1
|
Zhang RR, Ran XY, Yu KK, Zhao Y, Zhang LN, Lv XF, Zhang H, Yu XQ, Li K. Rational Design of NIR-II Fluorescence/Photoacoustic Nanosensor Tailored for Mechanisms of Diabetes-Related Breast Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415891. [PMID: 39757524 DOI: 10.1002/adma.202415891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/12/2024] [Indexed: 01/07/2025]
Abstract
Breast cancer (BC) is the second most common cause of cancer induced death worldwide. Current statistics has disclosed that the diabetic BC patients have significantly worse survival rate compared with nondiabetic BC patients. However, the specific mechanism is still being explored. Herein, a novel NIR-II nanosensor DNPS for nitric oxide (NO) with fluorescence/photoacoustic (FL/PA) imaging capability is developed to explore the mechanism by which diabetes promoting breast cancer progression. In diabetic BC model, DNPS exhibits great advantages of low intrinsic background, high sensitivity, and deep tissue penetration and successfully confirmed the expression level of NO is higher than BC model, indicating that diabetes causes elevated nitric oxide levels in the tumor microenvironment. RNA-seq analysis results show that hyperglycemia caused by diabetes leads to weakened immune response and initiates the transcription and translation of the inducible nitric oxide synthase (iNOS) gene to produce NO. Besides, the increased expression of carcinogens related to Nitric oxide synthase 2 (Nos2), such as Spp1, Mmp11, and Kitl, causes breast cancer to develop more rapidly. Here, NIR-II imaging probe is applied first to study diabetes-related breast cancer and certain reference value is provided for subsequent research on the mechanism of diabetes promoting the progression of breast cancer.
Collapse
Affiliation(s)
- Rui-Rui Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Kang-Kang Yu
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yu Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiao-Fang Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hong Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiao-Qi Yu
- Department of Chemistry, Xihua University, Chengdu, 610039, P. R. China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Zan Q, Fan L, Lu W, Zhang Y, Huang Y, Yu X, Han Y, Zhang R, Dong C, Shuang S. Early Diagnosis of Liver Injury and Real-Time Evaluation of Photothermal Therapy Efficacy with a Viscosity-Responsive NIR-II Smart Molecule. Adv Healthc Mater 2025; 14:e2402614. [PMID: 39440592 DOI: 10.1002/adhm.202402614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The early diagnosis of liver injury and in situ real-time monitoring of tumor therapy efficacy are important for the enhancement of personalized precision therapy but remain challenging due to the lack of reliable in vivo visualization tools with integrated diagnostic, therapeutic, and efficacy monitoring functions. Herein, a smart second near-infrared window (NIR-II) molecule (BITX-OH) is rationally designed for diagnosis and therapy by vinyl-bridging hydroxyl diphenyl xanthine unit and benzo[cd]indolium skeleton. BITX-OH exhibits high selectivity and sensitivity toward viscosity, exhibiting a significant enhancement (1167-fold) in NIR-II fluorescence at 962 nm. With the assistance of BITX-OH and NIR-II fluorescence imaging, early diagnosis and therapeutic evaluation of non-alcoholic fatty liver (NAFL), as well as in-site real-time monitoring of hepatic fibrosis (HF) in live mice have been successfully achieved, which is at least several hours earlier than the typical clinical test. Notably, BITX-OH displays excellent photothermal conversion efficiency when exposed to an 808 nm laser, which can induce tumor ablation and increase viscosity, thereby enhancing NIR-II fluorescence for the real-time evaluation of photothermal therapy (PTT). This viscosity-based "self-monitoring" strategy provides a convenient and reliable platform for timely obtaining therapeutic feedback to avoid over- or under-treatment, thus enabling personalized precision therapy.
