1
|
Fan C, Cheng L, Deng W. Design of deep eutectic solvents for multiple perfluoroalkyl substances removal: Energy-based screening and mechanism elucidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175039. [PMID: 39079639 DOI: 10.1016/j.scitotenv.2024.175039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
The current landscape of perfluoroalkyl substances (PFAS) extraction methodologies presents significant challenges, particularly for multiple PFAS with different carbon chain lengths. This study introduced an energy-driven strategic approach for screening deep eutectic solvents (DESs) to effectively remove a diverse range of PFAS, including perfluoroalkylcarboxylic acids (PFCAs), perfluoroalkanesulfonic acids (PFSAs), and perfluoroalkyl amides (FAAs), from contaminated environments (total 13 target compounds). Utilizing energy-based screening, we identified DES candidates with high affinity for a spectrum of PFAS compounds from 1234 potential starting materials of eutectic systems. Key findings revealed the superior removal efficiency of tributylphosphineoxide/2-methylpiperazine system, exceeding 99 % for various PFAS with different carbon chain lengths in real environmental water samples. Additionally, we elucidated the molecular interactions between DESs and PFAS through ab initio molecular dynamics (AIMD) simulations, providing valuable insights into the mechanisms governing the removal process. The mechanism of extraction involves hydrogen bond network topology and structural organization, with DESs capable of extracting PFAS while maintaining a weakly aggregated state of target molecules and minimizing the impact on the intrinsic structures of DES. The proposed system forms a dynamic, complementary, and flexible non-covalent interaction network structure with PFAS. The study advances the understanding of DES as a designable, effective, and sustainable alternative to conventional solvents for PFAS remediation, offering a significant contribution to environmental chemistry and green technology.
Collapse
Affiliation(s)
- Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Wanlin Deng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Yang Z, Zhu Y, Tan X, Gunjal SJJ, Dewapriya P, Wang Y, Xin R, Fu C, Liu K, Macintosh K, Sprague LG, Leung L, Hopkins TE, Thomas KV, Guo J, Whittaker AK, Zhang C. Fluoropolymer sorbent for efficient and selective capturing of per- and polyfluorinated compounds. Nat Commun 2024; 15:8269. [PMID: 39333086 PMCID: PMC11436832 DOI: 10.1038/s41467-024-52690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) have gained widespread attention due to their adverse effects on health and environment. Developing efficient technology to capture PFAS from contaminated sources remains a great challenge. In this study, we introduce a type of reusable polymeric sorbent (PFPE-IEX + ) for rapid, efficient, and selective removal of multiple PFAS impurities from various contaminated water sources. The resin achieves >98% removal efficiency ([PFPE-IEX + ] = 0.5-5 mg mL-1, [PFAS]0 = 1-10 ppb in potable water and landfill leachate) and >500 mg g-1 sorption capacity for the 11 types of examined PFAS. We achieve efficient PFAS removal without breakthrough and subsequent resin regeneration and demonstrate good PFAS recovery in a proof-of-concept cartridge setup. The outcomes of this study offer valuable guidance to the design of platforms for efficient and selective PFAS capture from contaminated water, such as drinking water and landfill leachate.
Collapse
Affiliation(s)
- Zhuojing Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yutong Zhu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xiao Tan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samruddhi Jayendra Jayendra Gunjal
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ruijing Xin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kehan Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katie Macintosh
- City of Gold Coast 833 Southport Nerang Rd, Nerang, QLD 4211, Australia
| | - Lee G Sprague
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Boulevard, Newark, DE, 19713, USA
| | - Lam Leung
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Boulevard, Newark, DE, 19713, USA
| | - Timothy E Hopkins
- The Chemours Company, Chemours Discovery Hub, 201 Discovery Boulevard, Newark, DE, 19713, USA
| | - Kevin V Thomas
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Level 4, 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Research Council Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, Brisbane, Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
- The Centre for Advanced Imaging (CAI), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Fu K, Huang J, Luo F, Fang Z, Yu D, Zhang X, Wang D, Xing M, Luo J. Understanding the Selective Removal of Perfluoroalkyl and Polyfluoroalkyl Substances via Fluorine-Fluorine Interactions: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39264176 DOI: 10.1021/acs.est.4c06519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
As regulatory standards for per- and polyfluoroalkyl substances (PFAS) become increasingly stringent, innovative water treatment technologies are urgently demanded for effective PFAS removal. Reported sorbents often exhibit limited affinity for PFAS and are frequently hindered by competitive background substances. Recently, fluorinated sorbents (abbreviated as fluorosorbents) have emerged as a potent solution by leveraging fluorine-fluorine (F···F) interactions to enhance selectivity and efficiency in PFAS removal. This review delves into the designs and applications of fluorosorbents, emphasizing how F···F interactions improve PFAS binding affinity. Specifically, the existence of F···F interactions results in removal efficiencies orders of magnitude higher than other counterpart sorbents, particularly under competitive conditions. Furthermore, we provide a detailed analysis of the fundamental principles underlying F···F interactions and elucidate their synergistic effects with other sorption forces, which contribute to the enhanced efficacy and selectivity. Subsequently, we examine various fluorosorbents and their synthesis and fluorination techniques, underscore the importance of accurately characterizing F···F interactions through advanced analytical methods, and emphasize the significance of this interaction in developing selective sorbents. Finally, we discuss challenges and opportunities associated with employing advanced techniques to guide the design of selective sorbents and advocate for further research in the development of sustainable and cost-effective treatment technologies leveraging F···F interactions.
