1
|
Li S, Ye L, Cen W, Sun D. Electrocatalytic biomass upgrading coupled with hydrogen evolution and CO 2 reduction. NANOSCALE 2025. [PMID: 39937545 DOI: 10.1039/d4nr04433a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Clean energy production and CO2 utilization have attracted increasing interest. Electrocatalysis represents an effective way to produce green hydrogen from water and reduce CO2 to valuable compounds. However, for either the hydrogen evolution reaction (HER) or the CO2 reduction reaction (CO2RR), the reaction efficiency is significantly limited by the slow kinetics of the oxygen evolution reaction (OER) at the anode, which consumes most of the input energy. Therefore, great efforts have been made to replace the OER with organic oxidation reactions at the anode to decrease the reaction energy barrier. Biomass has an advantage of broad source, and when it is employed as an OER alternative in the anode oxidation reactions, not only can the reduction reaction efficiency at the cathode including the HER and CO2RR be enhanced but high-value chemicals can also be obtained, representing an attractive OER alternative. This review comprehensively summarizes the recent achievements in electrocatalytic biomass upgrading coupled with the HER and CO2RR, cataloged based on the type of biomass. The design of electrocatalysts for such coupled reaction systems is discussed. Finally, the challenges and perspectives in the field of this energy-saving and value-added coupling system are provided to inspire more efforts in pushing forward the development of this field.
Collapse
Affiliation(s)
- Shuke Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lin Ye
- College of Chemistry, Sichuan University, Chengdu 610065, P. R. China
| | - Wanglai Cen
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu 610065, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
2
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
3
|
Liu Y, Liu P, Cai Y, Zhu M, Dou N, Zhang L, Men YL, Pan YX. Platinum/(Carbon-Nanotube) Electrocatalyst Boosts Hydrogen Evolution Reaction in Acidic, Neutral and Alkaline Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411181. [PMID: 39866017 DOI: 10.1002/smll.202411181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Widely used catalysts for electrocatalytic hydrogen (H2) evolution reaction (HER) have high platinum (Pt) contents and show low efficiencies in neutral and alkaline solutions. Herein, a carbon nanotube (CNT) supported Pt catalyst (Pt/CNT45) with 1 wt.% Pt is fabricated. For HER, the mass activity of Pt/CNT45 in acidic (18.76 A mgPt -1), neutral (3.92 A mgPt -1), and alkaline (3.88 A mgPt -1) solutions is respectively much higher than those on commercial Pt/C catalyst with 20 wt.% Pt (acidic: 0.31 A mgPt -1, neutral: 0.03 A mgPt -1, alkaline: 0.07 A mgPt -1). Thus, Pt/CNT45 enhances HER not only in acidic solutions but also in neutral and alkaline solutions. Ptδ+ at Pt-CNT interface on Pt/CNT45 promotes water (H2O) dissociation and hydroxyl (OH) desorption from Pt/CNT45, thus enhancing HER. This work opens a new way for enhancing HER in a wider pH range by catalyst with low Pt content, and helpful for commercialization.
Collapse
Affiliation(s)
- Yi Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingying Cai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Minghui Zhu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ning Dou
- Department of Thyroid Breast and Vascular Surgery, Shanghai Fourth People's Hospital Affiliated To Tongji University School of Medicine, Shanghai, 200081, P. R. China
| | - Lei Zhang
- Department of Vascular Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yu-Long Men
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Deng K, Liu X, Liu P, Lv X, Tian W, Ji J. Enhanced Adsorption Kinetics and Capacity of a Stable CeF 3@Ni 3N Heterostructure for Methanol Electro-Reforming Coupled with Hydrogen Production. Angew Chem Int Ed Engl 2025; 64:e202416763. [PMID: 39523460 DOI: 10.1002/anie.202416763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Alkaline methanol-water electrolysis system is regarded as an appealing strategy for electro-reforming methanol into formate and producing hydrogen with low energy-consumption compared with alkaline water electrolysis. However, stability and selectivity under high current densities for practical application remain challenging. Herein, a CeF3@Ni3N nanosheets array anchored on carbon cloth (CeF3@Ni3N/CC) was fabricated. The gradual extrusion of F species from Ni(OH)2 lattices can stabilize hierarchical structure and construct abundant heterostructure interfaces. Moreover, CeF3 can modulate electron distribution of Ni3N, thus simultaneously enhancing the surface adsorption kinetics and capability of methanol and OH-, which is conducive to enhanced methanol oxidation reaction (MOR) activity and selectivity. Therefore, bifunctional CeF3@Ni3N/CC exhibits low potential of 1.43 V at 500 mA cm-2, along with high stability over 72 h and high faradaic efficiency (FEs) in MOR, as well as an overpotential of 76 mV to achieve 50 mA cm-2 for hydrogen evolution reaction (HER). Furthermore, membrane-free CeF3@Ni3N/CC||CeF3@Ni3N/CC cell for MOR||HER delivers high electrocatalytic activity, long-term stability and FEs at high current density of 300 mA cm-2. This study highlights the importance of optimizing surface adsorption behavior of active species, as well as rational design of highly efficient heterostructure electrocatalysts for methanol upgrading coupled with hydrogen production.