Collapse
Affiliation(s)
- Qi Zan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Li Fan
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yunong Huang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Xue Yu
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, 132022, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan, 030032, China
| | - Ruiping Zhang
- Shanxi Provincial People's Hospital, Taiyuan, 030001, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
3
|
Ding Q, Wang Y, Zhang P, Mei L. Breakthrough in cancer therapy: lutetium texaphyrin-celecoxib conjugate for immune and photodynamic treatment. J Mater Chem B 2024; 12:12136-12138. [PMID: 39503504 DOI: 10.1039/d4tb02019g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Immuno-photodynamic therapy (IPDT) has become a promising approach for cancer treatment. Innovative photosensitizers are essential to fully realize the potential of IPDT, specifically the complete elimination of tumors without recurrence. In this context, Jong Seung Kim et al. introduce a small molecule photosensitizer conjugate, LuCXB. This IPDT agent combines a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous solutions, the two components of LuCXB self-associate through inferred donor-acceptor interactions. As a result of this intramolecular association, LuCXB generates superoxide radicals (O2-˙) via a type I photodynamic pathway upon irradiation with 730 nm light. This serves as a primary defense against the tumor and enhances the IPDT effect. For in vivo applications, they developed a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) aimed at targeting cancer stem cells. Ex-apt@LuCXB demonstrated excellent photosensitivity, satisfactory biocompatibility, and strong tumor-targeting capabilities. Under photoirradiation, Ex-apt@LuCXB amplifies IPDT and produces significant antitumor effects in liver and breast cancer mouse models. The therapeutic outcomes are attributed to a synergistic mechanism that combines antiangiogenesis with photoinduced cancer immunotherapy.
Collapse
Affiliation(s)
- Qihang Ding
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yue Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Labora-tory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Labora-tory of Biomedical Imaging Science and System, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Ling Mei
- Engineering Research Center for Pharmaceuticals and Equipments of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
4
|
Zhang X, Liu M, Hu Y, Wang X, Wei R, Yao C, Shi C, Qiu Y, Yang T, Luo X, Chen J, Sun W, Chen H, Qian X, Yang Y. Albumin-Chaperoned Deep-NIR Triarylmethane Dyes for High-Contrast In Vivo Imaging and Photothermal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411515. [PMID: 39520340 DOI: 10.1002/adma.202411515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Fluorophores absorbing/emitting in the deep near-infrared (deep NIR) spectral region, that is, 800 nm and beyond, hold great promise for in vivo bioimaging, diagnosis, and phototherapy due to deeper tissue penetration. The bottleneck is the lack of bright, stable, and readily synthesized deep NIR fluorophores. Here, it is reported that the albumin-chaperon strategy is a viable one-for-all strategy to address these difficulties. A focused library of deep-NIR absorbing dyes (EA5) is easily synthesized via a two-step cascade. They are neither very stable nor bright in phosphate buffer due to a propeller-type flexible scaffold. Through screening, EA5_c3 is found to exhibit a high affinity toward bovine serum albumin (BSA). Binding-associated structural rigidification resulted in a gigantic 26-fold fluorescence enhancement. The albumin chaperone also greatly improved the stability of EA5_c3 by shielding the bisbenzannulated triarylmethane core from nucleophilic or oxidative species. The resulting EA5_c3@BSA exhibits high biocompatibility. It offered high-resolution vasculature, lymph systems, tumors, and other tissue imaging with its bright deep NIR emission. At the same time, it exhibits prominent potential in photoacoustic imaging and photothermal treatment of subcutaneous and orthotopic breast tumors. These findings provide insights into robust and high-performance fluorophores with deep NIR regions for theranostic against aggressive cancers.
Collapse
Affiliation(s)
- Xiaodong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yingqi Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Xueli Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Ruwei Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Yao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cunjian Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yangting Qiu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xiao Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jinquan Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Youjun Yang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Zhang Y, Liu D, Chen W, Tao Y, Li W, Qi J. Microenvironment-Activatable Probe for Precise NIR-II Monitoring and Synergistic Immunotherapy in Rheumatoid Arthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409661. [PMID: 39370578 DOI: 10.1002/adma.202409661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Rheumatoid arthritis (RA) represents an insidious autoimmune inflammatory disorder that severely lowers the life quality by progressively destructing joint functions and eventually causing permanent disability, posing a serious public health problem. Here, an advanced theranostic probe is introduced