1
|
Zanini M, Noble A, Aggarwal VK. Synthesis of 1-Azabicyclo[2.1.1]hexanes via Formal Single Electron Reduction of Azabicyclo[1.1.0]butanes under Photochemical Conditions. Angew Chem Int Ed Engl 2024; 63:e202410207. [PMID: 39038230 DOI: 10.1002/anie.202410207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
C(sp3)-rich heterocycles are privileged building blocks for pharmaceuticals and agrochemicals. Therefore, synthetic methods that provide access to novel saturated nitrogen-containing heterocycles are in high demand. Herein, we report a general synthesis of 1-azabicyclo[2.1.1]hexanes (1-aza-BCH) via a formal cycloaddition of azabicyclo[1.1.0]butanes (ABB) with styrenes under photochemical conditions. To overcome the challenging direct single electron reduction of ABBs, we designed a polar-radical-polar relay strategy that leverages a fast acid-mediated ring-opening of ABBs to form bromoazetidines, which undergo efficient debrominative radical formation to initiate the cycloaddition reaction. The reaction is applicable to a broad range of ABB-ketones and we demonstrate the 1-aza-BCH products can be further functionalized to access larger saturated, conformationally rigid heterocycles.
Collapse
Affiliation(s)
- Margherita Zanini
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS
| | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS
| |
Collapse
|
2
|
Hu S, Gao Y, Pan Y, Ni D, Deng L. Modular Synthesis of Azidobicyclo[2.1.1]hexanes via (3 + 2) Annulation of α-Substituted Vinyl Azides and Bicyclo[1.1.0]butanes. J Org Chem 2024; 89:15151-15157. [PMID: 39331382 DOI: 10.1021/acs.joc.4c01920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Here, we present a mild and rapid method to access azidobicyclo[2.1.1]hexanes via formal (3 + 2) cycloaddition of α-substituted vinyl azides and bicyclo[1.1.0]butanes under Lewis acid catalysis. A wide range of α-substituted vinyl azides were tolerated under mild conditions. Notably, the resulting cycloadducts could be transformed into structurally attractive 3-azabicyclo[3.1.1]heptenes through microwave-promoted rearrangement. The utilities were highlighted by copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition of tertiary alkyl azide and further transformation of the azide and ketone groups.
Collapse
Affiliation(s)
- Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yuhong Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yuming Pan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| |
Collapse
|
3
|
Xiao Y, Wu F, Tang L, Zhang X, Wei M, Wang G, Feng JJ. Divergent Synthesis of Sulfur-Containing Bridged Cyclobutanes by Lewis Acid Catalyzed Formal Cycloadditions of Pyridinium 1,4-Zwitterionic Thiolates and Bicyclobutanes. Angew Chem Int Ed Engl 2024; 63:e202408578. [PMID: 38818620 DOI: 10.1002/anie.202408578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Bridged cyclobutanes and sulfur heterocycles are currently under intense investigation as building blocks for pharmaceutical drug design. Two formal cycloaddition modes involving bicyclobutanes (BCBs) and pyridinium 1,4-zwitterionic thiolate derivatives were described to rapidly expand the chemical space of sulfur-containing bridged cyclobutanes. By using Ni(ClO4)2 as the catalyst, an uncommon higher-order (5+3) cycloaddition of BCBs with quinolinium 1,4-zwitterionic thiolate was achieved with broad substrate scope under mild reaction conditions. Furthermore, the first Lewis acid-catalyzed asymmetric polar (5+3) cycloaddition of BCB with pyridazinium 1,4-zwitterionic thiolate was accomplished. In contrast, pyridinium 1,4-zwitterionic thiolates undergo an Sc(OTf)3-catalyzed formal (3+3) reaction with BCBs to generate thia-norpinene products, which represent the initial instance of synthesizing 2-thiabicyclo[3.1.1]heptanes (thia-BCHeps) from BCBs. Moreover, we have successfully used this (3+3) protocol to rapidly prepare thia-BCHeps-substituted analogues of the bioactive molecule Pitofenone. Density functional theory (DFT) computations imply that kinetic factors govern the (5+3) cycloaddition reaction between BCB and quinolinium 1,4-zwitterionic thiolate, whereas the (3+3) reaction involving pyridinium 1,4-zwitterionic thiolates is under thermodynamic control.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, 225002, P.R. China
| | - Mengran Wei
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
4
|
Ding Z, Wang Z, Wang Y, Wang X, Xue Y, Xu M, Zhang H, Xu L, Li P. Regio- and Diastereoselective Synthesis of Polysubstituted Piperidines Enabled by Boronyl Radical-Catalyzed (4+2) Cycloaddition. Angew Chem Int Ed Engl 2024; 63:e202406612. [PMID: 38924325 DOI: 10.1002/anie.202406612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Piperidines are widely present in small molecule drugs and natural products. Despite many methods have been developed for their synthesis, new approaches to polysubstituted piperidines are highly desirable. This work presents a radical (4+2) cycloaddition reaction for synthesis of piperidines featuring dense substituents at 3,4,5-positions that are not readily accessible by known methods. Using commercially available diboron(4) compounds and 4-phenylpyridine as the catalyst precursors, the boronyl radical-catalyzed cycloaddition between 3-aroyl azetidines and various alkenes, including previously unreactive 1,2-di-, tri-, and tetrasubstituted alkenes, has delivered the polysubstituted piperidines in generally high yield and diastereoselectivity. The reaction also features high modularity, atom economy, broad substrate scope, metal-free conditions, simple catalysts and operation. The utilization of the products has been demonstrated by selective transformations. A plausible mechanism, with the ring-opening of azetidine as the rate-limiting step, has been proposed based on the experimental and computational results.
Collapse
Affiliation(s)
- Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Yingying Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Yuanji Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Ming Xu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Wu WB, Xu B, Yang XC, Wu F, He HX, Zhang X, Feng JJ. Enantioselective formal (3 + 3) cycloaddition of bicyclobutanes with nitrones enabled by asymmetric Lewis acid catalysis. Nat Commun 2024; 15:8005. [PMID: 39266575 PMCID: PMC11393060 DOI: 10.1038/s41467-024-52419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
The absence of catalytic asymmetric methods for synthesizing chiral (hetero)bicyclo[n.1.1]alkanes has hindered their application in new drug discovery. Here we demonstrate the achievability of an asymmetric polar cycloaddition of bicyclo[1.1.0]butane using a chiral Lewis acid catalyst and a bidentate chelating bicyclo[1.1.0]butane substrate, as exemplified by the current enantioselective formal (3 + 3) cycloaddition of bicyclo[1.1.0]butanes with nitrones. In addition to the diverse bicyclo[1.1.0]butanes incorporating an acyl imidazole group or an acyl pyrazole moiety, a wide array of nitrones are compatible with this Lewis acid catalysis, successfully assembling two congested quaternary carbon centers and a chiral aza-trisubstituted carbon center in the pharmaceutically important hetero-bicyclo[3.1.1]heptane product with up to 99% yield and >99% ee.