Collapse
Affiliation(s)
- Kuan Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xuesong Liu
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Peng Liu
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Tian
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
5
|
Lei Y, Liu L, Zhang E. Calculation of Adsorbate Free Energy Using the Damping Function Method. J Chem Theory Comput 2025; 21:46-57. [PMID: 39699879 DOI: 10.1021/acs.jctc.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Adsorbate free energies are important parameters in surface chemistry and catalysis. Because of its simplicity, the harmonic oscillator (HO) model remains the most widely used method for calculating adsorbate free energy in many fields, including microkinetic modeling. However, it is well-known that the HO method is ineffective for weak adsorption. In this study, we propose a translational model with a diffusion barrier to calculate the state functions of near free translation. Furthermore, an effective mass is introduced in this model. To address hindered translation uniformly, a diffusion barrier-based damping function (DF) is proposed that effectively links the harmonic vibration and translation limits. Adsorbates are divided into three categories according to their adsorption strength and diffusion barrier height. Adsorbed hydrogen atoms have a strong binding energy and relatively high vibrational frequency but a low diffusion barrier. The HT and our proposed DF methods predict that the adsorbed hydrogen atoms behave as translation above room temperature, while the previous DF method predicts that they behave as vibration at any temperature. At last, the dehydrogenation reaction of propane on the Pt(111) surface was taken as an example to illustrate the influence of different methods on the thermodynamic functions.
Collapse
Affiliation(s)
- Yanhua Lei
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan 423000, P. R. China
| | - Lei Liu
- Department of Mathematics, Xiangnan University, Chenzhou, Hunan 423000, P. R. China
| | - Erjun Zhang
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou, Hunan 423000, P. R. China
| |
Collapse
|
6
|
Yao Y, Qi M, Chen L, Hu E, Cai H, Gu D, Wang Z, Cui Y, Qian G. Achieving Excess Hydrogen Output via Concurrent Electrochemical and Chemical Redox Reactions on P-Doped Co-Based Catalysts with Electron Manipulation and Kinetic Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406288. [PMID: 39575485 DOI: 10.1002/smll.202406288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Indexed: 01/11/2025]
Abstract
Electrolytic hydrogen production is of great significance in energy conversion and sustainable development. Traditional electrolytic water splitting confronts high anode voltage with oxygen generation and the amount of hydrogen produced at cathode depends entirely on the quantity of electric charge input. Herein, excess hydrogen output can be achieved by constructing a spontaneous hydrazine oxidation reaction (HzOR) coupled hydrogen evolution reaction (HER) system. For the hydrazine oxidation-assisted electrolyzer in this work, both the external input electrons and the electrons produced by spontaneous chemical redox reaction can reduce water, producing more hydrogen than traditional electrolytic water splitting system. The ultrafast kinetics of bifunctional P-doped Co-based catalysts plays a key role in the spontaneous feature of HzOR/HER redox reaction and low working voltage of hydrazine oxidation-assisted electrolyzer (12 mV@100 mA cm-2). Theoretical calculation results and ex situ/in situ spectra demonstrate that doped P could optimize electronic structure, regulate adsorption energy of intermediates, and thus endows catalysts with ultrafast kinetics. This work provides a new pathway for the development of spontaneous oxidation-assisted hydrogen production, to achieve excess hydrogen output via concurrent electrochemical and chemical redox reactions.
Collapse
Affiliation(s)
- Yue Yao
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Menghui Qi
- Department of Chemistry, Zhejiang University, Hangzhou, 310030, China
| | - Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| | - Enlai Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Haotian Cai
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Defa Gu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Zhiyu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Yuanjing Cui
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| | - Guodong Qian
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310030, China
| |
Collapse
|
7
|
Zhang Y, Liu R, Ma Y, Jian N, Ge H, Pan H, Zhang Y, Zhang C, Liu Y, Deng J, Li L, Zhao J, Yu J, Cabot A, Li J. Surface Selenium Coating Promotes Selective Methanol-to-Formate Electrooxidation on Ni 3Se 4 Nanoparticles. Inorg Chem 2024; 63:23328-23337. [PMID: 39565610 DOI: 10.1021/acs.inorgchem.4c03996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In the quest to replace fossil fuels and reduce carbon dioxide emissions, developing energy technologies based on clean catalytic processes is fundamental. However, the cost-effectiveness of these technologies strongly relies on the availability of efficient catalysts made of abundant elements. Herein, this study presents a one-step hydrothermal method to obtain a series of Ni3Se4 nanoparticles with a layer of amorphous selenium on their surface. When employed as electrocatalysts for the methanol oxidation reaction (MOR), the optimized proper surface Se-coated Ni3Se4 nanoparticles exhibit a high current density of 160 mA cm-2 at 1.6 V, achieving a high methanol-to-formate Faradaic efficiency above 97.8% and excellent stability with less than 20% current decay after an 18 h chronoamperometry test. This excellent performance is rationalized using density functional theory calculations, which unveil that the electrochemical recombination of SeOx results in a reduction of the energy barrier for the dehydrogenation of methanol during the MOR process.