that integrates activatable second near-infrared (NIR-II) fluorescence imaging for precise RA diagnosis with multi-pronged RA treatments. A novel molecular probe comprising a long-wavelength aggregation-induced emission unit and a manganese carbonyl cage motif is synthesized, which enables NIR-II fluorescence activation and concurrently releasing therapeutic carbon monoxide (CO) gas in inflamed joint microenvironment. This molecular probe self-assembles into a biocompatible nanoprobe, which is subsequently conjugated with anti-IL-6R antibody to afford active-targeting ability of RA. The nanoprobe exhibits significant turn-on NIR-II fluorescence signal at the RA lesion, enabling highly sensitive RA diagnosis and real-time therapeutic monitoring. The combination of ROS scavenging, on-demand CO gas release, and IL-6 signaling blockade results in potent therapeutic effect and synergistic immunomodulation impact, significantly alleviating the RA symptoms and preventing joint destruction. This research introduces a novel paradigm for the development of high-performance, activatable theranostic strategies to facilitate precise detection and enhanced treatment of RA-related diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dongfang Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenwen Chen
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yongyou Tao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
6
|
Guo J, Zhu Y, Qu Y, Zhang L, Fang M, Xu Z, Wang T, Qin Y, Xu Y, Li Y, Chen Y, Fu H, Liu X, Liu Y, Liu C, Gao Y, Cui M, Zhou K. Structure Tailoring of Hemicyanine Dyes for In Vivo Shortwave Infrared Imaging. J Med Chem 2024; 67:16820-16834. [PMID: 39237317 DOI: 10.1021/acs.jmedchem.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
In vivo bioimaging using shortwave infrared (SWIR) (1000-2000 nm) molecular dyes enables deeper penetration and higher contrast compared to visible and near-infrared-I (NIR-I, 700-900 nm) dyes. Developing new SWIR molecules is still quite challenging. This study developed SRHCYs, a panel of fluorescent dyes based on hemicyanine, with adjustable absorbance (830-1144 nm) and emission (886-1217 nm) wavelength. The photophysical attributes of these dyes are precisely tailored by strengthening the donor parts and extending polymethine chains. SRHCY-3, with its clickable azido group, was chosen for high-performance imaging of blood vessels in living mice, enabling the precise detection of brain and lung cancer. The combination of these probes achieved in vivo multicolor imaging with negligible optical crosstalk. This report presents a series of SWIR hemicyanine dyes with promising spectroscopic properties for high-contrast bioimaging and multiplexing detection.
Collapse
Affiliation(s)
- Jiaming Guo
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yiling Zhu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yuqian Qu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Zihan Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Tianbao Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yufei Qin
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yihan Xu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiayu Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yajun Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Cheng Liu
- Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, California 94305, United States
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Mengchao Cui
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Kaixiang Zhou
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
7
|
Wang B, Zhou H, Chen L, Ding Y, Zhang X, Chen H, Liu H, Li P, Chen Y, Yin C, Fan Q. A Mitochondria-Targeted Photosensitizer for Combined Pyroptosis and Apoptosis with NIR-II Imaging/Photoacoustic Imaging-Guided Phototherapy. Angew Chem Int Ed Engl 2024; 63:e202408874. [PMID: 38972844 DOI: 10.1002/anie.202408874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Overcoming tumor apoptosis resistance is a major challenge in enhancing cancer therapy. Pyroptosis, a lytic form of programmed cell death (PCD) involving inflammasomes, Gasdermin family proteins, and cysteine proteases, offers potential in cancer treatment. While photodynamic therapy (PDT) can induce pyroptosis by generating reactive oxygen species (ROS) through the activation of photosensitizers (PSs), many PSs lack specific subcellular targets and are limited to the first near-infrared window, potentially reducing treatment effectiveness. Therefore, developing effective, deep-penetrating, organelle-targeted pyroptosis-mediated phototherapy is essential for cancer treatment strategies. Here, we synthesized four molecules with varying benzene ring numbers in thiopyrylium structures to preliminarily explore their photodynamic properties. The near-infrared-II (NIR-II) PS Z1, with a higher benzene ring count, exhibited superior ROS generation and mitochondria-targeting abilities, and a large Stokes shift. Through nano-precipitation method, Z1 nanoparticles (NPs) also demonstrated high ROS generation (especially type-I ROS) upon 808 nm laser irradiation, leading to efficient mitochondria dysfunction and combined pyroptosis and apoptosis. Moreover, they exhibited exceptional tumor-targeting ability via NIR-II fluorescence imaging (NIR-II FI) and photoacoustic imaging (PAI). Furthermore, Z1 NPs-mediated phototherapy effectively inhibited tumor growth with minimal adverse effects. Our findings offer a promising strategy for cancer therapy, warranting further preclinical investigations in PDT.