Collapse
Affiliation(s)
- Kaixing Fu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jinjing Huang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fang Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhuoya Fang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Deyou Yu
- Engineering Research Center for Eco-Dyeing and Finishing of Textiles (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, P. R. China
| | - Mingyang Xing
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinming Luo
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Liu ZZ, Pan CG, Peng FJ, Hu JJ, Tan HM, Zhu RG, Zhou CY, Liang H, Yu K. Rapid adsorptive removal of emerging and legacy per- and polyfluoroalkyl substances (PFASs) from water using zinc chloride-modified litchi seed-derived biochar. BIORESOURCE TECHNOLOGY 2024; 408:131157. [PMID: 39059588 DOI: 10.1016/j.biortech.2024.131157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The present study successfully synthesized a novel biochar adsorbent (M-L-BC) using litchi seed modified with zinc chloride for PFASs removal in water. M-L-BC greatly enhanced removal of all examined PFASs (>95 %) as compared to the pristine biochar (<40 %). The maximum adsorption capacity was observed for PFOS, reaching 29.6 mg/g. Adsorption kinetics of PFASs followed the pseudo-second-order model (PSO), suggesting the predominance of chemical adsorption. Moreover, characterization and density functional theory (DFT) calculations jointly revealed involvement of surface complexation, electrostatic interactions, hydrogen bonding, and hydrophobic interactions in PFAS adsorption. Robust PFAS removal was demonstrated for M-L-BC across a wide range of pH (3-9), and coexisting ions had limited impact on adsorption of PFASs except PFBA. Furthermore, M-L-BC showed excellent performance in real water samples and retained reusability after five cycles of regeneration. Overall, M-L-BC represents a promising and high-quality adsorbent for efficient and sustainable removal of PFASs from water.
Collapse
Affiliation(s)
- Zhen-Zhu Liu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Jun-Jie Hu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Hong-Ming Tan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China; Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Rong-Gui Zhu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chao-Yang Zhou
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Hao Liang
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| |
Collapse
|
5
|
Gong X, Qin S, Li T, Wei X, Liu S, Liu Y, Ma X, Li Q, Xia C. Novel Insight into the Synergistic Mechanism for Pd and Rh Promoting the Hydro-Defluorination of 4-Fluorophenol over Bimetallic Rh-Pd/C Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43474-43488. [PMID: 39113533 DOI: 10.1021/acsami.4c06180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explores the synergistic effect between the Rh and Pd of bimetallic Rh-Pd/C catalysts for the catalytic hydro-defluorination (HDF) of 4-fluorophenol (4-FP). It was found that 4-FP could not be efficiently hydro-defluorinated over 6% Pd/C and 6% Rh/C due to the inherent properties of Pd and Rh species in the dissociation of H2 and the activation of C-F bonds. Compared with 6% Pd/C and 6% Rh/C, bimetallic Rh-Pd/C catalysts, especially 1% Rh-5% Pd/C, exhibited much higher catalytic activity in the HDF of 4-FP, suggesting that the synergistic effect between the Rh and Pd of the catalyst was much more positive. Catalyst characterizations (BET, XRD, TEM, and XPS) were introduced to clarify the mechanism for the synergistic effect between the Rh and Pd of the catalyst in the HDF reaction and revealed that it was mainly attributed to the bifunctional mechanism: Pd species were favorable for the dissociation of H2, and Rh species were beneficial to the activation of C-F bonds in the HDF reaction. Meanwhile, the interaction between Rh and Pd species enabled Rh and Pd to exhibit a more positive synergistic effect, which promoted the migration of atomic H* from Pd to Rh species and thus enhanced the HDF of 4-FP. Furthermore, 1% Rh-5% Pd/C prepared using 20-40 equiv NaBH4 exhibited the best performance in the catalytic HDF of 4-FP. Catalysis characterizations suggested that appropriate Rh3+/Rh0 and Pd2+/Pd0 ratios were beneficial to the dissociation of H2 and the activation of C-F bonds, which caused the more positive synergistic effect between the Rh and Pd of Rh-Pd/C in the HDF reaction. This work offers a valuable strategy for enhancing the performance of catalytic HDF catalysts via promoting synergistic effects.