Collapse
Affiliation(s)
- Yong Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yi Ma
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ning Jian
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Huan Ge
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Huiyan Pan
- School of Biological and Chemical Engineering, Nanyang Institute of Science and Technology, Nanyang 473004, China
| | - Yu Zhang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Chaoqi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongliang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jie Deng
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Luming Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jun Zhao
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jing Yu
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930 Barcelona, Catalonia, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, 08930 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Junshan Li
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
8
|
Pei Y, Li D, Qiu C, Yan L, Li Z, Yu Z, Fang W, Lu Y, Zhang B. High-Entropy Sulfide Catalyst Boosts Energy-Saving Electrochemical Sulfion Upgrading to Thiosulfate Coupled with Hydrogen Production. Angew Chem Int Ed Engl 2024; 63:e202411977. [PMID: 39082829 DOI: 10.1002/anie.202411977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Indexed: 10/04/2024]
Abstract
Electrochemical sulfion oxidation reaction (SOR) offers a sustainable strategy for sulfion-rich wastewater treatment, which can couple with cathodic hydrogen evolution reaction (HER) for energy-saving hydrogen production. However, the corrosion and passivation of sulfur species render the inferior catalytic SOR performance, and the oxidation product, polysulfide, requires further acidification to recover cheap elementary sulfur. Here, we reported an amorphous high-entropy sulfide catalyst of CuCoNiMnCrSx nanosheets in situ growth on the nickel foam (CuCoNiMnCrSx/NF) for SOR, which achieved an ultra-low potential of 0.25 V to afford 100 mA cm-2, and stable electrolysis at as high as 1 A cm-2 for 100 h. These were endowed by the manipulated chemical environments surrounding Cu+ sites and the constructed "soft-acid" to "hard-acid" adsorption/desorption sites, enabling synergistically boosted adsorption/desorption process of sulfur species during SOR. Moreover, we developed an electrochemical-chemical tandem process to convert sulfions to value-added thiosulfate, providing a good choice for simultaneous wastewater utilization and hydrogen production.
Collapse
Affiliation(s)
- Yuhou Pei
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Di Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Chuntian Qiu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongmiao Li
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Zexin Yu
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), University of Stuttgart, Allmandring 7b, 70569, Stuttgart, Germany
| | - Wenzhang Fang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Yingying Lu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Bing Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, P.R. China
| |
Collapse
|
9
|
Centi G, Liu Y, Perathoner S. Catalysis for Carbon-Circularity: Emerging Concepts and Role of Inorganic Chemistry. CHEMSUSCHEM 2024; 17:e202400843. [PMID: 38804532 DOI: 10.1002/cssc.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Carbon circularity is crucial for achieving a circular economy but has wider implications and impacts with respect to the circularity of materials. It has an in-depth transformative effect on the economy. CO2 recycling is a critical component for this objective, with catalysis and inorganic chemistry playing a determining role in achieving this challenge. This concept paper presents some examples, as food for thought, of unconventional aspects in developing thermal and electro/photocatalysts for recycling CO2. The aspects discussed regard designing novel materials for CO2 thermo- or electro-conversion and developing novel nanostructured electrodes.
Collapse
Affiliation(s)
- Gabriele Centi
- Department ChiBioFarA, University of Messina, European Research Institute of Catalysis (ERIC aisbl), V. le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, 116023, Dalian, China
| | - Siglinda Perathoner
- Department ChiBioFarA, University of Messina, European Research Institute of Catalysis (ERIC aisbl), V. le F. Stagno D'Alcontres 31, 98166, Messina, Italy
| |
Collapse
|
10
|
Sun L, Huang X, Kong Y, Jia J, Zhu G. Hydrogen storage in a sandwich structure by assembly of BNs and MOFs. Chem Commun (Camb) 2024; 60:11976-11979. [PMID: 39347585 DOI: 10.1039/d4cc02583k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hybrid NUS-8/BNs with a sandwich-like structure were synthesized by layered h-BNs and MOF-NUS-8 via assembly. Thanks to the more abundant exposed binding sites and partial ionic bonding properties of BN, the NUS-8/BN exhibits greatly improved H2 adsorption capacity, which is 1.7 times that of h-BN nanosheets.
