1
|
Wang S, Wang H, Tu J, Huang L, Deng S, Xu B, Wei L. Weak H-Bond Interface Environment for Stable Aqueous Zinc Batteries. ACS NANO 2025. [PMID: 39835611 DOI: 10.1021/acsnano.4c13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Hydrogen evolution reaction and Zn dendrite growth, originating from high water activity and the adverse competition between the electrochemical kinetics and mass transfer, are the main constraints for the commercial applications of the aqueous zinc-based batteries. Herein, a weak H-bond interface with a suspension electrolyte is developed by adding TiO2 nanoparticles into the electrolytes. Owing to the strong polarity of Ti-O bonds in TiO2, abundant hydroxyl functional groups are formed between the TiO2[110] active surface and aqueous environment, which can produce a weak H-bond interface by disrupting the initial H-bond networks between the water molecules, thereby accelerating the mass transfer of Zn2+ and reducing the water activity. In consequence, the Zn||Zn symmetrical cells display reversible Zn plating/stripping behaviors with a high Coulombic efficiency of 99.7% over 700 cycles. Moreover, the TiO2-based suspension strategy is also applicable to other zinc salt systems and exhibits fast plating/stripping behaviors. The suspension electrolyte enables long-term full cells, including Zn||PANI hybrid capacitors and Zn||ZnVO full batteries.
Collapse
Affiliation(s)
- Shuai Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Haoran Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiguo Tu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Huang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shenzhen Deng
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Bingang Xu
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Wang Y, Lv J, Hong L, Zhang J, Chen C, Xu A, Huang M, Ren X, Bai J, Wang H, Liu X. Customizing H 2O-Poor Electric Double Layer and Boosting Texture Exposure of Zn (101) Plane towards Super-High Areal Capacity Zinc Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202414757. [PMID: 39356172 DOI: 10.1002/anie.202414757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/03/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
The catastrophic dendrite hyperplasia and parasitic reactions severely impede the future deployment of aqueous Zn-ion batteries. Controlling zinc orientation growth is considered to be an effective method to overcome the aforementioned concerns, especially for regulating the (002) plane of deposited Zn. Unfortunately, Zn (002) texture is difficult to obtain stable cycling under high deposition capacity resulting from its large lattice distortion and nonuniform distribution in electric field. Herein, different from traditional cognition, a crystallization orientation regulation tactic is proposed to boost Zn (101) texture exposure and inhibit zinc dendrite proliferation during plating/stripping. Experimental results and theoretical calculations demonstrate the malate molecules preferentially adsorb on the Zn (002) facet, leading to the texture exposure of distinctive Zn (101) plane. Meanwhile, the -COOH and -OH groups of malate molecules exhibit strong adsorption on the Zn anode surface and chelate with Zn2+, achieving H2O-poor electrical double layer. Very impressively, the multifunctional malate additive enlists zinc anode to survive for 600 h under a harsh condition of 15 mA cm-2/15 mAh cm-2. Moreover, the symmetric cell harvests highly-reversible cycling life of 6600 h at 5 mA cm-2/1.25 mAh cm-2, remarkably outperforming the ZnSO4 electrolyte. The assembled Zn//MnO2 full cells also demonstrate prominent electrochemical reversibility.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Jiaxin Lv
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Laixin Hong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Jiakai Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Chunxia Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Ao Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Miao Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Xiubin Ren
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 710054, Xi'an, P. R. China
| | - Jinbo Bai
- Laboratoire Mécanique des Sols, Structures et Matériaux (MSSMat), CNRS UMR 8579, Ecole CentraleSupélec, Université Paris-Saclay, 8-10 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| | - Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| | - Xiaojie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 710127, Xi'an, P. R. China
| |
Collapse
|
3
|
Wang H, Liu Y, Zhu M, Chen Y, Chen D, Lin Z, Wang K, Xu Z, Chen S, Xing G, Malyi OI, Tang Y, Zhang Y. Emulating "Curvature-Enhanced Adsorbate Coverage" for Superconformal and Orientated Zn Electrodeposition in Zinc-ion-Batteries. Angew Chem Int Ed Engl 2025; 64:e202414473. [PMID: 39319589 DOI: 10.1002/anie.202414473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Uneven Zn deposition and unfavorable side reactions have prevented the reversibility of the Zn anode. Herein, we design a rearranged (002) textured Zn anode inspired by a traditional curvature-enhanced adsorbate coverage (CEAC) process to realize the highly reversible Zn anode. The rearranged (002) textured structure directs superconformal Zn deposition by controlling the spatial deposition rate of the rearranged crystal planes, thereby promoting bottom-up "superfilling" of the 3D Zn skeletons. Meanwhile, our designed anode also induces the epitaxial Zn deposition, alleviating the parasitic reactions owing to the lowest surface energy of the (002) plane. Attributed to these superiorities, uniform and oriented Zn deposition can be obtained, exhibiting an ultra-long lifespan over 479 hrs at an ultrahigh depth of discharge (DOD) of 82.12 %. The Zn|Na2V6O16 ⋅ 3H2O battery delivers an improved cycling performance, even at a high area capacity of 5.15 mAh/cm2 with a low negative/positive (N/P) capacity ratio of 1.63. The superconformal deposition approach for Zn anodes paves the way for the practical application of high-performance zinc-ion batteries.