Collapse
Affiliation(s)
- Xutao Gong
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Shuting Qin
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Tong Li
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xinghua Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Sujing Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Ying Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chuanhai Xia
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
6
|
Olomukoro AA, Xie R, Paucar FXF, DeRosa C, Danielson ND, Gionfriddo E. Characterization of a mixed mode fluorocarbon/weak anion exchange sorbent for the separation of perfluoroalkyl substances. J Sep Sci 2024; 47:e2400413. [PMID: 39192716 DOI: 10.1002/jssc.202400413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
The ubiquitous presence and persistence of per- and polyfluoroalkyl substances (PFAS) in the environment have raised concerns in the scientific community. Current research efforts are prioritizing effective PFAS remediation through novel sorbents with orthogonal interaction mechanisms. Recognized sorption mechanisms between PFAS and sorbents include hydrophobic, electrostatic, and fluorine-fluorine interaction. The interplay of these mechanisms contributes significantly to improved sorption capacity and selectivity in PFAS separations. In this study, a primary/secondary amine-functionalized polystyrene-divinylbenzene (Sepra-WAX) polymer was modified to create a fluorinated WAX resin (Sepra-WAX-KelF-PEI). The synthesis intermediate (Sepra-WAX-KelF) was also tested to assess the improvement of the final product (Sepra-WAX-KelF-PEI). The adsorption capacity of Sepra-WAX, Sepra-WAX-KelF, and Sepra-WAX-KelF-PEI, and their interactions with PFAS were evaluated. The effect of pH, ionic strength, and organic solvents on PFAS sorption in aqueous solution was also investigated. The sorbents showed varied adsorption capacities for perfluorooctanoic acid, perfluoropentanoic acid, perfluoro-n-decanoic acid, and hexafluoropropylene oxide dimer acid, with the average extraction capacity of the four analytes being Sepra-WAX-KelF-PEI (523 mg/g) > Sepra-WAX (353 mg/g) > Sepra-WAX-KelF (220 mg/g). Sepra-WAX-KelF-PEI provided the highest adsorption capacity for all analytes tested, proving that the combination of electrostatic and hydrophobic/fluorophilic interactions is crucial for the effective preconcentration of PFAS and its future applications for PFAS remediation from aqueous solutions.
Collapse
Affiliation(s)
- Aghogho A Olomukoro
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Ruichao Xie
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Fabiola X Fernandez Paucar
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
| | - Charlotte DeRosa
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Emanuela Gionfriddo
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, Ohio, USA
- Dr. Nina McClelland Laboratory for Water Chemistry and Environmental Analysis, The University of Toledo, Toledo, Ohio, USA
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
7
|
Huang Y, Ren Z, Fan Z, Zhang H, Wu Y, Wang Y, Hu Z, Quan X, Wang Z, Niu Z. Isolation of Polyethylene Glycol with Larger Molecular Weights via Metal-Organic Frameworks. Macromol Rapid Commun 2024:e2400535. [PMID: 39078658 DOI: 10.1002/marc.202400535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Indexed: 07/31/2024]
Abstract
Polymer products typically present as mixtures with a range of molecular weights, which notably influence the expression of their properties. In this study, a technique is proposed to separate polyethylene glycol (PEG) mixtures of varying molecular weights using metal-organic frameworks (MOFs), thereby narrowing down their molecular weight distribution. Due to the hydrogen bond interactions between PEG and -OH groups in the pores of NU-1000, NU-1000 can selectively adsorb PEG with larger molecular weights from PEG mixture. This separation method consistently yields with narrower molecular weight distribution across multiple cycles. This is the first application of MOFs in regulating the dispersity (Ð) of polymers in solution, providing a novel approach for separating and purifying mixed molecular weight polymers.
Collapse
Affiliation(s)
- Yali Huang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziye Ren
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Ziwen Fan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Hanwen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yueyue Wu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Yue Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhuoyi Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Xueheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zhao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215127, China
| |
Collapse
|
8
|
Forgham H, Zhu J, Huang X, Zhang C, Biggs H, Liu L, Wang YC, Fletcher N, Humphries J, Cowin G, Mardon K, Kavallaris M, Thurecht K, Davis TP, Qiao R. Multifunctional Fluoropolymer-Engineered Magnetic Nanoparticles to Facilitate Blood-Brain Barrier Penetration and Effective Gene Silencing in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401340. [PMID: 38647396 PMCID: PMC11220643 DOI: 10.1002/advs.202401340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Cheng Zhang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Heather Biggs
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Yi Cheng Wang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Nicholas Fletcher
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - James Humphries
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Gary Cowin
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Karine Mardon
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNew South Wales2052Australia
- School of Clinical MedicineFaculty of Medicine & HealthUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW Australian Centre for NanomedicineFaculty of EngineeringUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW RNA InstituteFaculty of ScienceUNSW SydneyKensingtonNew South Wales2052Australia
| | - Kristofer Thurecht
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Ruirui Qiao
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| |
Collapse
|
9
|
Jiang T, Pervez MN, Ilango AK, Ravi YK, Zhang W, Feldblyum JI, Yigit MV, Efstathiadis H, Liang Y. Magnetic surfactant-modified clay for enhanced adsorption of mixtures of per- and polyfluoroalkyl substances (PFAS) in snowmelt: Improving practical applicability and efficiency. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134390. [PMID: 38678712 DOI: 10.1016/j.jhazmat.2024.134390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
The extensive use of per- and polyfluoroalkyl substances (PFAS) in many industrial and consumer contexts, along with their persistent nature and possible health hazards, has led to their recognition as a prevalent environmental issue. While various PFAS removal methods exist, adsorption remains a promising, cost-effective approach. This study evaluated the PFAS adsorption performance of a surfactant-modified clay by comparing it with commercial clay-based adsorbents. Furthermore, the impact of environmental factors, including pH, ionic strength, and natural organic matter, on PFAS adsorption by the modified clay (MC) was evaluated. After proving that the MC was regenerable and reusable, magnetic modified clay (MMC) was synthesized, characterized, and tested for removing a wide range of PFAS in pure water and snowmelt. The MMC was found to have similar adsorption performance as the MC and was able to remove > 90% of the PFAS spiked to the snowmelt. The superior and much better performance of the MMC than powdered activated carbon points to its potential use in removing PFAS from real water matrices at an industrial scale.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Md Nahid Pervez
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States.
| | - Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Weilan Zhang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Jeremy I Feldblyum
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Haralabos Efstathiadis
- Department of Nanoscale Science and Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
10
|
Yin Y, Fan C, Cheng L, Shan Y. Adsorption of perfluoroalkyl substances on deep eutectic solvent-based amorphous metal-organic framework: Structure and mechanism. ENVIRONMENTAL RESEARCH 2024; 248:118261. [PMID: 38272299 DOI: 10.1016/j.envres.2024.118261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of emerging organic pollutants characterized by high toxicity, environmental persistence, and widespread detection in water sources. The removal of PFASs from water is a matter of global concern, given their detrimental impact on both the environment and public health. Many commonly used PFAS adsorbents demonstrate limited adsorption capacities and/or slow adsorption kinetics. Therefore, there is an urgent need for the development of efficient adsorbents. For the first time, this work systematically investigated the performance of a deep eutectic solvent (DES)-based amorphous metal-organic framework (MOF) for the adsorption of PFASs with different carbon-chain lengths under the state of the mixture in aquatic environments. The adsorption mechanism was probed by a suite of adsorption kinetics studies, adsorption isotherm profiling, spectral characterization, and ab initio molecular dynamics (AIMD) simulations, revealing that PFAS adsorption is driven by synergistic capturing effects including acid/base coordination, CF-π (carbon-fluorine-π), hydrogen bonding, and hydrophobic interactions. Furthermore, the adsorption processes of short-chain and long-chain targets were found to involve different rate-controlling steps and interaction sites. Hydrophobic interactions facilitated the swift arrival of long-chain PFASs at the coordinatively interacting sites between carboxyl termini and Lewis acid Zr unsaturated sites, thanks to their lower reaction barriers. On the other hand, the adsorption of short-chain PFASs primarily relied on a Zr hydroxyl-based ligand exchange force, which would take place at Brønsted acid sites. The existence of massive structural disorder in amorphous UiO-66 led to the development of larger pores, thus improving the accessibility of abundant adsorption sites and facilitating adsorption and diffusion. The presence of multiple types of interactions and flexible structure in defect-rich amorphous UiO-66 significantly increased the exposure of functional groups to the adsorbates. Additionally, this material possessed outstanding regeneration efficiency and outperformed other MOF-based adsorbents with high affinity for targets. It enhances our understanding of the adsorption performances and mechanisms of amorphous materials toward PFASs, thereby paving the way for designing more efficient PFAS adsorbents.