Collapse
Affiliation(s)
- Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, P. R. China
| | - Bing Xu
- Department of Chemistry, Fudan University, Shanghai, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, P. R. China.
| |
Collapse
|
6
|
Wu F, Wu WB, Xiao Y, Li Z, Tang L, He HX, Yang XC, Wang JJ, Cai Y, Xu TT, Tao JH, Wang G, Feng JJ. Zinc-Catalyzed Enantioselective Formal (3+2) Cycloadditions of Bicyclobutanes with Imines: Catalytic Asymmetric Synthesis of Azabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2024:e202406548. [PMID: 39218783 DOI: 10.1002/anie.202406548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
The cycloaddition reaction involving bicyclo[1.1.0]butanes (BCBs) offers a versatile and efficient synthetic platform for producing C(sp3)-rich rigid bridged ring scaffolds, which act as phenyl bioisosteres. However, there is a scarcity of catalytic asymmetric cycloadditions of BCBs to fulfill the need for enantioenriched saturated bicycles in drug design and development. In this study, an efficient synthesis of valuable azabicyclo[2.1.1]hexanes (aza-BCHs) by an enantioselective zinc-catalyzed (3+2) cycloadditions of BCBs with imines is reported. The reaction proceeds effectively with a novel type of BCB that incorporates a 2-acyl imidazole group and a diverse array of alkynyl- and aryl-substituted imines. The target aza-BCHs, which consist of α-chiral amine fragments and two quaternary carbon centers, are efficiently synthesized with up to 94 % and 96.5:3.5 er under mild conditions. Experimental and computational studies reveal that the reaction follows a concerted nucleophilic ring-opening mechanism of BCBs with imines. This mechanism is distinct from previous studies on Lewis acid-catalyzed cycloadditions of BCBs.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, 410205, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhenxing Li
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Heng-Xian He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ji-Jie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuanlin Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jia-Hao Tao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
7
|
Wen J, Ding Z, Li P. Broad-Scope (3 + 2) Cycloaddition of Cyclopropanes and Alkynes Enabled by Boronyl Radical Catalysis. Org Lett 2024; 26:7021-7025. [PMID: 39141499 DOI: 10.1021/acs.orglett.4c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Cyclopentene skeletons are ubiquitous in natural products and small molecule drugs. The (3 + 2) cycloaddition of cyclopropanes and alkynes represents an efficient and atom-economic strategy for synthesizing these structures. However, the types of substituents on cyclopropane and alkyne used in previous works show evident limitations, restricting the application of this type of reaction to some extent. Herein, we report a broad-scope (3 + 2) cycloaddition of cyclopropanes and alkynes catalyzed by boronyl radicals. In this method, various substrates, such as mono-, di-, tri-, and tetrasubstituted cyclopropanes, as well as mono- and disubstituted alkynes, were compatible with up to 98% isolated yield.
Collapse
Affiliation(s)
- Jingru Wen
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhengwei Ding
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
8
|
Yang C, Hu M, Hu C, Mi X, Luo S. Visible Light Promoted de Mayo Type Reaction of Bicyclo[1.1.0]butanes. Chemistry 2024:e202402965. [PMID: 39174490 DOI: 10.1002/chem.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
We reported herein a visible light mediated de Mayo-type reaction between 1,3-diketones and BCB. The reaction proceeds through a [2π+2σ] cycloaddition and retro-aldol sequence, producing cis-difunctionalized cyclobutanes in high yields with good regio- and diastereoselectivity.
Collapse
Affiliation(s)
- Chunming Yang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Minmin Hu
- College of Chemistry, Beijing Normal University, Beijing, 1000875, China
| | - Chaoqin Hu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xueling Mi
- College of Chemistry, Beijing Normal University, Beijing, 1000875, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Gao XY, Tang L, Zhang X, Feng JJ. Palladium-catalyzed decarboxylative (4 + 3) cycloadditions of bicyclobutanes with 2-alkylidenetrimethylene carbonates for the synthesis of 2-oxabicyclo[4.1.1]octanes. Chem Sci 2024:d4sc02998d. [PMID: 39139738 PMCID: PMC11317905 DOI: 10.1039/d4sc02998d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
While cycloaddition reactions of bicyclobutanes (BCBs) have emerged as a potent method for synthesizing (hetero-)bicyclo[n.1.1]alkanes (usually n ≤ 3), their utilization in the synthesis of bicyclo[4.1.1]octane derivatives (BCOs) is still underdeveloped. Here, a palladium-catalyzed formal (4 + 3) reaction of BCBs with 1,4-O/C dipole precursors for the synthesis of oxa-BCOs is described. Unlike previous catalytic polar (3 + X) cycloadditions of BCBs, which are typically achieved through the activation of BCB substrates, the current reaction represents a novel strategy for realizing the cycloaddition of BCBs through the activation of the "X" cycloaddition partner. Moreover, the obtained functionalized oxa-BCOs products can be readily modified through various synthetic transformations.
