorption and enhanced hydroxyl species affinity to accelerate oxidative *OH adspecies formation, thereby synergistically avoiding over-oxidation and boosting GA synthesis. This work provides valuable insights for the rational design of high-performance electrocatalysts for GA synthesis via an oxophilic B motifs incorporation strategy.
Collapse
Affiliation(s)
- Junliang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Miaomiao Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
19
|
Jiang X, Ma X, Yang Y, Liu Y, Liu Y, Zhao L, Wang P, Zhang Y, Lin Y, Wei Y. Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading. NANO-MICRO LETTERS 2024; 16:275. [PMID: 39168930 PMCID: PMC11339012 DOI: 10.1007/s40820-024-01493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction (HMFOR) provides a promising strategy to convert biomass derivative to high-value-added chemicals. Herein, a cascade strategy is proposed to construct Pd-NiCo2O4 electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation. An elevated current density of 800 mA cm-2 can be achieved at 1.5 V, and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100% over 10 consecutive electrolysis. Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co, which not only balances the competitive adsorption of HMF and OH- species, but also promote the active Ni3+ species formation, inducing high indirect oxidation activity. We have also discovered that Ni incorporation facilitates the Co2+ pre-oxidation and electrophilic OH* generation to contribute direct oxidation process. This work provides a new approach to design advanced electrocatalyst for biomass upgrading.
Collapse
Affiliation(s)
- Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Xianhui Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yuanteng Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yang Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Penglei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
- School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
20
|
Liu X, Huang L, Ma Y, She G, Zhou P, Zhu L, Zhang Z. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nat Commun 2024; 15:7012. [PMID: 39147765 PMCID: PMC11327299 DOI: 10.1038/s41467-024-51307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
A single-atom catalyst with generally regarded inert Zn-N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn-N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Yuandie Ma
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Guoqiang She
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
21
|
Wang Y, He H, Lv H, Jia F, Liu B. Two-dimensional single-crystalline mesoporous high-entropy oxide nanoplates for efficient electrochemical biomass upgrading. Nat Commun 2024; 15:6761. [PMID: 39117608 PMCID: PMC11310307 DOI: 10.1038/s41467-024-50721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Mesoporous single crystals have received more attention than ever in catalysis-related applications due to their unique structural functions. Despite great efforts, their progress in engineering crystallinity and composition has been remarkably slower than expected. In this manuscript, a template-free strategy is developed to prepare two-dimensional high-entropy oxide (HEO) nanoplates with single-crystallinity and penetrated mesoporosity, which further ensures precise control over high-entropy compositions and crystalline phases. Single-crystalline mesoporous HEOs (SC-MHEOs) disclose high electrocatalytic performance in 5-hydroxymethylfurfural oxidation reaction (HMFOR) for efficient biomass upgrading, with remarkable HMF conversion of 99.3% and superior 2,5-furandicarboxylic acid (FDCA) selectivity of 97.7%. Moreover, with nitrate reduction as coupling cathode reaction, SC-MHEO realizes concurrent electrosynthesis of value-added FDCA and ammonia in the two-electrode cell. Our study provides a powerful paradigm for producing a library of novel mesoporous single crystals for important catalysis-related applications, especially in the two-electrode cell.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Hangjuan He
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Hao Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Fengrui Jia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China
| | - Ben Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 610064, Chengdu, China.
| |
Collapse
|
22
|
Li H, Li Y, Chen J, Lu L, Wang P, Hu J, Ma R, Gao Y, Yi H, Li W, Lei A. Scalable and Selective Electrochemical Hydrogenation of Polycyclic Arenes. Angew Chem Int Ed Engl 2024; 63:e202407392. [PMID: 39031667 DOI: 10.1002/anie.202407392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 07/22/2024]
Abstract
The reduction of aromatic compounds constitutes a fundamental and ongoing area of investigation. The selective reduction of polycyclic aromatic compounds to give either fully or partially reduced products remains a challenge, especially in applications to complex molecules at scale. Herein, we present a selective electrochemical hydrogenation of polycyclic arenes conducted under mild conditions. A noteworthy achievement of this approach is the ability to finely control both the complete and partial reduction of specific aromatic rings within polycyclic arenes by judiciously varying the reaction solvents. Mechanistic investigations elucidate the pivotal role played by in situ proton generation and interface regulation in governing reaction selectivity. The reductive electrochemical conditions show a very high level of functional-group tolerance. Furthermore, this methodology represents an easily scalable reduction (demonstrated by the reduction of 1 kg scale starting material) using electrochemical flow chemistry to give key intermediates for the synthesis of specific drugs.
Collapse
Affiliation(s)
- Hao Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yan Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jiaye Chen
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Lijun Lu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jingcheng Hu
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Rui Ma
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yiming Gao
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Wu Li
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Aiwen Lei
- The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
- National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China
| |
Collapse
|
23
|
Chen L, Yu C, Song X, Dong J, Han Y, Huang H, Zhu X, Xie Y, Qiu J. Microscopic-Level Insights into P-O-Induced Strong Electronic Coupling Over Nickel Phosphide with Efficient Benzyl Alcohol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306410. [PMID: 38456764 DOI: 10.1002/smll.202306410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Indexed: 03/09/2024]
Abstract
Electrooxidation of biomass into fine chemicals coupled with energy-saving hydrogen production for a zero-carbon economy holds great promise. Advanced anode catalysts determine the cell voltage and electrocatalytic efficiency greatly, further the rational design and optimization of their active site coordination remains a challenge. Herein, a phosphorus-oxygen terminals-rich species (Ni2P-O-300) via an anion-assisted pyrolysis strategy is reported to induce strong electronic coupling and high valence state of active nickel sites over nickel phosphide. This ultimately facilitates the rapid yet in-situ formation of high-valence nickel with a high reaction activity under electrochemical conditions, and exhibits a low potential of 1.33 V vs. RHE at 10 mA cm-2, exceeding most of reported transition metal-based catalysts. Advanced spectroscopy, theoretical calculations, and experiments reveal that the functional P-O species can induce the favorable local bonding configurations for electronic coupling, promoting the electron transfer from Ni to P and the adsorption of benzyl alcohol (BA). Finally, the hydrogen production efficiency and kinetic constant of BA electrooxidation by Ni2P-O-300 are increased by 9- and 2.8- fold compared with the phosphorus-oxygen terminals-deficient catalysts (Ni2P-O-500). This provides an anion-assisted pyrolysis strategy to modulate the electronic environment of the Ni site, enabling a guideline for Ni-based energy/catalysis systems.