Collapse
Affiliation(s)
- Yaqi Yin
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Linru Cheng
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuwei Shan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
11
|
Saha B, Ateia M, Fernando S, Xu J, DeSutter T, Iskander SM. PFAS occurrence and distribution in yard waste compost indicate potential volatile loss, downward migration, and transformation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:657-666. [PMID: 38312055 DOI: 10.1039/d3em00538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
We discovered high concentrations of PFAS (18.53 ± 1.5 μg kg-1) in yard waste compost, a compost type widely acceptable to the public. Seventeen out of forty targeted PFAS, belonging to six PFAS classes were detected in yard waste compost, with PFCAs (13.51 ± 0.99 μg kg-1) and PFSAs (4.13 ± 0.19 μg kg-1) being the dominant classes, comprising approximately 72.5% and 22.1% of the total measured PFAS. Both short-chain PFAS, such as PFBA, PFHxA, and PFBS, and long-chain PFAS, such as PFOA and PFOS, were prevalent in all the tested yard waste compost samples. We also discovered the co-occurrence of PFAS with low-density polyethylene (LDPE) and polyethylene terephthalate (PET) plastics. Total PFAS concentrations in LDPE and PET separated from incoming yard waste were 7.41 ± 0.41 μg kg-1 and 1.35 ± 0.1 μg kg-1, which increased to 8.66 ± 0.81 μg kg-1 in LDPE and 5.44 ± 0.56 μg kg-1 in PET separated from compost. An idle mature compost pile revealed a clear vertical distribution of PFAS, with the total PFAS concentrations at the surface level approximately 58.9-63.2% lower than the 2 ft level. This difference might be attributed to the volatile loss of short-chain PFCAs, PFAS's downward movement with moisture, and aerobic transformations of precursor PFAS at the surface.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, USA
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
| | - Thomas DeSutter
- Department of Soil Science, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
- Environmental and Conservation Sciences, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58108, USA
| |
Collapse
|
12
|
Forgham H, Zhu J, Zhang T, Huang X, Li X, Shen A, Biggs H, Talbo G, Xu C, Davis TP, Qiao R. Fluorine-modified polymers reduce the adsorption of immune-reactive proteins to PEGylated gold nanoparticles. Nanomedicine (Lond) 2024; 19:995-1012. [PMID: 38593053 PMCID: PMC11221377 DOI: 10.2217/nnm-2023-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024] Open
Abstract
Aim: To investigate the influence of fluorine in reducing the adsorption of immune-reactive proteins onto PEGylated gold nanoparticles. Methods: Reversible addition fragmentation chain transfer polymerization, the Turkevich method and ligand exchange were used to prepare polymer-coated gold nanoparticles. Subsequent in vitro physicochemical and biological characterizations and proteomic analysis were performed. Results: Fluorine-modified polymers reduced the adsorption of complement and other immune-reactive proteins while potentially improving circulatory times and modulating liver toxicity by reducing apolipoprotein E adsorption. Fluorine actively discouraged phagocytosis while encouraging the adsorption of therapeutic targets, CD209 and signaling molecule calreticulin. Conclusion: This study suggests that the addition of fluorine in the surface coating of nanoparticles could lead to improved performance in nanomedicine designed for the intravenous delivery of cargos.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jiayuan Zhu
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Taoran Zhang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xumin Huang
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xiangke Li
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ao Shen
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Heather Biggs
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Gert Talbo
- Metabolomics Australia (Queensland Node), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, Queensland, 4006, Australia
| | - Thomas P Davis
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ruirui Qiao
- Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
13
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
14
|
Yu H, Zhang P, Chen H, Yao Y, Zhao L, Zhao M, Zhu L, Sun H. Porous polypyrrole with a vesicle-like structure for efficient removal of per- and polyfluoroalkyl substances from water: Crucial role of porosity and morphology. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132748. [PMID: 37839383 DOI: 10.1016/j.jhazmat.2023.132748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Herein, a vesicle-like and porous polypyrrole (pPPy) was fabricated by in suit self-template method to efficiently capture per- and polyfluoroalkyl substances (PFASs) and the important role of porosity and morphology in PFAS removal was explored. Compared to solid PPy (sPPy), the porosity and vesicle-like morphology of pPPy endowed it with excellent properties such as large specific surface area (108.9 m2/g vs. 22.3 m2/g), suitable pore sizes (17.4 nm), dispersity, and high hydrophilicity, which facilitated mass transfer and enhanced PFAS sorption performance. The estimated sorption capacities of pPPy for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were 509 mg/g and 532 mg/g, respectively, which were ∼2 times higher than sPPy. Furthermore, pPPy demonstrated PFAS removal of ≥ 90% across a wide pH range (3-9) and varying humic acid concentrations (0-50 mg/L). In actual water matrices, pPPy efficiently removed 12 short-chain (C-F number: 3-6) and long-chain PFASs (>90% removal for major PFASs), outperforming sPPy by ∼1.2-2.5 times. Notably, the enlarged porosity and regular morphology of pPPy significantly enhanced the removal of short-chain PFASs by ∼2 times. The spent pPPy could be regenerated and reused over 5 times. This research provides valuable insights for designing efficient PFAS sorbents by emphasizing control over porosity and morphology.
Collapse
Affiliation(s)
- Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Maoshen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
15
|
Leung SCE, Wanninayake D, Chen D, Nguyen NT, Li Q. Physicochemical properties and interactions of perfluoroalkyl substances (PFAS) - Challenges and opportunities in sensing and remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166764. [PMID: 37660805 DOI: 10.1016/j.scitotenv.2023.166764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) is a class of persistent organic pollutants that presents health and environmental risks. PFAS are ubiquitously present in the environment, but current remediation technologies are ineffective in degrading them into innocuous chemicals, especially high energy degradation processes often generate toxic short chain intermediates. Therefore, the best remediation strategy is to first detect the source of pollution, followed by capturing and mineralising or recycling of the compounds. The main objective of this article is to summarise the unique physicochemical properties and to critically review the intermolecular and intramolecular physicochemical interactions of PFAS, and how these interactions can become obstacles; and at the same time, how they can be applied to the PFAS sensing, capturing, and recycling process. The physicochemical interactions of PFAS chemicals are being reviewed in this paper includes, (1) fluorophilic interactions, (2) hydrophobic interactions, (3) electrostatic interactions and cation bridging, (4) ionic exchange and (5) hydrogen bond. Moreover, all the different influential factors to these interactions have also been reported. Finally, properties of these interactions are compared against one another, and the recommendations for future designs of affinity materials for PFAS have been given.