Collapse
Affiliation(s)
- Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Xu Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University Yangzhou 225002 P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
10
|
Hu QQ, Wang LY, Chen XH, Geng ZX, Chen J, Zhou L. Lewis Acid Catalyzed Cycloaddition of Bicyclobutanes with Ynamides for the Synthesis of Polysubstituted 2-Amino-bicyclo[2.1.1]hexenes. Angew Chem Int Ed Engl 2024; 63:e202405781. [PMID: 38782734 DOI: 10.1002/anie.202405781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Synthesis of bicyclic scaffolds has gained significant attention in drug discovery due to their potential to mimic benzene bioisosteres. Here, we present a mild and scalable Sc(OTf)3-catalyzed [3+2] cycloaddition of bicyclo[1.1.0]butanes (BCBs) with ynamides, yielding a diverse array of polysubstituted 2-amino-bicyclo[2.1.1]hexenes in good to excellent yields. These products offer valuable starting materials for the construction of novel functionalized bicyclo[1.1.0]butanes. Preliminary mechanistic studies indicate that the reaction involves a nucleophilic addition of ynamides to bicyclo[1.1.0]butanes, followed by an intramolecular cyclization of in situ generated enolate and keteniminium ion. We expect that these findings will encourage utilization of complex bioisosteres and foster further investigation into BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Qian-Qian Hu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Liu-Yang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xing-Hao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
11
|
Zhu S, Tian X, Li SW. Intermolecular Formal [2π + 2σ] Cycloaddition of Enol Silyl Ethers with Bicyclo[1.1.0]butanes Promoted by Lewis Acids. Org Lett 2024; 26:6309-6313. [PMID: 39041658 DOI: 10.1021/acs.orglett.4c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Silyl enol ethers react with bicyclo[1.1.0]butanes (BCBs) through Yb(OTf)3-promoted formal [2π + 2σ] cycloaddition reactions to furnish bicyclo[2.1.1]hexanes (BCHs). This new reaction tolerated a wide range of enol silyl ethers and BCBs. Furthermore, the amplification experiments and synthetic transformations of the cycloaddition compounds further highlighted their practicality.
Collapse
Affiliation(s)
- Shijie Zhu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Xue Tian
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Shi-Wu Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| |
Collapse
|
12
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
13
|
Zhou JL, Xiao Y, He L, Gao XY, Yang XC, Wu WB, Wang G, Zhang J, Feng JJ. Palladium-Catalyzed Ligand-Controlled Switchable Hetero-(5 + 3)/Enantioselective [2σ+2σ] Cycloadditions of Bicyclobutanes with Vinyl Oxiranes. J Am Chem Soc 2024; 146:19621-19628. [PMID: 38739092 DOI: 10.1021/jacs.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.
Collapse
Affiliation(s)
- Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin-Yu Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xue-Chun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, P.R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
14
|
Hu S, Pan Y, Ni D, Deng L. Facile access to bicyclo[2.1.1]hexanes by Lewis acid-catalyzed formal cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes. Nat Commun 2024; 15:6128. [PMID: 39033172 PMCID: PMC11271461 DOI: 10.1038/s41467-024-50434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Saturated three-dimensional carbocycles have gained increasing prominence in synthetic and medicinal chemistry. In particular, bicyclo[2.1.1]hexanes (BCHs) have been identified as the molecular replacement for benzenes. Here, we present facile access to a variety of BCHs via a stepwise two-electron formal (3 + 2) cycloaddition between silyl enol ethers and bicyclo[1.1.0]butanes (BCBs) under Lewis acid catalysis. The reaction features wide functional group tolerance for silyl enol ethers, allowing the efficient construction of two vicinal quaternary carbon centers and a silyl-protected tertiary alcohol unit in a streamlined fashion. Interestingly, the reaction with conjugated silyl dienol ethers can provide access to bicyclo[4.1.1]octanes (BCOs) equipped with silyl enol ethers that facilitate further transformation. The utilities of this methodology are demonstrated by the late-stage modification of natural products, transformations of tertiary alcohol units on bicyclo[2.1.1]hexane frameworks, and derivatization of silyl enol ethers on bicyclo[4.1.1]octanes, delivering functionalized bicycles that are traditionally inaccessible.
Collapse
Affiliation(s)
- Sai Hu
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuming Pan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
15
|
Nicolai S, Waser J. Lewis acid catalyzed [4+2] annulation of bicyclobutanes with dienol ethers for the synthesis of bicyclo[4.1.1]octanes. Chem Sci 2024; 15:10823-10829. [PMID: 39027289 PMCID: PMC11253158 DOI: 10.1039/d4sc02767a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/24/2024] [Indexed: 07/20/2024] Open
Abstract
Bicyclic carbocycles containing a high fraction of Csp3 have become highly attractive synthetic targets because of the multiple applications they have found in medicinal chemistry. The formal cycloaddition of bicyclobutanes (BCBs) with two- or three-atom partners has recently been extensively explored for the construction of bicyclohexanes and bicycloheptanes, but applications to the synthesis of medium-sized bridged carbocycles remained more limited. We report herein the formal [4+2] cycloaddition of BCB ketones with silyl dienol ethers. The reaction occurred in the presence of 5 mol% aluminium triflate as a Lewis acid catalyst. Upon acidic hydrolysis of the enol ether intermediates, rigid bicyclo[4.1.1]octane (BCO) diketones could be accessed in up to quantitative yields. This procedure tolerated a range of both aromatic and aliphatic substituents on both the BCB substrates and the dienes. The obtained BCO products could be functionalized through reduction and cross-coupling reactions.
Collapse
Affiliation(s)
- Stefano Nicolai
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| |
Collapse
|
16
|
Wang JJ, Tang L, Xiao Y, Wu WB, Wang G, Feng JJ. Switching between the [2π+2σ] and Hetero-[4π+2σ] Cycloaddition Reactivity of Bicyclobutanes with Lewis Acid Catalysts Enables the Synthesis of Spirocycles and Bridged Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202405222. [PMID: 38729920 DOI: 10.1002/anie.202405222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/12/2024]
Abstract
The exploration of the complex chemical diversity of bicyclo[n.1.1]alkanes and their use as benzene bioisosteres has garnered significant attention over the past two decades. Regiodivergent syntheses of thiabicyclo[4.1.1]octanes (S-BCOs) and highly substituted bicyclo[2.1.1]hexanes (BCHs) using a Lewis acid-catalyzed formal cycloaddition of bicyclobutanes (BCBs) and 3-benzylideneindoline-2-thione derivatives have been established. The first hetero-(4+3) cycloaddition of BCBs, catalyzed by Zn(OTf)2, was achieved with a broad substrate scope under mild conditions. In contrast, the less electrophilic BCB ester undergoes a Sc(OTf)3-catalyzed [2π+2σ] reaction with 1,1,2-trisubstituted alkenes, yielding BCHs with a spirocyclic quaternary carbon center. Control experiments and preliminary theoretical calculations suggest that the diastereoselective [2π+2σ] product formation may involve a concerted cycloaddition between a zwitterionic intermediate and E-1,1,2-trisubstituted alkenes. Additionally, the hetero-(4+3) cycloaddition may involve a concerted nucleophilic ring-opening mechanism.