Collapse
Affiliation(s)
- Lu Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Xiaojia Huang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Yihan Kong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Jiangtao Jia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
11
|
Zhang J, Zhang Y, Zhou J, Guo H, Qi L. Electronic Engineering of Crystalline/Amorphous CoP/FeCoP x Nanoarrays for Efficient Water Electrolysis. SMALL METHODS 2024:e2401139. [PMID: 39235422 DOI: 10.1002/smtd.202401139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The development of bifunctional, non-noble metal-based electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through morphology and electronic engineering is highly attractive for efficient water splitting. Herein, hierarchical nanoarrays consisting of crystalline cobalt phosphide nanorods covered by amorphous Fe-doped cobalt phosphide nanocuboids (CoP/FeCoPx) are constructed as bifunctional catalysts for both HER and OER. Experimental results and theoretical calculations reveal that the catalysts exhibit balanced dual-catalytic properties due to simultaneous introduction of Fe doping and phosphorus vacancies, leading to an optimized electronic structure of the CoP/FeCoPx. Furthermore, the hierarchical nanoarrays made of crystalline/amorphous heterostructures significantly enhance the performance of the electrocatalysts. As a result, the CoP/FeCoPx catalyst demonstrates remarkable performance in both HER and OER, with overpotentials of 74 and 237 mV at 10 mA cm-2 in 1 m KOH, respectively, as well as a low cell voltage of 1.53 V at 10 mA cm-2 for alkaline overall water splitting. This work integrates the morphology engineering involving design of hierarchical crystalline/amorphous nanoarrays and the electronic engineering through Fe doping and phosphorus vacancies for efficient water electrolysis. It may open a new route toward rational design and feasible fabrication of high-performance, multifunctional, non-noble metal-based electrocatalysts for energy conversion.
Collapse
Affiliation(s)
- Jinyang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yujing Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiayi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Haoran Guo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
12
|
Zhang J, Bu Y, Li Z, Yang T, Zhao N, Wu G, Zhao F, Zhang R, Zhang D. Nanoarchitectonics of Fe-Doped Ni 3S 2 Arrays on Ni Foam from MOF Precursors for Promoted Oxygen Evolution Reaction Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1445. [PMID: 39269107 PMCID: PMC11397559 DOI: 10.3390/nano14171445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
Oxygen evolution reaction (OER) is a critical half-reaction in electrochemical overall water splitting and metal-air battery fields; however, the exploitation of the high activity of non-noble metal electrocatalysts to promote the intrinsic slow kinetics of OER is a vital and urgent research topic. Herein, Fe-doped Ni3S2 arrays were derived from MOF precursors and directly grown on nickel foam via the traditional solvothermal way. The arrays integrated into nickel foam can be used as self-supported electrodes directly without any adhesive. Due to the synergistic effect of Fe and Ni elements in the Ni3S2 structure, the optimized Fe2.3%-Ni3S2/NF electrode delivers excellent OER activity in an alkaline medium. The optimized electrode only requires a small overpotential of 233 mV to reach the current density of 10 mA cm-2, and the catalytic activity of the electrode can surpass several related electrodes reported in the literature. In addition, the long-term stability of the Fe2.3%-Ni3S2/NF electrode showed no significant attenuation after 12 h of testing at a current density of 50 mA cm-2. The introduction of Fe ions could modulate the electrical conductivity and morphology of the Ni3S2 structure and thus provide a high electrochemically active area, fast reaction sites, and charge transfer rate for OER activity.
Collapse
Affiliation(s)
- Jingchao Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Yingping Bu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhuoyan Li
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Ting Yang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Naihui Zhao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Guanghui Wu
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Fujing Zhao
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Renchun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| | - Daojun Zhang
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
| |
Collapse
|
13
|
Linling G, Liao Z, Zhang H, Jiang J, Chen Z. From defects to catalysis: mechanism and optimization of NO electroreduction synthesis of NH 3. Front Chem 2024; 12:1452689. [PMID: 39281036 PMCID: PMC11393826 DOI: 10.3389/fchem.2024.1452689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Ammonia (NH₃) is a crucial industrial raw material, but the traditional Haber-Bosch process is energy-intensive and highly polluting. Electrochemical methods for synthesizing ammonia using nitric oxide (NO) as a precursor offer the advantages of operating under ambient conditions and achieving both NO reduction and resource utilization. Defect engineering enhances electrocatalytic performance by modulating electronic structures and coordination environments. In this brief review, the catalytic reaction mechanism of electrocatalytic NO reduction to NH3 is elucidated, with a focus on synthesis strategies involving vacancy defects and doping defects. From this perspective, the latest advances in various catalytic reduction systems for nitric oxide reduction reaction (NORR) are summarized and synthesized. Finally, the research prospects for NO reduction to NH₃ are discussed.