Collapse
Affiliation(s)
- Shui Cheung Edgar Leung
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dushanthi Wanninayake
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
| | - Dechao Chen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Qin Li
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia.
| |
Collapse
|
16
|
Zhang Y, Zhang W, Xia J, Xiong C, Li G, Li X, Sun P, Shi J, Tong B, Cai Z, Dong Y. Microwave-Responsive Flexible Room-Temperature Phosphorescence Materials Based on Poly(vinylidene fluoride) Polymer. Angew Chem Int Ed Engl 2023; 62:e202314273. [PMID: 37885123 DOI: 10.1002/anie.202314273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
The development of flexible, room-temperature phosphorescence (RTP) materials remains challenging owing to the quenching of their unstable triplet excitons via molecular motion. Therefore, a polymer matrix with Tg higher than room temperature is required to prevent polymer segment movement. In this study, a RTP material was developed by incorporating a 4-biphenylboronic acid (BPBA) phosphor into a poly(vinylidene fluoride) (PVDF) matrix (Tg =-27.1 °C), which exhibits a remarkable UV-light-dependent oxygen consumption phosphorescence with a lifetime of 1275.7 ms. The adjustable RTP performance is influenced by the crystallinity and polymorph (α, β, and γ phases) fraction of PVDF, therefore, the low Tg of the PVDF matrix enables the polymeric segmental motion upon microwave irradiation. Consequently, a reduction in the crystallinity and an increase in the α phase fraction in PVDF film induces RTP after 2.45 GHz microwave irradiation. These findings open up new avenues for constructing crystalline and phase-dependent RTP materials while demonstrating a promising approach toward microwave detection.
Collapse
Affiliation(s)
- Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Wei Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Junming Xia
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Chenchen Xiong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Gengchen Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Xiaodong Li
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Peng Sun
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Bin Tong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Zhengxu Cai
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun street, Haidian district, Beijing, 100081, P. R. China
| |
Collapse
|
17
|
Lin X, Xing Y, Chen H, Zhou Y, Zhang X, Liu P, Li J, Lee HK, Huang Z. Characteristic and health risk of per- and polyfluoroalkyl substances from cosmetics via dermal exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122685. [PMID: 37804905 DOI: 10.1016/j.envpol.2023.122685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
In this work, 45 cosmetic samples were collected from China, and 27 target per- and polyfluoroalkyl substances (PFAS) were analyzed by ultrahigh-performance liquid chromatography-high resolution mass spectrometry. PFAS were found in all samples, including the products marketed for pregnant women, and the total concentrations of PFAS measured in each sample were in the range of 4.05 - 94.9 ng/g. Short-chain perfluorinated carboxylic acids were the dominant compounds contributing to over 60% of the total content. Perfluorobutanoic acid, with high placental transfer efficiency, was the major PFAS in cosmetics for pregnant women. Three emerging PFAS, 2-perfluorohexyl ethanoic acid, 3-perfluoropentyl propanoic acid (5:3) and perfluoro-2-propoxypropanoic acid, were also identified in the cosmetic samples at quantifiable levels. Significantly, positive correlations between individual PFAS were observed, indicating that there may be a common source for PFAS in these samples. Statistical analyses suggested that using plastic containers and precursor substances may be potential sources of PFAS in terminal products, and product aging may increase PFAS levels. From the PFAS analysis of the cosmetics, the margin of safety (MoS) and hazard quotient (HQ) were calculated to assess human health risks through dermal exposure by using these products. Although the MoS and HQ values obtained were deemed acceptable, the cumulative effect caused by composite and long-term exposure to these contaminants needs to be given greater attention by health authorities.