Collapse
Affiliation(s)
- Lin Chen
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Chang Yu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xuedan Song
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Junting Dong
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yingnan Han
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Hongling Huang
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Xiuqing Zhu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyang Xie
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
24
|
Wang P, Zheng J, Xu X, Zhang YQ, Shi QF, Wan Y, Ramakrishna S, Zhang J, Zhu L, Yokoshima T, Yamauchi Y, Long YZ. Unlocking Efficient Hydrogen Production: Nucleophilic Oxidation Reactions Coupled with Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404806. [PMID: 38857437 DOI: 10.1002/adma.202404806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Indexed: 06/12/2024]
Abstract
Electrocatalytic water splitting driven by sustainable energy is a clean and promising water-chemical fuel conversion technology for the production of high-purity green hydrogen. However, the sluggish kinetics of anodic oxygen evolution reaction (OER) pose challenges for large-scale hydrogen production, limiting its efficiency and safety. Recently, the anodic OER has been replaced by a nucleophilic oxidation reaction (NOR) with biomass as the substrate and coupled with a hydrogen evolution reaction (HER), which has attracted great interest. Anode NOR offers faster kinetics, generates high-value products, and reduces energy consumption. By coupling NOR with hydrogen evolution reaction, hydrogen production efficiency can be enhanced while yielding high-value oxidation products or degrading pollutants. Therefore, NOR-coupled HER hydrogen production is another new green electrolytic hydrogen production strategy after electrolytic water hydrogen production, which is of great significance for realizing sustainable energy development and global decarbonization. This review explores the potential of nucleophilic oxidation reactions as an alternative to OER and delves into NOR mechanisms, guiding future research in NOR-coupled hydrogen production. It assesses different NOR-coupled production methods, analyzing reaction pathways and catalyst effects. Furthermore, it evaluates the role of electrolyzers in industrialized NOR-coupled hydrogen production and discusses future prospects and challenges. This comprehensive review aims to advance efficient and economical large-scale hydrogen production.
Collapse
Affiliation(s)
- Peng Wang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Jie Zheng
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Xue Xu
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Yu-Qing Zhang
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiao-Fu Shi
- Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Center for Engineered Nonwovens (SCEN), College of Textiles Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yong Wan
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Jun Zhang
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Tokihiko Yokoshima
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Yun-Ze Long
- Shandong Key Laboratory of Medical and Health Textile Materials, College of Physics, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
25
|
Koul A, Chandra S, Schuhmann W. Selective lactic acid synthesis via ethylene glycol electrooxidation in borate buffer. Chem Commun (Camb) 2024; 60:7902-7905. [PMID: 38982941 DOI: 10.1039/d4cc02556c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Efficient and selective oxidation of ethylene glycol is challenging due to uncontrollable C-C bond cleavage. We propose an electrochemical strategy for the selective electrooxidation of ethylene glycol to sythesise lactic acid on a Ni-based electrocatalyst by controlling the pH value of the electrolyte solution.
Collapse
Affiliation(s)
- Adarsh Koul
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Shubhadeep Chandra
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
26
|
Lu X, Qi K, Dai X, Li Y, Wang D, Dou J, Qi W. Selective electrooxidation of 5-hydroxymethylfurfural to 5-formyl-furan-2-formic acid on non-metallic polyaniline catalysts: structure-function relationships. Chem Sci 2024; 15:11043-11052. [PMID: 39027310 PMCID: PMC11253170 DOI: 10.1039/d4sc01752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
The biomass-derived HMF oxidation reaction (HMFOR) holds great promise for sustainable production of fine chemicals. However, selective electrooxidation of HMF to high value-added intermediate product 5-formyl-furan-2-formic acid (FFCA) is still challenging. Herein, we report the electrocatalytic HMFOR to selectively produce FFCA using carbon paper (CP) supported polyaniline (PANI) as a catalyst. The PANI/CP non-metallic hybrid catalyst with moderate oxidation capacity exhibitsoptimized FFCA selectivity up to 76% in alkaline media, which has reached the best performance in reported literature studies. Identification and quantification of active sites for the HMFOR are further realized via linking the activity to structural compositions of PANI; both polaronic-type nitrogen (N3) and positively charged nitrogen (N4) species are proved responsible for adsorption and activation of HMF, and the intrinsic activity of N4 is higher than that of N3. The present work provides new physical-chemical insights into the mechanism of the HMFOR on non-metallic catalysts, paving the way for the establishment of structure-function relations and further development of novel electrochemical synthesis systems.
Collapse
Affiliation(s)
- Xingyu Lu
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Ke Qi
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Xueya Dai
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Yunlong Li
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Di Wang
- School of Pharmacy, Shenyang Pharmaceutical University No. 26 Huatuo Rd, High & New Tech Development Zone Benxi Liaoning Province China
| | - Jing Dou
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| | - Wei Qi
- Institute of Metal Research, Chinese Academy of Sciences Shenyang Liaoning China
- School of Materials Science and Engineering, University of Science and Technology of China Shenyang Liaoning China
| |
Collapse
|
27
|
Chen L, Yu C, Dong J, Han Y, Huang H, Li W, Zhang Y, Tan X, Qiu J. Seawater electrolysis for fuels and chemicals production: fundamentals, achievements, and perspectives. Chem Soc Rev 2024; 53:7455-7488. [PMID: 38855878 DOI: 10.1039/d3cs00822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Seawater electrolysis for the production of fuels and chemicals involved in onshore and offshore plants powered by renewable energies offers a promising avenue and unique advantages for energy and environmental sustainability. Nevertheless, seawater electrolysis presents long-term challenges and issues, such as complex composition, potential side reactions, deposition of and poisoning by microorganisms and metal ions, as well as corrosion, thus hindering the rapid development of seawater electrolysis technology. This review focuses on the production of value-added fuels (hydrogen and beyond) and fine chemicals through seawater electrolysis, as a promising step towards sustainable energy development and carbon neutrality. The principle of seawater electrolysis and related challenges are first introduced, and the redox reaction mechanisms of fuels and chemicals are summarized. Strategies for operating anodes and cathodes including the development and application of chloride- and impurity-resistant electrocatalysts/membranes are reviewed. We comprehensively summarize the production of fuels and chemicals (hydrogen, carbon monoxide, sulfur, ammonia, etc.) at the cathode and anode via seawater electrolysis, and propose other potential strategies for co-producing fine chemicals, even sophisticated and electronic chemicals. Seawater electrolysis can drive the oxidation and upgrading of industrial pollutants or natural organics into value-added chemicals or degrade them into harmless substances, which would be meaningful for environmental protection. Finally, the perspective and prospects are outlined to address the challenges and expand the application of seawater electrolysis.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chang Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Junting Dong
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yingnan Han
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hongling Huang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Wenbin Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Yafang Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xinyi Tan
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Jieshan Qiu
- State Key Lab of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
28
|
Pei A, Wang P, Zhang S, Zhang Q, Jiang X, Chen Z, Zhou W, Qin Q, Liu R, Du R, Li Z, Qiu Y, Yan K, Gu L, Ye J, Waterhouse GIN, Huang WH, Chen CL, Zhao Y, Chen G. Enhanced electrocatalytic biomass oxidation at low voltage by Ni 2+-O-Pd interfaces. Nat Commun 2024; 15:5899. [PMID: 39003324 PMCID: PMC11246419 DOI: 10.1038/s41467-024-50325-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
Challenges in direct catalytic oxidation of biomass-derived aldehyde and alcohol into acid with high activity and selectivity hinder the widespread biomass application. Herein, we demonstrate that a Pd/Ni(OH)2 catalyst with abundant Ni2+-O-Pd interfaces allows electrooxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with a selectivity near 100 % and 2, 5-furandicarboxylic acid yield of 97.3% at 0.6 volts (versus a reversible hydrogen electrode) in 1 M KOH electrolyte under ambient conditions. The rate-determining step of the intermediate oxidation of 5-hydroxymethyl-2-furancarboxylic acid is promoted by the increased OH species and low C-H activation energy barrier at Ni2+-O-Pd interfaces. Further, the Ni2+-O-Pd interfaces prevent the agglomeration of Pd nanoparticles during the reaction, greatly improving the stability of the catalyst. In this work, Pd/Ni(OH)2 catalyst can achieve 100% 5-hydroxymethylfurfural conversion and >90% 2, 5-furandicarboxylic acid selectivity in a flow-cell and work stably over 200 h under a fixed cell voltage of 0.85 V.