Collapse
Affiliation(s)
- Ben Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yancheng Ding
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinyue Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Huiyu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Hanyu Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ying Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chao Yin
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
8
|
Zhou D, Zhang G, Li J, Zhuang Z, Shen P, Fu X, Wang L, Qian J, Qin A, Tang BZ. Near-Infrared II Agent with Excellent Overall Performance for Imaging-Guided Photothermal Thrombolysis. ACS NANO 2024; 18:25144-25154. [PMID: 39190833 DOI: 10.1021/acsnano.4c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Near-infrared II (NIR-II) imaging and photothermal therapy hold tremendous potential in precision diagnosis and treatment within biological organisms. However, a significant challenge is the shortage of NIR-II fluorescent probes with both high photothermal conversion coefficient (PCE) and fluorescence quantum yield (ΦF). Herein, we address this issue by integrating a large conjugated electron-withdrawing core, multiple rotors, and multiple alkyl chains into a molecule to successfully generate a NIR-II agent 4THTPB with excellent PCE (87.6%) and high ΦF (3.2%). 4THTPB shows a maximum emission peak at 1058 nm, and the emission tail could extend to as long as 1700 nm. These characteristics make its nanoparticles (NPs) perform well in NIR-II high-resolution angiography, thereby allowing for precise diagnosis of thrombus through NIR-II imaging and enabling efficient photothermal thrombolysis. This work not only furnishes a NIR-II agent with excellent overall performance but also provides valuable guidance for the design of high-performance NIR-II agents.
Collapse
Affiliation(s)
- Daming Zhou
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jiayi Li
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Lirong Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Centre for Optical and Electromagnetic Research, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, AIE Institute, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Hong Kong Branch of the Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
9
|
Chen H, Zhou H, Zhang X, Ding Y, Zhang X, Xu Q, Wang B, Yin C, Fan Q. A novel NIR-II fluorescent probe for hydrogen peroxide detection in drug-induced liver injury. Chem Commun (Camb) 2024; 60:9618-9621. [PMID: 39150158 DOI: 10.1039/d4cc03512g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The synthesis of H2O2-activatable small molecules in the second near-infrared (NIR-II) window remains challenging. We present the NIR-II probe Z-1065 for real-time detection of H2O2. Z-1065 demonstrates high sensitivity and selectivity towards H2O2in vitro and effectively monitors H2O2 generation in drug-induced liver injury (DILI) mouse models.
Collapse
Affiliation(s)
- Huiyu Chen
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Hui Zhou
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Xinyue Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Yancheng Ding
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Xiaolong Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Qinqin Xu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Ben Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Chao Yin
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), School of Materials Science and Engineering, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Gong J, Wang X, Zhang W, Wu Y, Li K, Sha R, Liu L, Li C, Feng L, Jiang G, Wang J, Tang BZ. Sulfur oxidation states manipulate excited state electronic configurations for constructing highly efficient organic type I photosensitizers. Chem Sci 2024; 15:13001-13010. [PMID: 39148804 PMCID: PMC11322962 DOI: 10.1039/d4sc03039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs. Combined with the experimental results and theoretical calculations, we have successfully revealed the decisive role of high sulfur oxidation states in promoting ROS production capacity. Impressively, a higher sulfur oxidation state can reduce the singlet-triplet energy gap (ΔE ST), increase the matching degree of transition configurations, promote the changes of the excited state electronic configurations, and boost the effective ISC proportion by enhancing intramolecular interactions. Therefore, DBTS2O with the highest sulfur oxidation state exhibits the strongest type I ROS generation ability. Additionally, guided by our strategy, a water-soluble PS (2OA) is designed and synthesized, showing selective imaging capacity and photokilling ability against Gram-positive bacteria. This study broadens the horizons for both molecular design and mechanism study of high-performance organic type I PSs.
Collapse
Affiliation(s)
- Jianye Gong
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Xiaopeng Wang
- Xi'an Modern Chemistry Research Institute Xi'an 710069 P. R. China
| | - Weijing Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Yifan Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Kai Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Renmanduhu Sha
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lingxiu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Chunbin Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lina Feng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Guoyu Jiang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianguo Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
11
|
Lu F, Li L, Zhang M, Yu C, Pan Y, Cheng F, Hu W, Lu X, Wang Q, Fan Q. Confined semiconducting polymers with boosted NIR light-triggered H 2O 2 production for hypoxia-tolerant persistent photodynamic therapy. Chem Sci 2024; 15:12086-12097. [PMID: 39092116 PMCID: PMC11290442 DOI: 10.1039/d4sc01609b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/11/2024] [Indexed: 08/04/2024] Open
Abstract
Hypoxia featured in malignant tumors and the short lifespan of photo-induced reactive oxygen species (ROS) are two major issues that limit the efficiency of photodynamic therapy (PDT) in oncotherapy. Developing efficient type-I photosensitizers with long-term ˙OH generation ability provides a possible solution. Herein, a semiconducting polymer-based photosensitizer PCPDTBT was found to generate 1O2, ˙OH, and H2O2 through type-I/II PDT paths. After encapsulation within a mesoporous silica matrix, the NIR-II fluorescence and ROS generation are enhanced by 3-4 times compared with the traditional phase transfer method, which can be attributed to the excited-state lifetime being prolonged by one order of magnitude, resulting from restricted nonradiative decay channels, as confirmed by femtosecond spectroscopy. Notably, H2O2 production reaches 15.8 μM min-1 under a 730 nm laser (80 mW cm-2). Further adsorption of Fe2+ ions on mesoporous silica not only improves the loading capacity of the chemotherapy drug doxorubicin but also triggers a Fenton reaction with photo-generated H2O2 in situ to produce ˙OH continuously after the termination of laser irradiation. Thus, semiconducting polymer-based nanocomposites enables NIR-II fluorescence imaging guided persistent PDT under hypoxic conditions. This work provides a promising paradigm to fabricate persistent photodynamic therapy platforms for hypoxia-tolerant phototheranostics.