Collapse
Affiliation(s)
- Xia Lin
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Yudong Xing
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Huijun Chen
- Department of Gynecology and Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China
| | - Yan Zhou
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Xin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Peng Liu
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Jiaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhenzhen Huang
- Department of Occupational and Environmental Health, School of Public Health, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
18
|
Pramanik A, Kolawole OP, Gates K, Kundu S, Shukla MK, Moser RD, Ucak-Astarlioglu M, Al-Ostaz A, Ray PC. 2D Fluorinated Graphene Oxide (FGO)-Polyethyleneimine (PEI) Based 3D Porous Nanoplatform for Effective Removal of Forever Toxic Chemicals, Pharmaceutical Toxins, and Waterborne Pathogens from Environmental Water Samples. ACS OMEGA 2023; 8:44942-44954. [PMID: 38046318 PMCID: PMC10688155 DOI: 10.1021/acsomega.3c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Although water is essential for life, as per the United Nations, around 2 billion people in this world lack access to safely managed drinking water services at home. Herein we report the development of a two-dimensional (2D) fluorinated graphene oxide (FGO) and polyethylenimine (PEI) based three-dimensional (3D) porous nanoplatform for the effective removal of polyfluoroalkyl substances (PFAS), pharmaceutical toxins, and waterborne pathogens from contaminated water. Experimental data show that the FGO-PEI based nanoplatform has an estimated adsorption capacity (qm) of ∼219 mg g-1 for perfluorononanoic acid (PFNA) and can be used for 99% removal of several short- and long-chain PFAS. A comparative PFNA capturing study using different types of nanoplatforms indicates that the qm value is in the order FGO-PEI > FGO > GO-PEI, which indicates that fluorophilic, electrostatic, and hydrophobic interactions play important roles for the removal of PFAS. Reported data show that the FGO-PEI based nanoplatform has a capability for 100% removal of moxifloxacin antibiotics with an estimated qm of ∼299 mg g-1. Furthermore, because the pore size of the nanoplatform is much smaller than the size of pathogens, it has a capability for 100% removal of Salmonella and Escherichia coli from water. Moreover, reported data show around 96% removal of PFAS, pharmaceutical toxins, and pathogens simultaneously from spiked river, lake, and tap water samples using the nanoplatform.
Collapse
Affiliation(s)
- Avijit Pramanik
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Olorunsola Praise Kolawole
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Kaelin Gates
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Sanchita Kundu
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| | - Manoj K. Shukla
- US
Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Robert D Moser
- US
Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Mine Ucak-Astarlioglu
- US
Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199, United States
| | - Ahmed Al-Ostaz
- Department
of Civil Engineering, University of Mississippi, University, Mississippi 38677, United States
| | - Paresh Chandra Ray
- Department
of Chemistry and Biochemistry, Jackson State
University, Jackson, Mississippi 39217, United States
| |
Collapse
|
19
|
Shin JJ. Morphological Evolution of Hybrid Block Copolymer Particles: Toward Magnetic Responsive Particles. Polymers (Basel) 2023; 15:3689. [PMID: 37765544 PMCID: PMC10534701 DOI: 10.3390/polym15183689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The co-assembly of block copolymers (BCPs) and inorganic nanoparticles (NPs) under emulsion confinement allows facile access to hybrid polymeric colloids with controlled hierarchical structures. Here, the effect of inorganic NPs on the structure of the hybrid BCP particles and the local distribution of NPs are studied, with a particular focus on comparing Au and Fe3O4 NPs. To focus on the effect of the NP core, Au and Fe3O4 NPs stabilized with oleyl ligands were synthesized, having a comparable diameter and grafting density. The confined co-assembly of symmetric polystyrene-b-poly(1,4-butadiene) (PS-b-PB) BCPs and NPs in evaporative emulsions resulted in particles with various morphologies including striped ellipsoids, onion-like particles, and their intermediates. The major difference in PS-b-PB/Au and PS-b-PB/Fe3O4 particles was found in the distribution of NPs inside the particles that affected the overall particle morphology. Au NPs were selectively localized inside PB domains with random distributions regardless of the particle morphology. Above the critical volume fraction, however, Au NPs induced the morphological transition of onion-like particles into ellipsoids by acting as an NP surfactant. For PS-b-PB/Fe3O4 ellipsoids, Fe3O4 NPs clustered and segregated to the particle/surrounding interface of the ellipsoids even at a low volume fraction, while Fe3O4 NPs were selectively localized in the middle of PB domains in a string-like pattern for PS-b-PB/Fe3O4 onion-like particles.
Collapse
Affiliation(s)
- Jaeman J. Shin
- Department of Materials Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea;
- Department of Green Chemistry and Materials Engineering, Soongsil University, Seoul 06978, Republic of Korea
| |
Collapse
|
20
|
Shi Y, Mu H, You J, Han C, Cheng H, Wang J, Hu H, Ren H. Confined water-encapsulated activated carbon for capturing short-chain perfluoroalkyl and polyfluoroalkyl substances from drinking water. Proc Natl Acad Sci U S A 2023; 120:e2219179120. [PMID: 37364117 PMCID: PMC10318985 DOI: 10.1073/pnas.2219179120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/18/2023] [Indexed: 06/28/2023] Open
Abstract
The global ecological crisis of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water has gradually shifted from long-chain to short-chain PFASs; however, the widespread established PFAS adsorption technology cannot cope with the impact of such hydrophilic pollutants given the inherent defects of solid-liquid mass transfer. Herein, we describe a reagent-free and low-cost strategy to reduce the energy state of short-chain PFASs in hydrophobic nanopores by employing an in situ constructed confined water structure in activated carbon (AC). Through direct (driving force) and indirect (assisted slip) effects, the confined water introduced a dual-drive mode in the confined water-encapsulated activated carbon (CW-AC) and completely eliminated the mass transfer barrier (3.27 to 5.66 kcal/mol), which caused the CW-AC to exhibit the highest adsorption capacity for various short-chain PFASs (C-F number: 3-6) among parent AC and other adsorbents reported. Meanwhile, benefiting from the chain length- and functional group-dependent confined water-binding pattern, the affinity of the CW-AC surpassed the traditional hydrophobicity dominance and shifted toward hydrophilic short-chain PFASs that easily escaped treatment. Importantly, the ability of CW-AC functionality to directly transfer to existing adsorption devices was verified, which could treat 21,000 bed volumes of environment-related high-load (~350 ng/L short-chain PFAS each) real drinking water to below the World Health Organization's standard. Overall, our results provide a green and cost-effective in situ upgrade scheme for existing adsorption devices to address the short-chain PFAS crisis.