Collapse
Affiliation(s)
- Ji-Jie Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
17
|
Lin Z, Ren H, Lin X, Yu X, Zheng J. Synthesis of Azabicyclo[3.1.1]heptenes Enabled by Catalyst-Controlled Annulations of Bicyclo[1.1.0]butanes with Vinyl Azides. J Am Chem Soc 2024; 146:18565-18575. [PMID: 38935924 DOI: 10.1021/jacs.4c04485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Bridged bicyclic scaffolds are emerging bioisosteres of planar aromatic rings under the concept of "escape from flatland". However, adopting this concept into the exploration of bioisosteres of pyridines remains elusive due to the challenge of incorporating a N atom into such bridged bicyclic structures. Herein, we report practical routes for the divergent synthesis of 2- and 3-azabicyclo[3.1.1]heptenes (aza-BCHepes) as potential bioisosteres of pyridines from the readily accessible vinyl azides and bicyclo[1.1.0]butanes (BCBs) via two distinct catalytic annulations. The reactivity of vinyl azides tailored with BCBs is the key to achieving divergent transformations. TiIII-catalyzed single-electron reductive generation of C-radicals from BCBs allows a concise (3 + 3) annulation with vinyl azides, affording novel 2-aza-BCHepe scaffolds. In contrast, scandium catalysis enables an efficient dipolar (3 + 2) annulation with vinyl azides to generate 2-azidobicyclo[2.1.1]hexanes, which subsequently undergo a chemoselective rearrangement to construct 3-aza-BCHepes. Both approaches efficiently deliver unique azabicyclo[3.1.1]heptene scaffolds with a high functional group tolerance. The synthetic utility has been further demonstrated by scale-up reactions and diverse postcatalytic transformations, providing valuable azabicyclics including 2- and 3-azabicyclo[3.1.1]heptanes and rigid bicyclic amino esters. In addition, the related sp2-hybridized nitrogen atom and the similar geometric property between pyridines and corresponding aza-BCHepes indicate that they are promising bioisosteres of pyridines.
Collapse
Affiliation(s)
- Zhongren Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinbo Lin
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
18
|
Zhang K, Tian S, Li W, Yang X, Duan XH, Guo LN, Li P. Lewis Acid-Catalyzed Formal [2π+2σ] Cycloaddition of Bicyclobutanes with Quinoxalin-2(1 H)-ones: Access to Quinoxaline-Fused Aza-Bicyclo[2.1.1]hexanes. Org Lett 2024; 26:5482-5487. [PMID: 38913035 DOI: 10.1021/acs.orglett.4c01775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
An efficient synthesis of quinoxaline-fused aza-bicyclo[2.1.1]hexanes bearing multiple quaternary carbon centers via the intermolecular [2π+2σ] cycloaddition of bicyclo[1.1.0]butanes and quinoxalin-2(1H)-ones, facilitated by Lewis acid catalysis, is presented. This reaction is carried out under mild conditions and exhibits a broad substrate scope and excellent functional group tolerance.
Collapse
Affiliation(s)
- Kuan Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanghui Tian
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wenke Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pengfei Li
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage, Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Jo J, Kim S, Park S, Kim S, Lee S, Choi JH, Chung WJ. Study on Pyridine-Boryl Radical-Promoted, Ketyl Radical-Mediated Carbon-Carbon Bond-Forming Reactions. J Org Chem 2024; 89:8985-9000. [PMID: 38861548 DOI: 10.1021/acs.joc.4c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Ketyl radicals are synthetically versatile reactive species, but their applications have been hampered by harsh generation conditions employing highly reducing metals. Recently, the pyridine-boryl radical received wide attention as a promising organic reductant because of its mildness as well as convenience in handling. While probing the utility of the pyridine-boryl radical, our group observed facile pinacol coupling reactivity that had not been known at that time. This serendipitous finding was successfully rendered into a practical synthesis of tetraaryl-1,2-diols in up to 99% yield within 1 h. Subsequently, upon examinations of various reaction manifolds, a diastereoselective ketyl-olefin cyclization was accomplished to produce cycloalkanols such as trans-2-alkyl-1-indanols. Compared to the previous methods, the stereocontrolling ability was considerably enhanced by taking advantage of the structurally modifiable boryl group that would be present near the bond-forming site. In this full account, our synthetic efforts with the O-boryl ketyl radicals are disclosed in detail, covering the discovery, optimization, scope expansion, and mechanistic analysis, including density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Junhyuk Jo
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Somi Kim
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seonyoung Park
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, DGIST, 333 Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Won-Jin Chung
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
20
|
Wang J, Lin Phang Y, Yu YJ, Liu NN, Xie Q, Zhang FL, Jin JK, Wang YF. Boryl Radical as a Catalyst in Enabling Intra- and Intermolecular Cascade Radical Cyclization Reactions: Construction of Polycyclic Molecules. Angew Chem Int Ed Engl 2024; 63:e202405863. [PMID: 38589298 DOI: 10.1002/anie.202405863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a β-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.
Collapse
Affiliation(s)
- Jie Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yee Lin Phang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - You-Jie Yu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Nan-Nan Liu
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Qiang Xie
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Feng-Lian Zhang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ji-Kang Jin
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yi-Feng Wang
- Department of Nuclear Medicine, Division of Life Sciences and Medicine, the, First Affiliated Hospital of USTC, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Tyler J, Schäfer F, Shao H, Stein C, Wong A, Daniliuc CG, Houk KN, Glorius F. Bicyclo[1.1.0]butyl Radical Cations: Synthesis and Application to [2π + 2σ] Cycloaddition Reactions. J Am Chem Soc 2024; 146:16237-16247. [PMID: 38811005 PMCID: PMC11177261 DOI: 10.1021/jacs.4c04403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
As the chemistry that surrounds the field of strained hydrocarbons, such as bicyclo[1.1.0]butane, continues to expand, it becomes increasingly advantageous to develop alternative reactivity modes that harness their unique properties to access new regions of chemical space. Herein, we report the use of photoredox catalysis to promote the single-electron oxidation of bicyclo[1.1.0]butanes. The synthetic utility of the resulting radical cations is highlighted by their ability to undergo highly regio- and diastereoselective [2π + 2σ] cycloaddition reactions. The most notable feature of this transformation is the breadth of alkene classes that can be employed, including nonactivated alkenes, which have so far been elusive for previous strategies. A rigorous mechanistic investigation, in conjunction with DFT computation, was undertaken in order to better understand the physical nature of bicyclo[1.1.0]butyl radical cations and thus provides a platform from which further studies into the synthetic applications of these intermediates can be built upon.