Collapse
Affiliation(s)
- Feng Lu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Lili Li
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Meng Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Chengwu Yu
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Yonghui Pan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Fangfang Cheng
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Wenbo Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University Xi'an 710072 China
| | - Xiaomei Lu
- Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University Nanjing 211816 China
- Zhengzhou Institute of Biomedical Engineering and Technology Zhengzhou 450001 China
| | - Qi Wang
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| |
Collapse
|
12
|
Gao J, Yu K, Luo Q, Deng M, Hou X, Wang W, Zeng X, Xiong X, He Y, Hong X, Xiao Y. Near-Infrared II Fluorescence Imaging and Image-Guided siRNA Therapy of Atherosclerosis. J Med Chem 2024; 67:12428-12438. [PMID: 38996002 DOI: 10.1021/acs.jmedchem.4c01208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Targeting Ca2+/calmodulin-dependent protein kinase γ (CaMKIIγ) in macrophages using RNAi nanotechnology represents an innovative and promising strategy in the diagnosis and treatment of atherosclerosis. Nevertheless, it remains elusive because of the current challenges associated with the systemic delivery of siRNA nanoparticle (NP) to atheromatous plaques and the complexity of atherosclerotic plaques. Here, we demonstrate the potential of a thienothiadiazole-based near-infrared-II (NIR-II) organic aggregation-induced emission (AIE) platform encapsulated with the Camk2g siRNA to effectively target CaMKIIγ in macrophages for dynamic imaging and image-guided gene therapy of atherosclerosis. The nanoparticles effectively decreased CaMKIIγ expression and increased the expression of the efferocytosis receptor MerTK in plaque macrophages, leading to a reduction in the necrotic core area of the lesion in an aortic plaque model. Our theranostic approach highlights the substantial promise of near-infrared II (NIR-II) AIEgens for imaging and image-guided therapy of atherosclerosis.
Collapse
Affiliation(s)
- Jialu Gao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Kai Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Qiusi Luo
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Mingbo Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaowen Hou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Wumei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Xiaodong Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yong He
- Department of Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Xuechuan Hong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Key Laboratory of Virology and Biosafety (CAS), Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Yuling Xiao
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
13
|
Wang X, Yang X, Jiang G, Hu Z, Liao T, Wang G, Zhang X, He X, Zhang J, Zhang J, Cao W, Zhang K, Lam JWY, Sun J, Sun H, Liang Y, Tang BZ. Unlocking the NIR-II AIEgen for High Brightness through Intramolecular Electrostatic Locking. Angew Chem Int Ed Engl 2024; 63:e202404142. [PMID: 38715431 DOI: 10.1002/anie.202404142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 06/15/2024]
Abstract
Fluorescent imaging and biosensing in the near-infrared-II (NIR-II) window holds great promise for non-invasive, radiation-free, and rapid-response clinical diagnosis. However, it's still challenging to develop bright NIR-II fluorophores. In this study, we report a new strategy to enhance the brightness of NIR-II aggregation-induced emission (AIE) fluorophores through intramolecular electrostatic locking. By introducing sulfur atoms into the side chains of the thiophene bridge in TSEH molecule, the molecular motion of the conjugated backbone can be locked through intramolecular interactions between the sulfur and nitrogen atoms. This leads to enhanced NIR-II fluorescent emission of TSEH in both solution and aggregation states. Notably, the encapsulated nanoparticles (NPs) of TSEH show enhanced brightness, which is 2.6-fold higher than TEH NPs with alkyl side chains. The in vivo experiments reveal the feasibility of TSEH NPs in vascular and tumor imaging with a high signal-to-background ratio and precise resection for tiny tumors. In addition, polystyrene nanospheres encapsulated with TSEH are utilized for antigen detection in lateral flow assays, showing a signal-to-noise ratio 1.9-fold higher than the TEH counterpart in detecting low-concentration antigens. This work highlights the potential for developing bright NIR-II fluorophores through intramolecular electrostatic locking and their potential applications in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Printed Organic Electronic, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Xueqin Yang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Guanyu Jiang