Collapse
Affiliation(s)
- Gan Linling
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Zhen Liao
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Huimei Zhang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jinxia Jiang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Zhikai Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
14
|
Du R, Zhong Q, Tan X, Liao L, Tang Z, Chen S, Yan D, Zhao X, Zeng F. Optimized Electrodeposition of Ni 2O 3 on Carbon Paper for Enhanced Electrocatalytic Oxidation of Ethanol. ACS OMEGA 2024; 9:30404-30414. [PMID: 39035965 PMCID: PMC11256107 DOI: 10.1021/acsomega.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The urgent need for sustainable and efficient energy conversion technologies has propelled research into novel electrocatalysts for fuel cell applications. This study investigates a carbon paper (CP)-supported Ni2O3 catalyst for the electrocatalytic oxidation of ethanol. We utilized electrodeposition to uniformly deposit/dop Ni2O3 onto the CP, creating an effective electrocatalyst. Our approach allows the tailoring of the doping degree by adjusting the electrodeposition potential. The optimal doping degree, achieved at a medium deposition potential, results in an electrode with high intrinsic activity and a substantial electrochemically active surface area (ECSA), thereby enhancing its electrocatalytic activity. This catalyst efficiently facilitates the oxidation of ethanol to formic acid while maintaining good stability. The enhanced performance is attributed to the effective interface and interaction between Ni2O3 and CP. This work not only provides insights into the design of efficient Ni-based catalysts for ethanol oxidation but also paves the way for developing advanced materials for renewable energy conversion.
Collapse
Affiliation(s)
- Ruixing Du
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Qitong Zhong
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Xing Tan
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Longfei Liao
- School
of Materials Science and Engineering, Harbin
Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Zhenchen Tang
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Shiming Chen
- School
of Intelligent Medicine, China Medical University, Shenyang 110122, Liaoning, China
| | - Dafeng Yan
- College
of Chemistry and Chemical Engineering, Hubei
University, Wuhan 430062, China
| | - Xuebin Zhao
- Technology
Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Feng Zeng
- State
Key Laboratory of Materials-Oriented Chemical Engineering, College
of Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| |
Collapse
|
15
|
Zhou Y, Hong G, Zhang W. Nanoengineering of Cathode Catalysts for Li-O 2 Batteries. ACS NANO 2024; 18:16489-16504. [PMID: 38899523 DOI: 10.1021/acsnano.4c04420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Lithium-oxygen (Li-O2) batteries have obtained widespread attention as next-generation energy storage systems due to their extremely high energy density. However, the high charge overpotential, attributed to the insulating property of Li2O2, significantly limits the energy efficiency and triggers solvent degradation. The high electrochemical activities of oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) on the cathode are crucial for alleviating the high charging polarizations and enhancing the lifetime of Li-O2 batteries, which are also top challenges of state-of-art research. In this review, the scientific challenges and the proposed solutions in the development of cathode catalysts have been summarized. The recent research advancements on the nanoengineering of cathode catalysts for Li-O2 batteries have been comprehensively discussed, and the perspectives on the structure optimization are presented. Meanwhile, we have elucidated the structure-performance relationship between the electronic state and performance of the cathode catalysts at the nanoscale level. This review intends to provide guidelines for the design and construction of cathode catalysts in advanced Li-O2 batteries.
Collapse
Affiliation(s)
- Yin Zhou
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guo Hong
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Wenjun Zhang
- Department of Materials Science and Engineering & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
16
|
Chen Z, Zhang G, Jiang J, Feng X, Li W, Xiang X, Linling G. The progress of research on vacancies in HMF electrooxidation. Front Chem 2024; 12:1416329. [PMID: 38947956 PMCID: PMC11211356 DOI: 10.3389/fchem.2024.1416329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
5-Hydroxymethylfurfural (HMF), serving as a versatile platform compound bridging biomass resource and the fine chemicals industry, holds significant importance in biomass conversion processes. The electrooxidation of HMF plays a crucial role in yielding the valuable product (2,5-furandicarboxylic acid), which finds important applications in antimicrobial agents, pharmaceutical intermediates, polyester synthesis, and so on. Defect engineering stands as one of the most effective strategies for precisely synthesizing electrocatalytic materials, which could tune the electronic structure and coordination environment, and further altering the adsorption energy of HMF intermediate species, consequently increasing the kinetics of HMF electrooxidation. Thereinto, the most routine and effective defect are the anionic vacancies and cationic vacancies. In this concise review, the catalytic reaction mechanism for selective HMF oxidation is first elucidated, with a focus on the synthesis strategies involving both anionic and cationic vacancies. Recent advancements in various catalytic oxidation systems for HMF are summarized and synthesized from this perspective. Finally, the future research prospects for selective HMF oxidation are discussed.