Collapse
Affiliation(s)
- Jasper
L. Tyler
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| | - Felix Schäfer
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| | - Huiling Shao
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Colin Stein
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| | - Audrey Wong
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | | | - K. N. Houk
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095-1569, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, Universität Münster, 48149 Münster, Germany
| |
Collapse
|
22
|
Liu Y, Wu Z, Shan JR, Yan H, Hao EJ, Shi L. Titanium catalyzed [2σ + 2π] cycloaddition of bicyclo[1.1.0]-butanes with 1,3-dienes for efficient synthesis of stilbene bioisosteres. Nat Commun 2024; 15:4374. [PMID: 38782978 PMCID: PMC11116475 DOI: 10.1038/s41467-024-48494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Natural stilbenes have shown significant potential in the prevention and treatment of diseases due to their diverse pharmacological activities. Here we present a mild and effective Ti-catalyzed intermolecular radical-relay [2σ + 2π] cycloaddition of bicyclo[1.1.0]-butanes and 1,3-dienes. This transformation enables the synthesis of bicyclo[2.1.1]hexane (BCH) scaffolds containing aryl vinyl groups with excellent regio- and trans-selectivity and broad functional group tolerance, thus offering rapid access to structurally diverse stilbene bioisosteres.
Collapse
Affiliation(s)
- Yonghong Liu
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Zhixian Wu
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Jing-Ran Shan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | - Huaipu Yan
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China
| | - Er-Jun Hao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Lei Shi
- Cancer Hospital of Dalian University of Technology, 116024, Dalian, China.
- School of Chemistry, Dalian University of Technology, 116024, Dalian, China.
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
23
|
Yang L, Wang H, Lang M, Wang J, Peng S. B(C 6F 5) 3-Catalyzed Formal ( n + 3) ( n = 5 and 6) Cycloaddition of Bicyclo[1.1.0]butanes to Medium Bicyclo[ n.1.1]alkanes. Org Lett 2024; 26:4104-4110. [PMID: 38700913 DOI: 10.1021/acs.orglett.4c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Herein, a B(C6F5)3-catalyzed formal (n + 3) (n = 5 and 6) cycloaddition of bicyclo[1.1.0]butanes (BCBs) with imidazolidines/hexahydropyrimidines is described. The reaction provides a modular, atom-economical, and efficient strategy to two libraries of synthetically challenging medium-bridged rings, 2,5-diazabicyclo[5.1.1]nonanes and 2,6-diazabicyclo[6.1.1]decanes, in moderate to excellent yields. This reaction also features simple operation, mild reaction conditions, and broad substrate scope. A scale-up experiment and various synthetic transformations of products further highlight the synthetic utility.
Collapse
Affiliation(s)
- Liangliang Yang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Haiyang Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ming Lang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jian Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyong Peng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
24
|
Posz JM, Sharma N, Royalty PA, Liu Y, Salome C, Fessard TC, Brown MK. Synthesis of Borylated Carbocycles by [2 + 2]-Cycloadditions and Photo-Ene Reactions. J Am Chem Soc 2024; 146:10142-10149. [PMID: 38536870 PMCID: PMC11041674 DOI: 10.1021/jacs.4c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Saturated bicyclic compounds make up a valuable class of building blocks in the development of agrochemicals and pharmaceuticals. Here, we present the synthesis of borylated bicyclo[2.1.1]hexanes via crossed [2 + 2]-cycloaddition. Due to the presence of the C-B bond, a variety of structures can be easily prepared that are not accessible by other methods. Moreover, a rare photo-ene reaction is also disclosed, allowing for the diastereoselective synthesis of trisubstituted borylated cyclopentanes.
Collapse
Affiliation(s)
- Jarett M Posz
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Neetu Sharma
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Paige A Royalty
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yanyao Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christophe Salome
- SpiroChem AG, Rosental Area, WRO-1047-3, Mattenstrasse 22, Basel 4058, Switzerland
| | - Thomas C Fessard
- SpiroChem AG, Rosental Area, WRO-1047-3, Mattenstrasse 22, Basel 4058, Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Zhang J, Su JY, Zheng H, Li H, Deng WP. Eu(OTf) 3 -Catalyzed Formal Dipolar [4π+2σ] Cycloaddition of Bicyclo-[1.1.0]butanes with Nitrones: Access to Polysubstituted 2-Oxa-3-azabicyclo[3.1.1]heptanes. Angew Chem Int Ed Engl 2024; 63:e202318476. [PMID: 38288790 DOI: 10.1002/anie.202318476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/21/2024]
Abstract
Herein, we have synthesized multifunctionalized 2-oxa-3-azabicyclo[3.1.1]heptanes, which are considered potential bioisosteres for meta-substituted arenes, through Eu(OTf)3 -catalyzed formal dipolar [4π+2σ] cycloaddition of bicyclo[1.1.0]butanes with nitrones. This methodology represents the initial instance of fabricating bicyclo[3.1.1]heptanes adorned with multiple heteroatoms. The protocol exhibits both mild reaction conditions and a good tolerance for various functional groups. Computational density functional theory calculations support that the reaction mechanism likely involves a nucleophilic addition of nitrones to bicyclo[1.1.0]butanes, succeeded by an intramolecular cyclization. The synthetic utility of this novel protocol has been demonstrated in the concise synthesis of the analogue of Rupatadine.
Collapse
Affiliation(s)
- Jian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Jia-Yi Su
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, China
| |
Collapse
|
26
|
Ren H, Li T, Xing J, Li Z, Zhang Y, Yu X, Zheng J. Ti-Catalyzed Formal [2π + 2σ] Cycloadditions of Bicyclo[1.1.0]butanes with 2-Azadienes to Access Aminobicyclo[2.1.1]hexanes. Org Lett 2024; 26:1745-1750. [PMID: 38377354 DOI: 10.1021/acs.orglett.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Saturated bicyclic amines are increasingly targeted to the pharmaceutical industry as sp3-rich bioisosteres of anilines. Numerous strategies have been established for the preparation of bridgehead aminobicyclics. However, methods to assemble the bridge-amino hydrocarbon skeleton, which serves as a meta-substituted arene bioisostere, are limited. Herein, a general approach to access 2-aminobicyclo[2.1.1]hexanes (aminoBCHs) by titanium-catalyzed formal [2π + 2σ] cycloaddition of bicyclo[1.1.0]butanes and 2-azadienes was developed. Simple derivatization of aminoBCHs leads to various medicinally and agrochemically important analogues.