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Tao Liao
- WWHS Biotech. Inc., Shenzhen, 518122, China
| | | | - Xun Zhang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Printed Organic Electronic, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyuan He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Jianquan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| | - Wuke Cao
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Printed Organic Electronic, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kaizhen Zhang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Printed Organic Electronic, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Jianwei Sun
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yongye Liang
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Printed Organic Electronic, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK-Shenzhen), Shenzhen, Guangdong, 518172, China
| |
Collapse
|
14
|
Zhu Y, Wu F, Zheng B, Yang Y, Yang J, Xiong H. Electron-Withdrawing Substituents Enhance the Type I PDT and NIR-II Fluorescence of BODIPY J Aggregates for Bioimaging and Cancer Therapy. NANO LETTERS 2024; 24:8287-8295. [PMID: 38941514 DOI: 10.1021/acs.nanolett.4c01339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Organic dyes with simultaneously boosted near-infrared-II (NIR-II) fluorescence, type I photodynamic therapy (PDT), and photothermal therapy (PTT) in the aggregate state are still elusive due to the unclear structure-function relationship. Herein, electron-withdrawing substituents are introduced at the 5-indolyl positions of BODIPY dyes to form tight J-aggregates for enhanced NIR-II fluorescence and type I PDT/PTT. The introduction of an electron-rich julolidine group at the meso position and an electron-withdrawing substituent (-F) at the indolyl moiety can enhance intermolecular charge transfer and the hydrogen bonding effect, contributing to the efficient generation of superoxide radicals in the aggregate state. The nanoparticles of BDP-F exhibit NIR-II fluorescence at 1000 nm, good superoxide radical generation ability, and a high photothermal conversion efficiency (50.9%), which enabled NIR-II fluorescence-guided vasculature/tumor imaging and additive PDT/PTT. This work provides a strategy for constructing phototheranostic agents with enhanced NIR-II fluorescence and type I PDT/PTT for broad biomedical applications.
Collapse
Affiliation(s)
- Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jieyu Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Liu H, Zhang X, Li X, Wu P. NIR-II-Absorbing TMB Derivative for 1064 nm-Excited Photothermal Immunoassay. Anal Chem 2024; 96:5633-5639. [PMID: 38529943 DOI: 10.1021/acs.analchem.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Materials exhibiting strong absorption in the NIR-II region are appealing for photothermal conversion-based imaging, diagnosis, and therapy, due to better thermal effect and decreased absorption of water in such a region. 3,3',5,5'-Tetramethylbenzidine (TMB), the typical substrate in ELISA, has been explored in photothermal immunoassay, since its oxidation product (oxTMB) is photothermally active in the NIR region. However, its absorption at 1064 nm (the most often used laser wavelength in photothermal studies) is not appreciable, thus limiting the assay sensitivity. Here, we proposed a derivative of TMB (3,3'-dimethoxy-5,5'-dimethylbenzidine, 2-OCH3) bearing higher NIR-II absorption for 1064 nm-excited photothermal immunoassay. Since electron-donating groups can help decrease the energy gap of molecules (here -CH3 → -OCH3), the oxidation product of 2-OCH3 exhibited substantially red-shifted absorption as compared with oxTMB, leading to a more than twofold higher absorption coefficient at 1064 nm. As a result, 2-OCH3 showed enhanced sensitivity over TMB in a photothermal immunoassay (PTIA), yielding a limit of detection (LOD) of 0.1 ng/mL for prostate-specific antigen (PSA). The feasibility of 2-OCH3-based PTIA for diagnosis was further validated by analyzing PSA in 61 serum samples. Considering its superior photothermal performance, 2-OCH3 can be explored for a broad range of photothermal applications.