Collapse
Affiliation(s)
- Zhikai Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Gan Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Jinxia Jiang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xin Feng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Xiang
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Gan Linling
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| |
Collapse
|
17
|
Wang D, Lu XF, Luan D, Lou XWD. Selective Electrocatalytic Conversion of Nitric Oxide to High Value-Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312645. [PMID: 38271637 DOI: 10.1002/adma.202312645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Indexed: 01/27/2024]
Abstract
The artificial disturbance in the nitrogen cycle has necessitated an urgent need for nitric oxide (NO) removal. Electrochemical technologies for NO conversion have gained increasing attention in recent years. This comprehensive review presents the recent advancements in selective electrocatalytic conversion of NO to high value-added chemicals, with specific emphasis on catalyst design, electrolyte composition, mass diffusion, and adsorption energies of key intermediate species. Furthermore, the review explores the synergistic electrochemical co-electrolysis of NO with specific carbon source molecules, enabling the synthesis of a range of valuable chemicals with C─N bonds. It also provides in-depth insights into the intricate reaction pathways and underlying mechanisms, offering valuable perspectives on the challenges and prospects of selective NO electrolysis. By advancing comprehension and fostering awareness of nitrogen cycle balance, this review contributes to the development of efficient and sustainable electrocatalytic systems for the selective synthesis of valuable chemicals from NO.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
18
|
Ramaprakash M, G NB, Neppolian B, Sengeni A. An advanced Ru-based alkaline HER electrocatalyst benefiting from Volmer-step promoting 5d and 3d co-catalysts. Dalton Trans 2024; 53:7596-7604. [PMID: 38618661 DOI: 10.1039/d4dt00710g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, a trimetallic catalyst, NiWRu@NF, is electrodeposited onto nickel foam using chronoamperometry to enhance the hydrogen evolution reaction (HER) in alkaline water electrolysis. The catalyst combines nickel, tungsten, and ruthenium components, strategically designed for efficiency and cost-effectiveness, hydroxyl transfer and water dissociation, and acceleration of hydrogen combination, respectively. Evaluation of NiWRu@NF reveals exceptional performance, with a low overpotential of -50 mV and high current density of -10 mA cm-2, signifying its efficiency in promoting HER. Tafel values further corroborate the catalyst's effectiveness, indicating a rapid reaction rate of hydrogen evolution in such a highly alkaline medium compared to other controls studied along with it. This study underscores the significance of NiWRu@NF in advancing alkaline HER kinetics, paving the way for more efficient electrolysis processes.
Collapse
Affiliation(s)
- M Ramaprakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| | - Nasrin Banu G
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.
| | - Anantharaj Sengeni
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
19
|
Kong X, Xu J, Ju Z, Chen C. Durable Ru Nanocrystal with HfO 2 Modification for Acidic Overall Water Splitting. NANO-MICRO LETTERS 2024; 16:185. [PMID: 38687410 PMCID: PMC11061093 DOI: 10.1007/s40820-024-01384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024]
Abstract
Durable and efficient bi-functional catalyst, that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition, are highly desired for the commercialization of proton exchange membrane water electrolysis. Herein, we report a robust L-Ru/HfO2 heterostructure constructed via confining crystalline Ru nanodomains by HfO2 matrix. When assembled with a proton exchange membrane, the bi-functional L-Ru/HfO2 catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm-2 current density, prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO2 electrolyzer. It is revealed that the synergistic effect of HfO2 modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru. More importantly, this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates. As a result, the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step (*O→*OOH). Both of water adsorption and dissociation (Volmer step) are strengthened, while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure (Tafel step). Consequently, the activity and stability of acidic overall water splitting are simultaneously enhanced.
Collapse
Affiliation(s)
- Xiangkai Kong
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China.
| | - Jie Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, 235000, Anhui, People's Republic of China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Zhicheng Ju
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Changle Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
20
|
Paniya S, Gaonkar AD, Vankayala K. Iodide-assisted energy-saving hydrogen production using self-supported sulfate ion-modified NiFe(oxy)hydroxide nanosheets. Chem Commun (Camb) 2024; 60:4174-4177. [PMID: 38390953 DOI: 10.1039/d3cc04833k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Hybrid water electrolysis (HyWES) with iodide oxidation as non-OER for energy-saving H2 production is demonstrated using self-supported sulfate ion modified Ni,Fe(oxy)hydroxide as the anode. The sulfate ions adsorbed on the catalyst show a promoting effect in achieving high electrochemical activity. The HyWES requires a voltage as low as 1.36 V to achieve the bechmark current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Shraddha Paniya
- Functional Materials for Electrochemistry and Solar Energy (FunMatES) Group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.