Collapse
Affiliation(s)
- An Pei
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Peng Wang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Shiyi Zhang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Jiang
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Zhaoxi Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Weiwei Zhou
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Qizhen Qin
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Renfeng Liu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Ruian Du
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Zhengjian Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Yongcai Qiu
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China
| | - Lin Gu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Materials Science and Engineering, Tsinghua University, Beijing, China.
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan
| | - Chi-Liang Chen
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan
| | - Yun Zhao
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
| | - Guangxu Chen
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
| |
Collapse
|
29
|
Shi L, Zhang Q, Yang S, Ren P, Wu Y, Liu S. Optimizing the Activation Energy of Reactive Intermediates on Single-Atom Electrocatalysts: Challenges and Opportunities. SMALL METHODS 2024; 8:e2301219. [PMID: 38180156 DOI: 10.1002/smtd.202301219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Single-atom catalysts (SACs) have made great progress in recent years as potential catalysts for energy conversion and storage due to their unique properties, including maximum metal atoms utilization, high-quality activity, unique defined active sites, and sustained stability. Such advantages of single-atom catalysts significantly broaden their applications in various energy-conversion reactions. Given the extensive utilization of single-atom catalysts, methods and specific examples for improving the performance of single-atom catalysts in different reaction systems based on the Sabatier principle are highlighted and reactant binding energy volcano relationship curves are derived in non-homogeneous catalytic systems. The challenges and opportunities for single-atom catalysts in different reaction systems to improve their performance are also focused upon, including metal selection, coordination environments, and interaction with carriers. Finally, it is expected that this work may provide guidance for the design of high-performance single-atom catalysts in different reaction systems and thereby accelerate the rapid development of the targeted reaction.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Qihan Zhang
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Peidong Ren
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| | - Yingjie Wu
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, China
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150001, P. R. China
| |
Collapse
|
30
|
Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W. Stabilizing atomic Ru species in conjugated sp 2 carbon-linked covalent organic framework for acidic water oxidation. Nat Commun 2024; 15:5419. [PMID: 38926414 PMCID: PMC11208516 DOI: 10.1038/s41467-024-49834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Suppressing the kinetically favorable lattice oxygen oxidation mechanism pathway and triggering the adsorbate evolution mechanism pathway at the expense of activity are the state-of-the-art strategies for Ru-based electrocatalysts toward acidic water oxidation. Herein, atomically dispersed Ru species are anchored into an acidic stable vinyl-linked 2D covalent organic framework with unique crossed π-conjugation, termed as COF-205-Ru. The crossed π-conjugated structure of COF-205-Ru not only suppresses the dissolution of Ru through strong Ru-N motifs, but also reduces the oxidation state of Ru by multiple π-conjugations, thereby activating the oxygen coordinated to Ru and stabilizing the oxygen vacancies during oxygen evolution process. Experimental results including X-ray absorption spectroscopy, in situ Raman spectroscopy, in situ powder X-ray diffraction patterns, and theoretical calculations unveil the activated oxygen with elevated energy level of O 2p band, decreased oxygen vacancy formation energy, promoted electrochemical stability, and significantly reduced energy barrier of potential determining step for acidic water oxidation. Consequently, the obtained COF-205-Ru displays a high mass activity with 2659.3 A g-1, which is 32-fold higher than the commercial RuO2, and retains long-term durability of over 280 h. This work provides a strategy to simultaneously promote the stability and activity of Ru-based catalysts for acidic water oxidation.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, 430073, PR China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
31
|
Zhou P, Lv X, Huang H, Cheng B, Zhan H, Lu Y, Frauenheim T, Wang S, Zou Y. Construction of Ag─Co(OH) 2 Tandem Heterogeneous Electrocatalyst Induced Aldehyde Oxidation and the Co-Activation of Reactants for Biomass Effective and Multi-Selective Upgrading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312402. [PMID: 38328963 DOI: 10.1002/adma.202312402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/14/2024] [Indexed: 02/09/2024]
Abstract
The electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF) provides a feasible way for utilization of biomass resources. However, how to regulate the selective synthesis of multiple value-added products is still a great challenge. The cobalt-based compound is a promising catalyst due to its direct and indirect oxidation properties, but its weak adsorption capacity restricts its further development. Herein, by constructing Ag─Co(OH)2 heterogeneous catalyst, the efficient and selective synthesis of 5-hydroxymethyl-2-furanoic acid (HMFCA) and 2,5-furan dicarboxylic acid (FDCA) at different potential ranges are realized. Based on various physical characterizations, electrochemical measurements, and density functional theory calculations, it is proved that the addition of Ag can effectively promote the oxidation of aldehyde group to a carboxyl group, and then generate HMFCA at low potential. Moreover, the introduction of Ag can activate cobalt-based compounds, thus strengthening the adsorption of organic molecules and OH- species, and promoting the formation of FDCA. This work achieves the selective synthesis of two value-added chemicals by one tandem catalyst and deeply analyzes the adsorption enhancement mechanism of the catalyst, which provides a powerful guidance for the development of efficient heterogeneous catalysts.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Xingshuai Lv
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR, 999078, China
| | - Huining Huang
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and, Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Baixue Cheng
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Haoyu Zhan
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Yankun Lu
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao, 266071, P. R. China
| | - Thomas Frauenheim
- School of Science, Constructor University, 28759, Bremen, Germany