Collapse
Affiliation(s)
- Henglin Liu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianming Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Peng Wu
- College of Chemistry, Sichuan University, Chengdu 610064, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
16
|
Hu X, Fang Z, Sun F, Zhu C, Jia M, Miao X, Huang L, Hu W, Fan Q, Yang Z, Huang W. Deciphering Oxygen-Independent Augmented Photodynamic Oncotherapy by Facilitating the Separation of Electron-Hole Pairs. Angew Chem Int Ed Engl 2024; 63:e202401036. [PMID: 38362791 DOI: 10.1002/anie.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Developing Type-I photosensitizers provides an attractive approach to solve the dilemma of inadequate efficacy of photodynamic therapy (PDT) caused by the inherent oxygen consumption of traditional Type-II PDT and anoxic tumor microenvironment. The challenge for the exploration of Type-I PSs is to facilitate the electron transfer ability of photosensitization molecules for transforming oxygen or H2O to reactive oxygen species (ROS). Herein, we propose an electronic acceptor-triggered photoinduced electron transfer (a-PET) strategy promoting the separation of electron-hole pairs by marriage of two organic semiconducting molecules of a non-fullerene scaffold-based photosensitizer and a perylene diimide that significantly boost the Type-I PDT pathway to produce plentiful ROS, especially, inducing 3.5-fold and 2.5-fold amplification of hydroxyl (OH⋅) and superoxide (O2 -⋅) generation. Systematic mechanism exploration reveals that intermolecular electron transfer and intramolecular charge separation after photoirradiation generate a competent production of radical ion pairs that promote the Type-I PDT process by theoretical calculation and ultrafast femtosecond transient absorption (fs-TA) spectroscopy. By complementary tumor diagnosis with photoacoustic imaging and second near-infrared fluorescence imaging, this as-prepared nanoplatform exhibits fabulous photocytotoxicity in harsh hypoxic conditions and terrific cancer revoked abilities in living mice. We envision that this work will broaden the insight into high-efficiency Type-I PDT for cancer phototheranostics.
Collapse
Affiliation(s)
- Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhuting Fang
- Department of Interventional Radiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China
| | - Fengwei Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Mingxuan Jia
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaofei Miao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wenbo Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
17
|
Wang Z, Zhou Y, Hao Y, Zhao Z, Gao A, Ma H, Zhang P, Shen Q, Xu R, Xu Y, Dang D, Meng L. One Stone, Two Birds: High-Brightness Aggregation-Induced Emission Photosensitizers for Super-Resolution Imaging and Photodynamic Therapy. NANO LETTERS 2024; 24:3005-3013. [PMID: 38416810 DOI: 10.1021/acs.nanolett.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Most aggregation-induced emission (AIE) luminogens exhibit high brightness, excellent photostability, and good biocompatibility, but these AIE-active agents, which kill two birds with one stone to result in applications in both stimulated emission depletion (STED) super-resolution imaging and photodynamic therapy (PDT), have not been reported yet but are urgently needed. To meet the requirements of STED nanoscopy and PDT, D-A-π-A-D type DTPABT-HP is designed by tuning conjugated π spacers. It exhibits red-shifted emission, high PLQY of 32.04%, and impressive 1O2 generation (9.24 fold compared to RB) in nanoparticles (NPs). Then, DTPABT-HP NPs are applied in cell imaging via STED nanoscopy, especially visualizing the dynamic changes of lysosomes in the PDT process at ultrahigh resolution. After that, in vivo PDT was also conducted by DTPABT-HP NPs, resulting in significantly inhibited tumor growth, with an inhibition rate of 86%. The work here is beneficial to the design of multifunctional agents and the deep understanding of their phototheranostic mechanism in biological research.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yu Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ying Hao
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Zhiqin Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Anran Gao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Qifei Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ruohan Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| |
Collapse
|
18
|
Lyu S, Lu S, Gui C, Guo C, Han J, Xiao Y, Zhang R, Hong X. A NIR-II Photoacoustic/NIR-IIa Fluorescent Probe for Targeted Imaging of Glioma under NIR-II Excitation. J Med Chem 2024; 67:1861-1871. [PMID: 38247270 DOI: 10.1021/acs.jmedchem.3c01515] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Fluorescence and photoacoustic (PA) imaging in the second near-infrared (NIR-II, 1000-1700 nm) window has garnered massive interest owing to high maximum permissible exposure of light, reduced autofluorescence, and improved deep penetration. However, active targeted NIR-II photoacoustic/NIR-IIa fluorescence imaging of glioma under NIR-II excitation has been seldom reported, which is partly ascribable to the lack of suitable materials. In this study, a small-molecule-based αvβ3-targeted NIR-II photoacoustic/NIR-IIa fluorescent probe IR-32p was generated and subsequently evaluated in U87MG tumor-bearing mice excited with NIR-I and NIR-II light. Exceptional dual-modal imaging properties such as good tumor uptake, high targeting specificity, and high tumor contrast were achieved in an orthotopic glioma model under 1020/1064 nm excitation, exhibiting a superior imaging depth of glioma through the skull. Our study introduces an outstanding dual-modal contrast agent with NIR-II absorption and confirms the superiority of NIR-II excitation over NIR-I in in vivo NIR-II/PA imaging.