Collapse
Affiliation(s)
- Haosong Ren
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tianxiang Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinping Xing
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhenyue Li
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanxia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xinhong Yu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Zheng
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
27
|
Liu D, Guo X, Zhou S, Guo L, Zhang X. Mechanistic Insight into Lewis Acid-Catalyzed Cycloaddition of Bicyclo[1.1.0]butanes with Ketene: Bicyclo[1.1.0]butanes Serving as an Electrophile. J Org Chem 2024. [PMID: 38163764 DOI: 10.1021/acs.joc.3c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Lewis acid-catalyzed cycloaddition between bicyclo[1.1.0]butanes (BCBs) and unsaturated substrates has recently been demonstrated to be a powerful strategy for synthesizing bicyclo[2.1.1]hexanes. However, their reaction mechanisms remain elusive. This computational work explored the recently developed TMSOTf-catalyzed cycloaddition of BCB ketone to ketene and determined the rate-determining step as the activation of BCB ketone. Contrary to the previous proposal of BCB enolate as the active species, this work instead identified the catalytically active species to be a partially Lewis acid-activated BCB cation, which shows a greater electrophilicity and larger orbital interactions with ketene compared to those of the pristine BCB. The most favorable reaction pathway uniquely utilizes this activated BCB species as an electrophile to react with ketene as a nucleophile, while the previously proposed enolate is relatively inactive. Moreover, the in situ-generated TfO anion is revealed to be non-innocent, and its coordination mode and orientation could affect the reaction kinetics.
Collapse
Affiliation(s)
- Dan Liu
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710000 Shaanxi, China
| | - Xuefeng Guo
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, 710000 Shaanxi, China
| | - Shaoyuan Zhou
- School of Light Industry and Materials, Guangdong Polytechnic, Gaoming, Foshan 528000, China
| | - Luxuan Guo
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Xiaoyong Zhang
- School of Sciences, Great Bay University, Dongguan 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
| |
Collapse
|
28
|
Yue F, Ma H, Ding P, Song H, Liu Y, Wang Q. Formation of C-B, C-C, and C-X Bonds from Nonstabilized Aryl Radicals Generated from Diaryl Boryl Radicals. ACS CENTRAL SCIENCE 2023; 9:2268-2276. [PMID: 38161365 PMCID: PMC10755731 DOI: 10.1021/acscentsci.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024]
Abstract
With the development of organoboron chemistry, boron-centered radicals have become increasingly attractive. However, their synthetic applications remain limited in that they have been used only as substrates for addition reactions or as initiators for catalytic reactions. We have achieved a new reaction pathway in which tetraarylborate salts are used as precursors for aryl radicals via boron radicals, by introducing a simple activation reagent. In addition, we carried out a diverse array of transformations involving these aryl radical precursors, which allowed the construction of new C-B, C-C, and C-X bonds in the presence of visible light.
Collapse
Affiliation(s)
- Fuyang Yue
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Henan Ma
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Pengxuan Ding
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic
Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
29
|
Denisenko A, Garbuz P, Makovetska Y, Shablykin O, Lesyk D, Al-Maali G, Korzh R, Sadkova IV, Mykhailiuk PK. 1,2-Disubstituted bicyclo[2.1.1]hexanes as saturated bioisosteres of ortho-substituted benzene. Chem Sci 2023; 14:14092-14099. [PMID: 38098705 PMCID: PMC10718076 DOI: 10.1039/d3sc05121h] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 12/17/2023] Open
Abstract
Bicyclo[2.1.1]hexanes have been synthesized, characterized, and biologically validated as saturated bioisosteres of the ortho-substituted benzene ring. The incorporation of the 1,2-disubstituted bicyclo[2.1.1]hexane core into the structure of fungicides boscalid (BASF), bixafen (Bayer CS), and fluxapyroxad (BASF) gave saturated patent-free analogs with high antifungal activity.
Collapse
Affiliation(s)
- Aleksandr Denisenko
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Pavel Garbuz
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | | | - Oleh Shablykin
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine 02094 Kyiv Ukraine
| | - Dmytro Lesyk
- Bienta Winston Churchill st. 78 02094 Kyiv Ukraine
| | - Galeb Al-Maali
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
- Institute of Botany of the National Academy of Sciences of Ukraine 02094 Kyiv Ukraine
| | - Rodion Korzh
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Iryna V Sadkova
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| | - Pavel K Mykhailiuk
- Enamine Ltd Winston Churchill st. 78 02094 Kyiv Ukraine www.mykhailiukchem.org
| |
Collapse
|
30
|
Wang CL, Wang J, Jin JK, Li B, Phang YL, Zhang FL, Ye T, Xia HM, Hui LW, Su JH, Fu Y, Wang YF. Boryl radical catalysis enables asymmetric radical cycloisomerization reactions. Science 2023; 382:1056-1065. [PMID: 38033072 DOI: 10.1126/science.adg1322] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 10/25/2023] [Indexed: 12/02/2023]
Abstract
The development of functionally distinct catalysts for enantioselective synthesis is a prominent yet challenging goal of synthetic chemistry. In this work, we report a family of chiral N-heterocyclic carbene (NHC)-ligated boryl radicals as catalysts that enable catalytic asymmetric radical cycloisomerization reactions. The radical catalysts can be generated from easily prepared NHC-borane complexes, and the broad availability of the chiral NHC component provides substantial benefits for stereochemical control. Mechanistic studies support a catalytic cycle comprising a sequence of boryl radical addition, hydrogen atom transfer, cyclization, and elimination of the boryl radical catalyst, wherein the chiral NHC subunit determines the enantioselectivity of the radical cyclization. This catalysis allows asymmetric construction of valuable chiral heterocyclic products from simple starting materials.
Collapse
Affiliation(s)
- Chang-Ling Wang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jie Wang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Kang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Li
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yee Lin Phang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Feng-Lian Zhang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tian Ye
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui-Min Xia
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li-Wen Hui
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ji-Hu Su
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Feng Wang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Ni D, Hu S, Tan X, Yu Y, Li Z, Deng L. Intermolecular Formal Cycloaddition of Indoles with Bicyclo[1.1.0]butanes by Lewis Acid Catalysis. Angew Chem Int Ed Engl 2023; 62:e202308606. [PMID: 37583090 DOI: 10.1002/anie.202308606] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Herein, we develop a new approach to directly access architecturally complex polycyclic indolines from readily available indoles and bicyclo[1.1.0]butanes (BCBs) through formal cycloaddition promoted by commercially available Lewis acids. The reaction proceeded through a stepwise pathway involving a nucleophilic addition of indoles to BCBs followed by an intramolecular Mannich reaction to form rigid indoline-fused polycyclic structures, which resemble polycyclic indole alkaloids. This new reaction tolerated a wide range of indoles and BCBs, thereby allowing the one-step construction of various rigid indoline polycycles containing up to four contiguous quaternary carbon centers.