- Beijing Computational Science Research Center, Beijing, 100193, China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
32
|
Wang J, Li X, Zhang T, Chai X, Xu M, Feng M, Cai C, Chen Z, Qian X, Zhao Y. Photovoltaic-driven Ni(ii)/Ni(iii) redox mediator for the valorization of PET plastic waste with hydrogen production. Chem Sci 2024; 15:7596-7602. [PMID: 38784748 PMCID: PMC11110143 DOI: 10.1039/d4sc01613k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
Electrocatalytic valorization of PET plastic waste provides an appealing route by converting intermittent renewable energy into valuable chemicals and high-energy fuels. Normally, anodic PET hydrolysate oxidation and cathodic water reduction reactions occur simultaneously in the same time and space, which increases the challenges for product separation and operational conditions. Although these problems can be addressed by utilizing membranes or diaphragms, the parasitic cell resistance and high overall cost severely restrict their future application. Herein, we introduce a Ni(ii)/Ni(iii) redox mediator to decouple these reactions into two independent processes: an electrochemical process for water reduction to produce hydrogen fuel assisted by the oxidation of the Ni(OH)2 electrode into the NiOOH counterpart, followed subsequently by a spontaneous chemical process for the valorization of PET hydrolysate to produce formic acid with a high faradaic efficiency of ∼96% by the oxidized NiOOH electrode. This decoupling strategy enables the electrochemical valorization of PET plastic waste in a membrane-free system to produce high-value formic acid and high-purity hydrogen production. This study provides an appealing route to facilitate the transformation process of PET plastic waste into high-value products with high efficiency, low cost and high purity.
Collapse
Affiliation(s)
- Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
- School of Chemical Science and Engineering, Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Xin Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Xinyu Chai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Mingze Xu
- School of Chemical Science and Engineering, Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Menglei Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Chengcheng Cai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Zuofeng Chen
- School of Chemical Science and Engineering, Tongji University 1239 Siping Rd. Shanghai 200092 China
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
- State Key Lab of Metal Matrix Composite, Shanghai Jiao Tong University 800 Dongchuan Rd. Shanghai 200240 China
| |
Collapse
|
33
|
Lei C, Chen Z, Jiang T, Wang S, Du W, Cha S, Hao Y, Wang R, Cao X, Gong M. Ultra-Dense Supported Ruthenium Oxide Clusters via Directed Ion Exchange for Efficient Valorization of 5-Hydroxymethylfurfural. Angew Chem Int Ed Engl 2024; 63:e202319642. [PMID: 38554014 DOI: 10.1002/anie.202319642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Accepted: 03/29/2024] [Indexed: 04/01/2024]
Abstract
Maximizing the loadings of active centers without aggregation for a supported catalyst is a grand challenge but essential for achieving high gravimetric catalytic activity, especially toward multi-step reactions. The oxidation of 5-hydroxymethylfurfural (HMF), a key biomass-derived platform molecule, into 2,5-furandicarboxylic acid (FDCA), a promising alternative to polyester monomer, is such a multi-step reaction that involves 6 proton and electron transfers. This process often demands strong alkaline environment but also suffers from the alkali-driven polymerization side-reaction. Meanwhile, neutral media ameliorates the polymerization, but lacks efficient catalyst toward deep oxidation. Herein, we devised a strategy of creating ultra-dense supported Ru oxide clusters via directed ion exchange in a Co hydroxyanion (CoHA) support material. Pyrimidine ligands were first incorporated into the CoHA interlayers, and the subsequent evacuation of pyrimidines created porous channels for the directed ion exchange with the built-in anions in CoHA, which allowed the dense and mono-disperse functionalization of RuCl6 2- anions and their resulting Ru oxide clusters. These ultra-dense Ru oxide clusters not only enable high HMF electrooxidation currents under neutral conditions but also create microscopic channels in-between the clusters for the expedited re-adsorption and oxidation of intermediates toward highly oxidized product, such as 5-formyl-2-furoic acid (FFCA) and FDCA. A two-stage HMF oxidation process, consisting of ambient conversion of HMF into FFCA and FFCA oxidation into FDCA under 60 °C, was eventually developed to first achieve a high FDCA yield of 92.1 % under neutral media with significantly reduced polymerization.
Collapse
Affiliation(s)
- Can Lei
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Zhe Chen
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Tao Jiang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shaoyan Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wei Du
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shuangshuang Cha
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yaming Hao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Ran Wang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xueting Cao
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Ming Gong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
34
|
Si D, Teng X, Xiong B, Chen L, Shi J. Electrocatalytic functional group conversion-based carbon resource upgrading. Chem Sci 2024; 15:6269-6284. [PMID: 38699249 PMCID: PMC11062096 DOI: 10.1039/d4sc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/23/2024] [Indexed: 05/05/2024] Open
Abstract
The conversions of carbon resources, such as alcohols, aldehydes/ketones, and ethers, have been being one of the hottest topics most recently for the goal of carbon neutralization. The emerging electrocatalytic upgrading has been regarded as a promising strategy aiming to convert carbon resources into value-added chemicals. Although exciting progress has been made and reviewed recently in this area by mostly focusing on the explorations of valuable anodic oxidation or cathodic reduction reactions individually, however, the reaction rules of these reactions are still missing, and how to purposely find or rationally design novel but efficient reactions in batches is still challenging. The properties and transformations of key functional groups in substrate molecules play critically important roles in carbon resources conversion reactions, which have been paid more attention to and may offer hidden keys to achieve the above goal. In this review, the properties of functional groups are addressed and discussed in detail, and the reported electrocatalytic upgrading reactions are summarized in four categories based on the types of functional groups of carbon resources. Possible reaction pathways closely related to functional groups will be summarized from the aspects of activation, cleavage and formation of chemical bonds. The current challenges and future opportunities of electrocatalytic upgrading of carbon resources are discussed at the end of this review.