Collapse
Affiliation(s)
- Shuxin Lyu
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Siyu Lu
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Conghao Gui
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| | - Chunyan Guo
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Juanjuan Han
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Yuling Xiao
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Ruiping Zhang
- The Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan 030032, China
| | - Xuechuan Hong
- Department of Cardiology, Clinic Trial Center, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
- Key Laboratory of Virology and Biosafety (CAS), Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
19
|
Mikhnovets IE, Holoubek J, Panina IS, Kotouček J, Gvozdev DA, Chumakov SP, Krasilnikov MS, Zhitlov MY, Gulyak EL, Chistov AA, Nikitin TD, Korshun VA, Efremov RG, Alferova VA, Růžek D, Eyer L, Ustinov AV. Alkyl Derivatives of Perylene Photosensitizing Antivirals: Towards Understanding the Influence of Lipophilicity. Int J Mol Sci 2023; 24:16483. [PMID: 38003673 PMCID: PMC10671050 DOI: 10.3390/ijms242216483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.
Collapse
Affiliation(s)
- Igor E. Mikhnovets
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Jiří Holoubek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Irina S. Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Jan Kotouček
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic;
| | - Daniil A. Gvozdev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-12, 119234 Moscow, Russia;
| | - Stepan P. Chumakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Maxim S. Krasilnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Mikhail Y. Zhitlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Evgeny L. Gulyak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Timofei D. Nikitin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| | - Daniel Růžek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Luděk Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Hudcova 296/70, CZ-621 00 Brno, Czech Republic (D.R.); (L.E.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 1160/31, CZ-370 05 České Budějovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (I.E.M.); (I.S.P.); (S.P.C.); (M.S.K.); (M.Y.Z.); (E.L.G.); (A.A.C.); (T.D.N.); (V.A.K.); (R.G.E.); (V.A.A.)
| |
Collapse
|
20
|
He S, Xie F, Su W, Luo H, Chen D, Cai J, Hong X. Anti-Inflammatory Salidroside Delivery from Chitin Hydrogels for NIR-II Image-Guided Therapy of Atopic Dermatitis. J Funct Biomater 2023; 14:jfb14030150. [PMID: 36976074 PMCID: PMC10058600 DOI: 10.3390/jfb14030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Atopic dermatitis (AD) is the most common heterogeneous skin disease. Currently, effective primary prevention approaches that hamper the occurrence of mild to moderate AD have not been reported. In this work, the quaternized β-chitin dextran (QCOD) hydrogel was adopted as a topical carrier system for topical and transdermal delivery of salidroside for the first time. The cumulative release value of salidroside reached ~82% after 72 h at pH 7.4, while in vitro drug release experiments proved that QCOD@Sal (QCOD@Salidroside) has a good, sustained release effect, and the effect of QCOD@Sal on atopic dermatitis mice was further investigated. QCOD@Sal could promote skin repair or AD by modulating inflammatory factors TNF-α and IL-6 without skin irritation. The present study also evaluated NIR-II image-guided therapy (NIR-II, 1000–1700 nm) of AD using QCOD@Sal. The treatment process of AD was monitored in real-time, and the extent of skin lesions and immune factors were correlated with the NIR-II fluorescence signals. These attractive results provide a new perspective for designing NIR-II probes for NIR-II imaging and image-guided therapy with QCOD@Sal.
Collapse
Affiliation(s)
- Shengnan He
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Fang Xie
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wuyue Su
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
| | - Haibin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry, Chemistry and Chemical Engineering College, Gannan Normal University, Ganzhou 341000, China
| | - Jie Cai
- Hubei Engineering Centre of Natural Polymers-Based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan 430072, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Correspondence: (J.C.); (X.H.)
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Medical College, Tibet University, Lhasa 850000, China
- Wuhan University Shenzhen Research Institute, Shenzhen 518057, China
- Correspondence: (J.C.); (X.H.)
| |
Collapse
|