Collapse
Affiliation(s)
- Dongshun Ni
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Sai Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Xiangyu Tan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yang Yu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Zhenghua Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Li Deng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
32
|
Tang L, Xiao Y, Wu F, Zhou JL, Xu TT, Feng JJ. Silver-Catalyzed Dearomative [2π+2σ] Cycloadditions of Indoles with Bicyclobutanes: Access to Indoline Fused Bicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202310066. [PMID: 37822277 DOI: 10.1002/anie.202310066] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Bicyclo[2.1.1]hexanes (BCHs) are becoming ever more important in drug design and development as bridged scaffolds that provide underexplored chemical space, but are difficult to access. Here a silver-catalyzed dearomative [2π+2σ] cycloaddition strategy for the synthesis of indoline fused BCHs from N-unprotected indoles and bicyclobutane precursors is described. The strain-release dearomative cycloaddition operates under mild conditions, tolerating a wide range of functional groups. It is capable of forming BCHs with up to four contiguous quaternary carbon centers, achieving yields of up to 99 %. In addition, a scale-up experiment and the synthetic transformations of the cycloadducts further highlighted the synthetic utility.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
33
|
Xiao Y, Xu TT, Zhou JL, Wu F, Tang L, Liu RY, Wu WB, Feng JJ. Photochemical α-selective radical ring-opening reactions of 1,3-disubstituted acyl bicyclobutanes with alkyl halides: modular access to functionalized cyclobutenes. Chem Sci 2023; 14:13060-13066. [PMID: 38023515 PMCID: PMC10664698 DOI: 10.1039/d3sc04457b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Although ring-opening reactions of bicyclobutanes bearing electron-withdrawing groups, typically with β-selectivity, have evolved as a powerful platform for synthesis of cyclobutanes, their application in the synthesis of cyclobutenes remains underdeveloped. Here, a novel visible light induced α-selective radical ring-opening reaction of 1,3-disubstituted acyl bicyclobutanes with alkyl radical precursors for the synthesis of functionalized cyclobutenes is described. In particular, primary, secondary, and tertiary alkyl halides are all suitable substrates for this photocatalytic transformation, providing ready access to cyclobutenes with a single all-carbon quaternary center, or with two contiguous centers under mild reaction conditions.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ruo-Yi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
34
|
Nguyen TVT, Bossonnet A, Wodrich MD, Waser J. Photocatalyzed [2σ + 2σ] and [2σ + 2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5- or 6-Membered Carbocycles. J Am Chem Soc 2023; 145:25411-25421. [PMID: 37934629 DOI: 10.1021/jacs.3c09789] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + 2σ] and [2σ + 2π] annulation with either alkenes/alkynes or bicyclo[1.1.0]butanes, yielding cyclopent-anes/-enes and bicyclo[3.1.1]heptanes (BCHs), respectively. BCHs are promising bioisosteres for 1,2,4,5 tetra-substituted aromatic rings. Mechanistic studies, including density functional theory computation and a trapping experiment with DMPO, support a 1,3-biradical generated from cyclopropane as a key intermediate for these transformations.
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| |
Collapse
|
35
|
Kim S, Jo J, Lee S, Chung WJ. Stereochemical modulation of ketyl radical cyclization enabled by pyridine-boryl radicals: catalytic diastereoselective synthesis of trans-2-alkyl-1-indanols. Chem Commun (Camb) 2023; 59:11983-11986. [PMID: 37727049 DOI: 10.1039/d3cc02248j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Previously available ketyl radical cyclization conditions suffer from low and uncontrollable diastereoselectivity because of the absence of reagent-substrate interactions. In this report, stereochemical modulation was accomplished by taking advantage of the pyridine-boryl radical, which leaves the synthetically modifiable boronate moiety on the carbonyl oxygen near the reacting center during the stereo-determining cyclization step. In consequence, a catalytic diastereoselective synthesis of trans-2-substituted-1-indanols was achieved in the presence of a sterically congested six-membered diboronic ester and an efficient hydrogen atom donor.
Collapse
Affiliation(s)
- Somi Kim
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Junhyuk Jo
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| | - Sunggi Lee
- Department of Physics and Chemistry, DGIST, 333 Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Won-Jin Chung
- Department of Chemistry, GIST, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
36
|
Dibchak D, Snisarenko M, Mishuk A, Shablykin O, Bortnichuk L, Klymenko-Ulianov O, Kheylik Y, Sadkova IV, Rzepa HS, Mykhailiuk PK. General Synthesis of 3-Azabicyclo[3.1.1]heptanes and Evaluation of Their Properties as Saturated Isosteres. Angew Chem Int Ed Engl 2023; 62:e202304246. [PMID: 37232421 DOI: 10.1002/anie.202304246] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 05/27/2023]
Abstract
A general approach to 3-azabicyclo[3.1.1]heptanes by reduction of spirocyclic oxetanyl nitriles was developed. The mechanism, scope, and scalability of this transformation were studied. The core was incorporated into the structure of the antihistamine drug Rupatidine instead of the pyridine ring, which led to a dramatic improvement in physicochemical properties.
Collapse
Affiliation(s)
| | | | - Artem Mishuk
- Enamine Ltd., Chervonotkatska 60, 02094, Kyiv, Ukraine
| | - Oleh Shablykin
- Enamine Ltd., Chervonotkatska 60, 02094, Kyiv, Ukraine
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Akademika Kukharya, 1, 02094, Kyiv, Ukraine
| | | | | | | | | | - Henry S Rzepa
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, 82 Wood Lane, London, W12 0BZ, UK
| | | |
Collapse
|
37
|
Tang L, Huang QN, Wu F, Xiao Y, Zhou JL, Xu TT, Wu WB, Qu S, Feng JJ. C(sp 2)-H cyclobutylation of hydroxyarenes enabled by silver-π-acid catalysis: diastereocontrolled synthesis of 1,3-difunctionalized cyclobutanes. Chem Sci 2023; 14:9696-9703. [PMID: 37736637 PMCID: PMC10510764 DOI: 10.1039/d3sc03258b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Ring-opening of bicyclo[1.1.0]butanes (BCBs) is emerging as a powerful strategy for 1,3-difunctionalized cyclobutane synthesis. However, reported radical strain-release reactions are typically plagued with diastereoselectivity issues. Herein, an atom-economic protocol for the highly chemo- and diastereoselective polar strain-release ring-opening of BCBs with hydroxyarenes catalyzed by a π-acid catalyst AgBF4 has been developed. The use of readily available starting materials, low catalyst loading, high selectivity (up to >98 : 2 d.r.), a broad substrate scope, ease of scale-up, and versatile functionalizations of the cyclobutane products make this approach very attractive for the synthesis of 1,1,3-trisubstituted cyclobutanes. Moreover, control experiments and theoretical calculations were performed to illustrate the reaction mechanism and selectivity.