Collapse
Affiliation(s)
- Di Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xue Teng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingyan Xiong
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University Shanghai 200072 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
35
|
Shanker GS, Ghatak A, Binyamin S, Balilty R, Shimoni R, Liberman I, Hod I. Regulation of Catalyst Immediate Environment Enables Acidic Electrochemical Benzyl Alcohol Oxidation to Benzaldehyde. ACS Catal 2024; 14:5654-5661. [PMID: 38660611 PMCID: PMC11036388 DOI: 10.1021/acscatal.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
Electrocatalytic alcohol oxidation in acid offers a promising alternative to the kinetically sluggish water oxidation reaction toward low-energy H2 generation. However, electrocatalysts driving active and selective acidic alcohol electrochemical transformation are still scarce. In this work, we demonstrate efficient alcohol-to-aldehyde conversion achieved by reticular chemistry-based modification of the catalyst's immediate environment. Specifically, coating a Bi-based electrocatalyst with a thin layer of metal-organic framework (MOF) substantially improves its performance toward benzyl alcohol electro-oxidation to benzaldehyde in a 0.1 M H2SO4 electrolyte. Detailed analysis reveals that the MOF adlayer influences catalysis by increasing the reactivity of surface hydroxides as well as weakening the catalyst-benzaldehyde binding strength. In turn, low-potential (0.65 V) cathodic H2 evolution was obtained through coupling it with anodic benzyl alcohol electro-oxidation. Consequently, the presented approach could be implemented in a wide range of electrocatalytic oxidation reactions for energy-conversion application.
Collapse
Affiliation(s)
- G. Shiva Shanker
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Arnab Ghatak
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Shahar Binyamin
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rotem Balilty
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ran Shimoni
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Itamar Liberman
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Idan Hod
- Department of Chemistry and
Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
36
|
Zhou B, Ding H, Jin W, Zhang Y, Wu Z, Wang L. Oxygen-deficient tungsten oxide inducing electron and proton transfer: Activating ruthenium sites for hydrogen evolution in wide pH and alkaline seawater. J Colloid Interface Sci 2024; 660:321-333. [PMID: 38244499 DOI: 10.1016/j.jcis.2024.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
The design of electrocatalysts for the hydrogen evolution reaction (HER) that perform effectively across a broad pH spectrum is paramount. The efficiency of hydrogen evolution at ruthenium (Ru) active sites, often hindered by the kinetics of water dissociation in alkaline or neutral conditions, requires further enhancement. Metal oxides, due to superior electron dynamics facilitated by oxygen vacancies (OVS) and shifts in the Fermi level, surpass carbon-based materials. In particular, tungsten oxide (WO3) promotes the directed migration of electrons and protons which significantly activates the Ru sites. Ru/WO3-OV is prepared through a simple hydrothermal and low-temperature annealing process. The prepared catalyst achieves 10 mA cm-2 at overpotentials of 23 mV (1 M KOH), 36 mV (0.5 M H2SO4), 62 mV (1 M PBS), and 38 mV (1 M KOH + seawater). At an overpotential corresponding to 10 mA cm-2 in 1 M KOH and 1 M KOH + seawater, the mass activity of Ru/WO3-OV is about 7.7 and 7.86 times that of 20 wt% Pt/C. The improvement in activity and stability arises from electronic modifications attributed to metal-support interaction. This work offers novel insights for modulating the HER activity of Ru sites across a wide pH range.
Collapse
Affiliation(s)
- Bowen Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Hao Ding
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Wei Jin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Xueyuan Road, Haidian District, Beijing 100083, PR China.
| | - Zexing Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042 Qingdao, PR China.
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology 53 Zhengzhou Road, 266042 Qingdao, PR China.
| |
Collapse
|
37
|
Shi K, Si D, Teng X, Chen L, Shi J. Pd/NiMoO 4/NF electrocatalysts for the efficient and ultra-stable synthesis and electrolyte-assisted extraction of glycolate. Nat Commun 2024; 15:2899. [PMID: 38575572 PMCID: PMC10995147 DOI: 10.1038/s41467-024-47179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
Electrocatalytic conversion of organic small molecules is a promising technique for value-added chemical productions but suffers from high precious metal consumption, poor stability of electrocatalysts and tedious product separation. Here, a Pd/NiMoO4/NF electrocatalyst with much lowered Pd loading amount (3.5 wt.%) has been developed for efficient, economic, and ultra-stable glycolate synthesis, which shows high Faradaic efficiency (98.9%), yield (98.8%), and ultrahigh stability (1500 h) towards electrocatalytic ethylene glycol oxidation. Moreover, the obtained glycolic acid has been converted to value-added sodium glycolate by in-situ acid-base reaction in the NaOH electrolyte, which is atomic efficient and needs no additional acid addition for product separation. Moreover, the weak adsorption of sodium glycolate on the catalyst surface plays a significant role in avoiding excessive oxidation and achieving high selectivity. This work may provide instructions for the electrocatalyst design as well as product separation for the electrocatalytic conversions of alcohols.
Collapse
Affiliation(s)
- Kai Shi
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Di Si
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xue Teng
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Lisong Chen
- State Key Laboratory of Petroleum Molecular & Process engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- Institute of Eco-Chongming, Shanghai, 202162, China.
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
38
|
Adisasmito S, Khoiruddin K, Sutrisna PD, Wenten IG, Siagian UWR. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS OMEGA 2024; 9:14704-14727. [PMID: 38585051 PMCID: PMC10993265 DOI: 10.1021/acsomega.3c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024]
Abstract
The growing demand for clean energy has spurred the quest for sustainable alternatives to fossil fuels. Hydrogen has emerged as a promising candidate with its exceptional heating value and zero emissions upon combustion. However, conventional hydrogen production methods contribute to CO2 emissions, necessitating environmentally friendly alternatives. With its vast potential, seawater has garnered attention as a valuable resource for hydrogen production, especially in arid coastal regions with surplus renewable energy. Direct seawater electrolysis presents a viable option, although it faces challenges such as corrosion, competing reactions, and the presence of various impurities. To enhance the seawater electrolysis efficiency and overcome these challenges, researchers have turned to bipolar membranes (BPMs). These membranes create two distinct pH environments and selectively facilitate water dissociation by allowing the passage of protons and hydroxide ions, while acting as a barrier to cations and anions. Moreover, the presence of catalysts at the BPM junction or interface can further accelerate water dissociation. Alongside the thermodynamic potential, the efficiency of the system is significantly influenced by the water dissociation potential of BPMs. By exploiting these unique properties, BPMs offer a promising solution to improve the overall efficiency of seawater electrolysis processes. This paper reviews BPM electrolysis, including the water dissociation mechanism, recent advancements in BPM synthesis, and the challenges encountered in seawater electrolysis. Furthermore, it explores promising strategies to optimize the water dissociation reaction in BPMs, paving the way for sustainable hydrogen production from seawater.