| | - Asmita Dileep Gaonkar
- Functional Materials for Electrochemistry and Solar Energy (FunMatES) Group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.
| | - Kiran Vankayala
- Functional Materials for Electrochemistry and Solar Energy (FunMatES) Group, Energy and Environmental Chemistry Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
21
|
Liu M, Wang Q, Luo T, Herran M, Cao X, Liao W, Zhu L, Li H, Stefancu A, Lu YR, Chan TS, Pensa E, Ma C, Zhang S, Xiao R, Cortés E. Potential Alignment in Tandem Catalysts Enhances CO 2-to-C 2H 4 Conversion Efficiencies. J Am Chem Soc 2024; 146:468-475. [PMID: 38150583 PMCID: PMC10785799 DOI: 10.1021/jacs.3c09632] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.
Collapse
Affiliation(s)
- Min Liu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Qiyou Wang
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Tao Luo
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Matias Herran
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Xueying Cao
- College
of Materials Science and Engineering, Linyi
University, Linyi 276000, Shandong, China
| | - Wanru Liao
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Li Zhu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Hongmei Li
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Ying-Rui Lu
- National
Synchrotron Radiation Research Center, 30092 Hsinchu, Taiwan
| | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center, 30092 Hsinchu, Taiwan
| | - Evangelina Pensa
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Chao Ma
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Shiguo Zhang
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Ruiyang Xiao
- Institute
of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| |
Collapse
|
22
|
Lu M, Du Y, Yan S, Yu T, Zou Z. Thermal suppression of charge disproportionation accelerates interface electron transfer of water electrolysis. Proc Natl Acad Sci U S A 2024; 121:e2316054120. [PMID: 38147548 PMCID: PMC10769854 DOI: 10.1073/pnas.2316054120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/22/2023] [Indexed: 12/28/2023] Open
Abstract
The sluggish electron transfer kinetics in electrode polarization driven oxygen evolution reaction (OER) result in big energy barriers of water electrolysis. Accelerating the electron transfer at the electrolyte/catalytic layer/catalyst bulk interfaces is an efficient way to improve electricity-to-hydrogen efficiency. Herein, the electron transfer at the Sr3Fe2O7@SrFeOOH bulk/catalytic layer interface is accelerated by heating to eliminate charge disproportionation from Fe4+ to Fe3+ and Fe5+ in Sr3Fe2O7, a physical effect to thermally stabilize high-spin Fe4+ (t2g3eg1), providing available orbitals as electron transfer channels without pairing energy. As a result of thermal-induced changes in electronic states via thermal comproportionation, a sudden increase in OER performances was achieved as heating to completely suppress charge disproportionation, breaking a linear Arrhenius relationship. The strategy of regulating electronic states by thermal field opens a broad avenue to overcome the electron transfer barriers in water splitting.
Collapse
Affiliation(s)
- Mengfei Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
| | - Yu Du
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
| | - Shicheng Yan
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
| | - Tao Yu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
- Jiangsu Key Laboratory for Nano Technology, School of Physics, Nanjing University, Nanjing, Jiangsu210093, People’s Republic of China
| |
Collapse
|
23
|
Chen S, Xu J, Chen J, Yao Y, Wang F. Current Progress of Mo-Based Metal Organic Frameworks Derived Electrocatalysts for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304681. [PMID: 37649205 DOI: 10.1002/smll.202304681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/12/2023] [Indexed: 09/01/2023]
Abstract
As an important half-reaction for electrochemical water splitting, electrocatalytic hydrogen evolution reaction suffers from sluggish kinetics, and it is still urgent to search high efficiency non-platinum-based electrocatalysts. Mo-based catalysts such as Mo2 C, MoO2 , MoP, MoS2 , and MoNx have emerged as promising alternatives to Pt/C owing to their similar electronic structure with Pt and abundant reserve of Mo. On the other hand, due to the adjustable topology, porosity, and nanostructure of metal organic frameworks (MOFs), MOFs are extensively used as precursors to prepare nano-electrocatalysts. In this review, for the first time, the progress of Mo-MOFs-derived electrocatalysts for hydrogen evolution reaction is summarized. The preparation method, structures, and catalytic performance of the catalysts are illustrated based on the types of the derived electrocatalysts including Mo2 C, MoO2 , MoP, MoS2 , and MoNx . Especially, the commonly used strategies to improve catalytic performance such as heteroatoms doping, constructing heterogeneous structure, and composited with noble metal are discussed. Moreover, the opportunities and challenges in this area are proposed to guide the designment and development of Mo-based MOF derived electrocatalysts.