Collapse
Affiliation(s)
- Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Qi-Nan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Shuanglin Qu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
38
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
39
|
Radhoff N, Daniliuc CG, Studer A. Lewis Acid Catalyzed Formal (3+2)-Cycloaddition of Bicyclo[1.1.0]butanes with Ketenes. Angew Chem Int Ed Engl 2023; 62:e202304771. [PMID: 37166141 DOI: 10.1002/anie.202304771] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/12/2023]
Abstract
Design, synthesis and application of benzene bioisosteres have attracted a lot of attention in the past 20 years. Recently, bicyclo[2.1.1]hexanes have emerged as highly attractive bioisosteres for ortho- and meta-substituted benzenes. Herein we report a mild, scalable and transition-metal-free protocol for the construction of highly substituted bicyclo[2.1.1]hexan-2-ones through Lewis acid catalyzed (3+2)-cycloaddition of bicyclo[1.1.0]-butane ketones with disubstituted ketenes. The reaction shows high functional group tolerance as documented by the successful preparation of various 3-alkyl-3-aryl as well as 3,3-bisalkyl bicyclo[2.1.1]hexan-2-ones (26 examples, up to 89 % yield). Postfunctionalization of the exocyclic ketone moiety is also demonstrated.
Collapse
Affiliation(s)
- Niklas Radhoff
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
40
|
Liang Y, Paulus F, Daniliuc CG, Glorius F. Catalytic Formal [2π+2σ] Cycloaddition of Aldehydes with Bicyclobutanes: Expedient Access to Polysubstituted 2-Oxabicyclo[2.1.1]hexanes. Angew Chem Int Ed Engl 2023; 62:e202305043. [PMID: 37307521 DOI: 10.1002/anie.202305043] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
Synthesis of bicyclic scaffolds has attracted tremendous attention because they are playing an important role as saturated bioisosteres of benzenoids in modern drug discovery. Here, we report a BF3 -catalyzed [2π+2σ] cycloaddition of aldehydes with bicyclo[1.1.0]butanes (BCBs) to access polysubstituted 2-oxabicyclo[2.1.1]hexanes. A new kind of BCB containing an acyl pyrazole group was invented, which not only significantly facilitates the reactions, but can also serve as a handle for diverse downstream transformations. Furthermore, aryl and vinyl epoxides can also be utilized as substrates which undergo cycloaddition with BCBs after in situ rearrangement to aldehydes. We anticipate that our results will promote access to challenging sp3 -rich bicyclic frameworks and the exploration of BCB-based cycloaddition chemistry.
Collapse
Affiliation(s)
- Yujie Liang
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Fritz Paulus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
41
|
Smith E, Jones KD, O'Brien L, Argent SP, Salome C, Lefebvre Q, Valery A, Böcü M, Newton GN, Lam HW. Silver(I)-Catalyzed Synthesis of Cuneanes from Cubanes and their Investigation as Isosteres. J Am Chem Soc 2023. [PMID: 37478562 PMCID: PMC10401713 DOI: 10.1021/jacs.3c03207] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Bridged or caged polycyclic hydrocarbons have rigid structures that project substituents into precise regions of 3D space, making them attractive as linking groups in materials science and as building blocks for medicinal chemistry. The efficient synthesis of new or underexplored classes of such compounds is, therefore, an important objective. Herein, we describe the silver(I)-catalyzed rearrangement of 1,4-disubstituted cubanes to cuneanes, which are strained hydrocarbons that have not received much attention since they were first described in 1970. The synthesis of 2,6-disubstituted or 1,3-disubstituted cuneanes can be achieved with high regioselectivities, with the regioselectivity being dependent on the electronic character of the cubane substituents. A preliminary assessment of cuneanes as scaffolds for medicinal chemistry suggests cuneanes could serve as isosteric replacements of trans-1,4-disubstituted cyclohexanes and 1,3-disubstituted benzenes. An analogue of the anticancer drug sonidegib was synthesized, in which the 1,2,3-trisubstituted benzene was replaced with a 1,3-disubstituted cuneane.
Collapse
Affiliation(s)
- Elliot Smith
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Kieran D Jones
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Luke O'Brien
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | | | | | | - Mina Böcü
- SpiroChem AG, 4058 Basel, Switzerland
| | - Graham N Newton
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Hon Wai Lam
- The GlaxoSmithKline Carbon Neutral Laboratories for Sustainable Chemistry, University of Nottingham, Jubilee Campus, Triumph Road, Nottingham, NG7 2TU, United Kingdom
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
42
|
Yu T, Yang J, Wang Z, Ding Z, Xu M, Wen J, Xu L, Li P. Selective [2σ + 2σ] Cycloaddition Enabled by Boronyl Radical Catalysis: Synthesis of Highly Substituted Bicyclo[3.1.1]heptanes. J Am Chem Soc 2023; 145:4304-4310. [PMID: 36763965 DOI: 10.1021/jacs.2c13740] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In contrast to the traditional and widely-used cycloaddition reactions involving at least a π bond component, a [2σ + 2σ] radical cycloaddition between bicyclo[1.1.0]butanes (BCBs) and cyclopropyl ketones has been developed to provide a modular, concise, and atom-economical synthetic route to substituted bicyclo[3.1.1]heptane (BCH) derivatives that are 3D bioisosteres of benzenes and core skeleton of a number of terpene natural products. The reaction was catalyzed by a combination of simple tetraalkoxydiboron(4) compound B2pin2 and 3-pentyl isonicotinate. The broad substrate scope has been demonstrated by synthesizing a series of new highly functionalized BCHs with up to six substituents on the core with up to 99% isolated yield. Computational mechanistic investigations supported a pyridine-assisted boronyl radical catalytic cycle.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jinbo Yang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhijun Wang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Zhengwei Ding
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ming Xu
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jingru Wen
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
| | - Pengfei Li
- Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710054, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|