Collapse
Affiliation(s)
- Sanggono Adisasmito
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Khoiruddin Khoiruddin
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Putu D. Sutrisna
- Department
of Chemical Engineering, Universitas Surabaya
(UBAYA), Jalan Raya Kalirungkut (Tenggilis), Surabaya 60293, Indonesia
| | - I Gede Wenten
- Department
of Chemical Engineering, Institut Teknologi
Bandung (ITB), Jalan
Ganesa No. 10, Bandung 40132, Indonesia
| | - Utjok W. R. Siagian
- Department
of Petroleum Engineering, Institut Teknologi
Bandung (ITB), Jalan Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
39
|
Shang N, Li W, Wu Q, Li H, Wang H, Wang C, Bai G. High-valence metal sites induced by heterostructure engineering for promoting 5-hydroxymethylfurfural electrooxidation and hydrogen generation. J Colloid Interface Sci 2024; 659:621-628. [PMID: 38198939 DOI: 10.1016/j.jcis.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
The electrocatalytic 5-hydroxymethylfurfural (HMF) oxidation reaction coupling with hydrogen evolution reaction (HER) serves as a promising strategy to generate both high-value-added products and clean energy, which is limited by the poor catalytic efficiency of bifunctional electrocatalysts and unclear electrocatalytic mechanism for HMF oxidation reaction. Herein, we fabricate a bifunctional NiSe2-NiMoO4 heterostructure nanowire electrocatalyst for the conversion of HMF to 2,5-furandicarboxylic acid (FDCA) and simultaneous H2 production. As expected, the NiSe2-NiMoO4 exhibits outstanding activity and selectivity toward HMF oxidation reaction. In particular, at a potential of 1.50 V, the yield of FDCA could reach 98 % with a faradaic efficiency of 96.5 %, as well as excellent stability. Density functional theory calculation results demonstrate that the NiSe2-NiMoO4 heterostructure could tune the adsorption energy of HMF, facilitate high-valence active species formation, and enhance electronic conductivity. Furthermore, a two-electrode electrolyzer assembled using NiSe2-NiMoO4 as a bifunctional catalyst requires 1.53 V to acquire a current density of 50 mA cm-2, which is 201 mV lower than that of water electrolysis. This work provides new insights for designing multifunctional catalysts for biomass upgrading coupled with hydrogen evolution.
Collapse
Affiliation(s)
- Ningzhao Shang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China; College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Wenjiong Li
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Qingyao Wu
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Huafan Li
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Hongchao Wang
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Guoyi Bai
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
40
|
Wei M, Li M, Gao Q, Cai X, Zhang S, Fang Y, Peng F, Yang S. Bifunctional Ni Foam Supported TiO 2 @Ni 3 S 2 core@shell Nanorod Arrays for Boosting Electrocatalytic Biomass Upgrading and H 2 Production Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305906. [PMID: 37857591 DOI: 10.1002/smll.202305906] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Replacing traditional oxygen evoltion reaction (OER) with biomass oxidation reaction (BOR) is an advantageous alternative choice to obtain green hydrogen energy from electrocatalytic water splitting. Herein, a novel of extremely homogeneous Ni3 S2 nanosheets covered TiO2 nanorod arrays are in situ growth on conductive Ni foam (Ni/TiO2 @Ni3 S2 ). The Ni/TiO2 @Ni3 S2 electrode exhibits excellent electrocatalytic activity and long-term stability for both BOR and hydrogen evolution reaction (HER). Especially, taking glucose as a typical biomass, the average hydrogen production rate of the HER-glucose oxidation reaction (GOR) two-electrode system reached 984.74 µmol h-1 , about 2.7 times higher than that of in a common HER//OER two-electrode water splitting system (365.50 µmol h-1 ). The calculated power energy saving efficiency of the GOR//HER system is about 13% less than that of the OER//HER system. Meanwhile, the corresponding selectivity of the value-added formic acid produced by GOR reaches about 80%. Moreover, the Ni/TiO2 @Ni3 S2 electrode also exhibits excellent electrocatalytic activity on a diverse range of typical biomass intermediates, such as urea, sucrose, fructose, furfuryl alcohol (FFA), 5-hydroxymethylfurfural (HMF), and alcohol (EtOH). These results show that Ni/TiO2 @Ni3 S2 has great potential in electrocatalysis, especially in replacing OER reaction with BOR reaction and promoting the sustainable development of hydrogen production.
Collapse
Affiliation(s)
- Meng Wei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Mingli Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Qiongzhi Gao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xin Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Shengsen Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yueping Fang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 51006, China
| | - Siyuan Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Laboratory for Lingnan Modern Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
41
|
Zhao M, Yang X, Fu Z, Wang W, Wen W, Xiao H, Zhang L, Zhang J, Lv B, Jia J. Facile electrolysis-solvothermal synthesis of NiO x/graphene for enhanced ethanol oxidation to acetate. Dalton Trans 2024; 53:4237-4242. [PMID: 38334161 DOI: 10.1039/d3dt03963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In this work, low-crystalized and defective NiOx/graphene was synthesized by a facile electrolysis-solvothermal method. In the electrolytic process, Ni ions originate from the Ni anode, and graphene is produced from the graphite cathode. Then, Ni ions are reduced into oxides and deposited on graphene in the subsequent solvothermal process. The NiOx/graphene displays excellent electrocatalytic activity and selectivity for ethanol oxidation reaction to acetate. The peak current density was 296.5 mA cm-2 on a glassy carbon electrode. The FE of acetate was more than 93% at the potential range between 1.4 and 1.7 V. We propose that the mechanism is a cooperation between the chemical deprotonating process of ethanol by Ni3+ species and the electrochemical oxidation of the CH3CH2O* intermediate to acetate at the interface between NiOx and graphene.