Collapse
Affiliation(s)
- Yuanji Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Hongxin Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Jiaqian You
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Chenglong Han
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Huazai Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, Jiangsu, PR China
| |
Collapse
|
21
|
Román Santiago A, Yin S, Elbert J, Lee J, Shukla D, Su X. Imparting Selective Fluorophilic Interactions in Redox Copolymers for the Electrochemically Mediated Capture of Short-Chain Perfluoroalkyl Substances. J Am Chem Soc 2023; 145:9508-9519. [PMID: 36944079 DOI: 10.1021/jacs.2c10963] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
With increasing regulations on per- and polyfluoroalkyl substances (PFAS) across the world, understanding the molecular level interactions that drive their binding by functional adsorbent materials is key to effective PFAS removal from water streams. With the phaseout of legacy long-chain PFAS, the emergence of short-chain PFAS has posed a significant challenge for material design due to their higher mobility and hydrophilicity and inefficient removal by conventional treatment methods. Here, we demonstrate how cooperative molecular interactions are essential to target short-chain PFAS (from C4 to C7) by tailoring structural units to enhance affinity while modulating the electrochemical control of capture and release of PFAS. We report a new class of fluorinated redox-active amine-functionalized copolymers to leverage both fluorophilic and electrostatic interactions for short-chain PFAS binding. We combine molecular dynamics (MD) simulations and electrosorption to elucidate the role of the designer functional groups in enabling affinity toward short-chain PFAS. Preferential interaction coefficients from MD simulations correlated closely with experimental trends: fluorination enhanced the overall PFAS uptake and promoted the capture of less hydrophobic short-chain PFAS (C ≤ 5), while electrostatic interactions provided by secondary amine groups were sufficient to capture PFAS with higher hydrophobicity (C ≥ 6). The addition of an induced electric field showed favorable kinetic enhancement for the shortest PFAS and increased the reversibility of release from the electrode. Integration of these copolymers with electrochemical separations showed potential for removing these contaminants at environmentally relevant conditions while eliminating the need for chemical regeneration.
Collapse
Affiliation(s)
- Anaira Román Santiago
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Song Yin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Johannes Elbert
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jiho Lee
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Tan X, Dewapriya P, Prasad P, Chang Y, Huang X, Wang Y, Gong X, Hopkins TE, Fu C, Thomas KV, Peng H, Whittaker AK, Zhang C. Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents. Angew Chem Int Ed Engl 2022; 61:e202213071. [PMID: 36225164 PMCID: PMC10946870 DOI: 10.1002/anie.202213071] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 11/07/2022]
Abstract
Efficient removal of per- and polyfluoroalkyl substances (PFAS) from contaminated waters is urgently needed to safeguard public and environmental health. In this work, novel magnetic fluorinated polymer sorbents were designed to allow efficient capture of PFAS and fast magnetic recovery of the sorbed material. The new sorbent has superior PFAS removal efficiency compared with the commercially available activated carbon and ion-exchange resins. The removal of the ammonium salt of hexafluoropropylene oxide dimer acid (GenX) reaches >99 % within 30 s, and the estimated sorption capacity was 219 mg g-1 based on the Langmuir model. Robust and efficient regeneration of the magnetic polymer sorbent was confirmed by the repeated sorption and desorption of GenX over four cycles. The sorption of multiple PFAS in two real contaminated water matrices at an environmentally relevant concentration (1 ppb) shows >95 % removal for the majority of PFAS tested in this study.
Collapse
Affiliation(s)
- Xiao Tan
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Pradeep Dewapriya
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Pritesh Prasad
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Yixin Chang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Xumin Huang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Yiqing Wang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Xiaokai Gong
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Timothy E. Hopkins
- The Chemours Company, Chemours Discovery Hub201 Discovery BoulevardNewarkDE 19713USA
| | - Changkui Fu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Kevin V. Thomas
- Queensland Alliance for Environmental Health SciencesThe University of Queensland, Level 420 Cornwall StreetWoolloongabbaQueensland4102Australia
| | - Hui Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Andrew K. Whittaker
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| | - Cheng Zhang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandCorner College and Cooper Rds (Bldg 75)BrisbaneQueensland4072Australia
| |
Collapse
|