Collapse
Affiliation(s)
- Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Junyan Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Yingying Yao
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Fang Wang
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
24
|
Yu Z, Liu L. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308647. [PMID: 38143285 DOI: 10.1002/adma.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined.
Collapse
Affiliation(s)
- Zhipeng Yu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| | - Lifeng Liu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
25
|
Wang M, Zhang Q, Wang Y, Liu X. Boosting the Catalytic Performance of NiMoO 4 Nanorods in H 2 Generation upon NH 3BH 3 Hydrolysis via a Reduction Process. Inorg Chem 2023; 62:17555-17564. [PMID: 37822237 DOI: 10.1021/acs.inorgchem.3c03068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Although a range of noble metal catalysts, including Ru, Rh, Pd, Pt, and Au, have been developed for efficient H2 generation upon NH3BH3 hydrolysis at room temperature, this is a highly urgent need for exploring earth-abundant metal nanocatalysts for H2 generation upon NH3BH3 hydrolysis. Herein, a NaBH4 reduction strategy was developed to boost the catalytic performance of NiMoO4 nanorods in H2 generation upon NH3BH3 hydrolysis. Indeed, the pristine NiMoO4 nanorods were catalytically inert in NH3BH3 hydrolysis. Significantly, the reduced NiMoO4 nanorods presented excellent catalytic activity in H2 generation upon NH3BH3 hydrolysis, with a turnover frequency (TOF) of 31.2 L(H2)·gcat-1·h-1. Interestingly, the TOF of NH3BH3 hydrolysis over reduced NiMoO4 nanorods significantly increased from 31.2 to 53.6 L(H2)·gcat-1·h-1 under 0.3 M NaOH. The boosting catalytic performance of NiMoO4 nanorods via NaBH4 reduction in H2 generation might be attributed to the higher content of Oads and the formation of nickel boride in the reduced NiMoO4 nanorods. In this work, NH3BH3 hydrolysis over reduced NiMoO4 nanorods was not only used for safe H2 generation but also for its in situ tandem hydrogenation in organic chemistry.
Collapse
Affiliation(s)
- Miaomiao Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Qing Zhang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yanlan Wang
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
26
|
Li S, Liu D, Wang G, Ma P, Wang X, Wang J, Ma R. Vertical 3D Nanostructures Boost Efficient Hydrogen Production Coupled with Glycerol Oxidation Under Alkaline Conditions. NANO-MICRO LETTERS 2023; 15:189. [PMID: 37515627 PMCID: PMC10387032 DOI: 10.1007/s40820-023-01150-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/19/2023] [Indexed: 07/31/2023]
Abstract
Hydrogen production from electrolytic water is an important sustainable technology to realize renewable energy conversion and carbon neutrality. However, it is limited by the high overpotential of oxygen evolution reaction (OER) at the anode. To reduce the operating voltage of electrolyzer, herein thermodynamically favorable glycerol oxidation reaction (GOR) is proposed to replace the OER. Moreover, vertical NiO flakes and NiMoNH nanopillars are developed to boost the reaction kinetics of anodic GOR and cathodic hydrogen evolution, respectively. Meanwhile, excluding the explosion risk of mixed H2/O2, a cheap organic membrane is used to replace the expensive anion exchange membrane in the electrolyzer. Impressively, the electrolyzer delivers a remarkable reduction of operation voltage by 280 mV, and exhibits good long-term stability. This work provides a new paradigm of hydrogen production with low cost and good feasibility.
Collapse
Affiliation(s)
- Shanlin Li
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Danmin Liu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Guowei Wang
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Peijie Ma
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Xunlu Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China
| | - Jiacheng Wang
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, People's Republic of China.
- School of Materials Science and Engineering, Taizhou University, Taizhou, 318000, People's Republic of China.
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tanshang, 063210, People's Republic of China.
| | - Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215011, People's Republic of China.
| |
Collapse
|
27
|
Yan D, Wang L, Zeng F, Huang H. Editorial: Defect chemistry in electrocatalysis. Front Chem 2022; 10:1118783. [PMID: 36590275 PMCID: PMC9801323 DOI: 10.3389/fchem.2022.1118783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Affiliation(s)
- Dafeng Yan
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China,*Correspondence: Dafeng Yan, ; Longlu Wang, ; Feng Zeng, ; Huawei Huang,
| | - Longlu Wang
- College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NJUPT), Nanjing, China,*Correspondence: Dafeng Yan, ; Longlu Wang, ; Feng Zeng, ; Huawei Huang,
| | - Feng Zeng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, China,*Correspondence: Dafeng Yan, ; Longlu Wang, ; Feng Zeng, ; Huawei Huang,
| | - Huawei Huang
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia,*Correspondence: Dafeng Yan, ; Longlu Wang, ; Feng Zeng, ; Huawei Huang,
| |
Collapse
|