Collapse
Affiliation(s)
- Man Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Xuemin Yang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Zimei Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Wenxiang Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Wei Wen
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Li Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Baoliang Lv
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| |
Collapse
|
42
|
Mu X, Zhang X, Chen Z, Gao Y, Yu M, Chen D, Pan H, Liu S, Wang D, Mu S. Constructing Symmetry-Mismatched Ru xFe 3-xO 4 Heterointerface-Supported Ru Clusters for Efficient Hydrogen Evolution and Oxidation Reactions. NANO LETTERS 2024; 24:1015-1023. [PMID: 38215497 DOI: 10.1021/acs.nanolett.3c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Ru-related catalysts have shown excellent performance for the hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR); however, a deep understanding of Ru-active sites on a nanoscale heterogeneous support for hydrogen catalysis is still lacking. Herein, a click chemistry strategy is proposed to design Ru cluster-decorated nanometer RuxFe3-xO4 heterointerfaces (Ru/RuxFe3-xO4) as highly effective bifunctional hydrogen catalysts. It is found that introducing Ru into nanometric Fe3O4 species breaks the symmetry configuration and optimizes the active site in Ru/RuxFe3-xO4 for HER and HOR. As expected, the catalyst displays prominent alkaline HER and HOR performance with mass activity much higher than that of commercial Pt/C as well as robust stability during catalysis because of the strong interaction between the Ru cluster and the RuxFe3-xO4 support, and the optimized adsorption intermediate (Had and OHad). This work sheds light on a promsing approach to improving the electrocatalysis performance of catalysts by the breaking of atomic dimension symmetry.
Collapse
Affiliation(s)
- Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyue Zhang
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ziyue Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Yun Gao
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Min Yu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haozhe Pan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Suli Liu
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
43
|
Wang Y, Lei X, Zhang B, Bai B, Das P, Azam T, Xiao J, Wu ZS. Breaking the Ru-O-Ru Symmetry of a RuO 2 Catalyst for Sustainable Acidic Water Oxidation. Angew Chem Int Ed Engl 2024; 63:e202316903. [PMID: 37997556 DOI: 10.1002/anie.202316903] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Proton exchange membrane water electrolysis is a highly promising hydrogen production technique for sustainable energy supply, however, achieving a highly active and durable catalyst for acidic water oxidation still remains a formidable challenge. Herein, we propose a local microenvironment regulation strategy for precisely tuning In-RuO2 /graphene (In-RuO2 /G) catalyst with intrinsic electrochemical activity and stability to boost acidic water oxidation. The In-RuO2 /G displays robust acid oxygen evolution reaction performance with a mass activity of 671 A gcat -1 at 1.5 V, an overpotential of 187 mV at 10 mA cm-2 , and long-lasting stability of 350 h at 100 mA cm-2 , which arises from the asymmetric Ru-O-In local structure interactions. Further, it is unraveled theoretically that the asymmetric Ru-O-In structure breaks the thermodynamic activity limit of the traditional adsorption evolution mechanism which significantly weakens the formation energy barrier of OOH*, thus inducing a new rate-determining step of OH* absorption. Therefore, this strategy showcases the immense potential for constructing high-performance acidic catalysts for water electrolyzers.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue Lei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Bing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Tasmia Azam
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianping Xiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
44
|
Zhao Q, Zhao B, Long X, Feng R, Shakouri M, Paterson A, Xiao Q, Zhang Y, Fu XZ, Luo JL. Interfacial Electronic Modulation of Dual-Monodispersed Pt-Ni 3S 2 as Efficacious Bi-Functional Electrocatalysts for Concurrent H 2 Evolution and Methanol Selective Oxidation. NANO-MICRO LETTERS 2024; 16:80. [PMID: 38206434 PMCID: PMC10784266 DOI: 10.1007/s40820-023-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024]
Abstract
Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt-Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm-2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt-Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm-2 with good reusability.
Collapse
Affiliation(s)
- Qianqian Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bin Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xin Long
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Renfei Feng
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | | | - Alisa Paterson
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Qunfeng Xiao
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Yu Zhang
- Instrumental Analysis Center of Shenzhen University (Lihu Campus), Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
45
|
Qi R, Bu H, Yang X, Song M, Ma J, Gao H. Multifunctional molybdenum-tuning porous nickel-cobalt bimetallic phosphide nanoarrays for efficient water splitting and energy-saving hydrogen production. J Colloid Interface Sci 2024; 653:1246-1255. [PMID: 37797500 DOI: 10.1016/j.jcis.2023.09.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023]
Abstract
The sluggish kinetics of the hydrogen evolution reaction (HER) and substantial barriers in the oxygen evolution reaction (OER) significantly impede its application in hydrogen production. To address this issue and enhance energy efficiency in hydrogen generation, we explored a high-activity alkaline HER catalyst while concurrently coupling it with the urea oxidation reaction (UOR). In this work, we designed and synthesized porous molybdenum (Mo)-modulated nickel-cobalt bimetallic phosphide nanoarrays (M0.3NCP@NF). This multifunctional self-supported electrocatalyst demonstrates superior performance in HER, OER, and UOR. The introduction of Mo, in the form of CoMoO4 nanoparticles, promotes interfacial electron transfer to reduce the electron density around the cations in phosphides, enhancing the kinetics and intrinsic activity. Furthermore, the morphological changes induced by Mo accelerate both electron and mass transfer processes. Density functional theory and operando electrochemical impedance spectroscopy indicate that Mo introduction optimizes the interaction with HER intermediate H*, facilitating the conversion to a high-valent active intermediate for OER and accelerating UOR kinetics. Benefiting from dual optimization of morphology and structure, the as-prepared M0.3NCP@NF electrocatalyst demonstrates outstanding HER, OER, and UOR performances. Notably, a full urea electrolysis device powered by M0.3NCP@NF operates with a cell voltage of only 1.53 V to achieve a current density of 100 mA cm-2. which is 240 mV lower than that of conventional water electrolysis, demonstrating the competitive potential of our approach for efficient and energy-saving hydrogen production, along with simultaneous urea wastewater remediation.
Collapse
Affiliation(s)
- Ruiwen Qi
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hongkai Bu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xue Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Hebei Normal University for Nationalities, Chengde 067000, China
| | - Min Song
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junwei Ma
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Hongtao Gao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Sciences, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
46
|
Liu Y, Yang Z, Zou Y, Wang S, He J. Interfacial Micro-Environment of Electrocatalysis and Its Applications for Organic Electro-Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306488. [PMID: 37712127 DOI: 10.1002/smll.202306488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.
Collapse
Affiliation(s)
- Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junying He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
47
|
Wang Y, Xu M, Wang X, Ge R, Zhu YQ, Li AZ, Zhou H, Chen F, Zheng L, Duan H. Unraveling the potential-dependent structure evolution in CuO for electrocatalytic biomass valorization. Sci Bull (Beijing) 2023; 68:2982-2992. [PMID: 37798176 DOI: 10.1016/j.scib.2023.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Electrocatalytic oxidation of renewable biomass (such as glucose) into high-value-added chemicals provides an effective approach to achieving carbon neutrality. CuO-derived materials are among the most promising electrocatalysts for biomass electrooxidation, but the identification of their active sites under electrochemical conditions remains elusive. Herein, we report a potential-dependent structure evolution over CuO in the glucose oxidation reaction (GOR). Through systematic electrochemical and spectroscopic characterizations, we unveil that CuO undergoes Cu2+/Cu+ and Cu3+/Cu2+ redox processes at increased potentials with successive generation of Cu(OH)2 and CuOOH as the active phases. In addition, these two structures have distinct activities in the GOR, with Cu(OH)2 being favorable for aldehyde oxidation, and CuOOH showed faster kinetics in carbon-carbon cleavage and alcohol/aldehyde oxidation. This work deepens our understanding of the dynamic reconstruction of Cu-based catalysts under electrochemical conditions and may guide rational material design for biomass valorization.
Collapse
Affiliation(s)
- Ye Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xi Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Ruixiang Ge
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Quan Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - An-Zhen Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Zhou
- Department of Chemistry, Tsinghua University, Beijing 100084, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fengen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Haohong Duan
- Department of Chemistry, Tsinghua University, Beijing 100084, China; Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
48
|
Lu Q, Han Q, Wang X, Wei C, Guan X, Qu C, Li J. High-value utilization of Cr-containing sludge: Eco-friendly and ultra-low-cost electrocatalyst for efficient OER in alkaline media from Cr-containing sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:119020. [PMID: 37734212 DOI: 10.1016/j.jenvman.2023.119020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023]
Abstract
Economically sustainable development requires more viable waste recycling solutions. In this context, we address the problem of utilizing chromium-containing sludge, a prevalent and environmentally hazardous waste. Meanwhile, sustainable energy development must develop ecology-friendly and low-cost electrocatalysts for the oxygen evolution reaction (OER) in alkaline media. Herein, we report an ultra-low-cost electrocatalyst from chromium-containing sludge. The optimum preparation conditions are determined by optimizing the calcination temperature and the loading of nickel acetylacetonate. The optimized catalyst delivers excellent stability and outstanding OER activity with overpotentials of 320 mV at 10 mA cm-2 in alkaline media. Density functional theory calculations reveal that the energy barrier of OER is decreased because of the catalyst's heterogeneous structure arrangement and confirm the influence of chromium on performance improvement. The concept of "turning waste into treasure" stimulates the search for methods to process Cr-containing waste and produce low-cost, high-performance electrocatalysts.
Collapse
Affiliation(s)
- Qiangqiang Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Qingxin Han
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China.
| | - Xuechuan Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an, 710021, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Chao Wei
- Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Xiaoyu Guan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Chun Qu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China; Institute of Biomass & Functional Materials, Shaanxi University of Science & Technology, Xi'an, 710021, Shaanxi, China.
| |
Collapse
|
49
|
Liu R, Sun M, Liu X, Lv Z, Yu X, Wang J, Liu Y, Li L, Feng X, Yang W, Huang B, Wang B. Enhanced Metal-Support Interactions Boost the Electrocatalytic Water Splitting of Supported Ruthenium Nanoparticles on a Ni 3 N/NiO Heterojunction at Industrial Current Density. Angew Chem Int Ed Engl 2023; 62:e202312644. [PMID: 37699862 DOI: 10.1002/anie.202312644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Developing highly efficient and stable hydrogen production catalysts for electrochemical water splitting (EWS) at industrial current densities remains a great challenge. Herein, we proposed a heterostructure-induced-strategy to optimize the metal-support interaction (MSI) and the EWS activity of Ru-Ni3 N/NiO. Density functional theory (DFT) calculations firstly predicted that the Ni3 N/NiO-heterostructures can improve the structural stability, electronic distributions, and orbital coupling of Ru-Ni3 N/NiO compared to Ru-Ni3 N and Ru-NiO, which accordingly decreases energy barriers and increases the electroactivity for EWS. As a proof-of-concept, the Ru-Ni3 N/NiO catalyst with a 2D Ni3 N/NiO-heterostructures nanosheet array, uniformly dispersed Ru nanoparticles, and strong MSI, was successfully constructed in the experiment, which exhibited excellent HER and OER activity with overpotentials of 190 mV and 385 mV at 1000 mA cm-2 , respectively. Furthermore, the Ru-Ni3 N/NiO-based EWS device can realize an industrial current density (1000 mA cm-2 ) at 1.74 V and 1.80 V under alkaline pure water and seawater conditions, respectively. Additionally, it also achieves a high durability of 1000 h (@ 500 mA cm-2 ) in alkaline pure water.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiangjian Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xinyu Yu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Jinming Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Yarong Liu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Liuhua Li
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing, 100081, China
| |
Collapse
|
50
|
Liu G, Nie T, Song Z, Sun X, Shen T, Bai S, Zheng L, Song YF. Pd Loaded NiCo Hydroxides for Biomass Electrooxidation: Understanding the Synergistic Effect of Proton Deintercalation and Adsorption Kinetics. Angew Chem Int Ed Engl 2023; 62:e202311696. [PMID: 37711060 DOI: 10.1002/anie.202311696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The key issue in the 5-hydroxymethylfurfural oxidation reaction (HMFOR) is to understand the synergistic mechanism involving the protons deintercalation of catalyst and the adsorption of the substrate. In this study, a Pd/NiCo catalyst was fabricated by modifying Pd clusters onto a Co-doped Ni(OH)2 support, in which the introduction of Co induced lattice distortion and optimized the energy band structure of Ni sites, while the Pd clusters with an average size of 1.96 nm exhibited electronic interactions with NiCo support, resulting in electron transfer from Pd to Ni sites. The resulting Pd/NiCo exhibited low onset potential of 1.32 V and achieved a current density of 50 mA/cm2 at only 1.38 V. Compared to unmodified Ni(OH)2 , the Pd/NiCo achieved an 8.3-fold increase in peak current density. DFT calculations and in situ XAFS revealed that the Co sites affected the conformation and band structure of neighboring Ni sites through CoO6 octahedral distortion, reducing the proton deintercalation potential of Pd/NiCo and promoting the production of Ni3+ -O active species accordingly. The involvement of Pd decreased the electronic transfer impedance, and thereby accelerated Ni3+ -O formation. Moreover, the Pd clusters enhanced the adsorption of HMF through orbital hybridization, kinetically promoting the contact and reaction of HMF with Ni3+ -O.
Collapse
Affiliation(s)
- Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| | - Tianqi Nie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang Province, 324000, P. R. China
| |
Collapse
|