Collapse
Affiliation(s)
- Huibo Wang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yi Liu
- State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics & Chemistry, CAS, 40-1 South Beijing Road, Urumqi, 830011, P. R. China
| | - Mengyu Zhu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yuejin Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Danling Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Zhimin Lin
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Kexuan Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Zhu Xu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Shi Chen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Oleksandr I Malyi
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- Centre of Excellence ENSEMBLE3 Sp. z o. o., Wolczynska Str. 133, 01-919, Warsaw, Poland
| | - Yuxin Tang
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yanyan Zhang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, PR China
| |
Collapse
|
4
|
Hao Z, Lu Y, Yang G, Zhao Q, Yan Z, Chen J. Designing Current Collectors to Stabilize Li Metal Anodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415258. [PMID: 39757496 DOI: 10.1002/adma.202415258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/07/2025]
Abstract
Rechargeable batteries employing Li metal anodes have gained increasing attention due to their high energy density. Nevertheless, low stability and reversibility of Li metal anodes severely impeded their practical applications. Designing current collectors (CCs) with reasonable structure and composition is an efficient approach to stabilizing the Li metal anodes. However, an in-depth comprehensive understanding about the design principles and modification strategies of CCs for realizing stable Li metal anodes is still lacking. Herein, a critical review focusing on the rational design of CCs for Li metal anodes is summarized. First, the requirements for CCs in Li metal anodes are elucidated to clarify the design objectives of CCs. Then, the modification strategies of CCs including lithiophilic site modification, 3D architecture construction, protective layer modification, and crystalline plane engineering, as well as the corresponding principles are highlighted. On this basis, the recent progress in the development of CCs for Li metal anodes is discussed. Finally, future directions are suggested to focus on developing operando monitoring technology, and designing the CCs and cells under practical conditions close to the requirements of commercial applications. This review will spur more insightful researches toward advanced CCs, and promote their commercialization.
Collapse
Affiliation(s)
- Zhimeng Hao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Yong Lu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Gaojing Yang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
- School of Chemistry, Tiangong University, Tianjin, 300387, China
| | - Qi Zhao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Zhang J, Cao LNY, Li R, Yang J, Li L, Yang K, Wang ZL, Pu X. Breaking Mass Transport Limit for Hydrogen Evolution-Inhibited and Dendrite-Free Aqueous Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410244. [PMID: 39506525 DOI: 10.1002/adma.202410244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/25/2024] [Indexed: 11/08/2024]
Abstract
It is commonly accepted that batteries perform better at low current densities below the mass-transport limit, which restricts their current rate and capacity. Here, it is demonstrated that the performance of Zn metal electrodes can be dramatically enhanced at current densities and cut-off capacities exceeding the mass-transport limit by using pulsed-current protocols. These protocols achieve cumulative plating/stripping capacities of 11.0 Ah cm-2 and 3.8 Ah cm-2 at record-high current densities of 80 and 160 mA cm-2, respectively. The study identifies and understands the promoted (002)-textured Zn growth and suppressed hydrogen evolution based on the thermodynamics and kinetics of competing reactions. Furthermore, the over-limiting pulsed-current protocol enables long-life Zn batteries with high mass loading (29 mgcathode cm-2) and high areal capacity (7.9 mAh cm-2), outperforming cells using constant-current protocols at equivalent energy and time costs. The work provides a comprehensive understanding of the current-capacity-performance relationship in Zn plating/stripping and offers an effective strategy for dendrite-free metal batteries that meet practical requirements for high capacity and high current rates.
Collapse
Affiliation(s)
- Jingmin Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Leo N Y Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rongrong Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Longwei Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, Institute of Science and Technology for Carbon Peak & Neutrality, Key Laboratory of Blue Energy and Systems Integration (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
6
|
Zou Y, Mu Y, Xu L, Qiao C, Chen Z, Guo W, Gu J, Su Y, Zeng L, Cheng T, Sun J. Popularizing Holistic High-Index Crystal Plane via Nonepitaxial Electrodeposition Toward Hydrogen-Embrittlement-Relieved Zn Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413080. [PMID: 39711269 DOI: 10.1002/adma.202413080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Electrodeposition is promising to fabricate Zn electrodes affording nonepitaxial single-crystal textures. Previous research endeavors focus on achieving Zn(002) faceted deposition, nevertheless, the popularization of a high-index Zn plane with favorable electrochemical activity remains poorly explored. There also exists a deficiency in the assessment of the electrodeposited quality of Zn. Here, a straightforward strategy to address such concerns by cultivating predominant Zn(112) texture via a potentiostatic electrodeposition mode is reported. By precisely identifying the "limiting" conditions for electrodeposition, a striking balance between improved deposition quality, tailored deposition kinetics, and suppressed hydrogen evolution is found. (002) Faceted Zn electrode is shown that be indeed produced, yet the rampant hydrodynamic convection and hydrogen embrittlement issue under such "over-limiting" preparation conditions pose challenges in the electrode lifespan. In contrast, an optimized deposition minimizes hydrodynamic disturbances and mitigates the hydrogen embrittlement effect, where the thus-generated high-index (112)-textured Zn electrode manifests impressive deposition quality and demonstrates holistic cycling stability. The pouch cell by pairing a ZnxV2O5 (ZnVO) cathode manages a reversible capacity of ≈130 mAh and a capacity retention of 98.42%. This study offers guidance for the development of dendrite-free and hydrogen-embrittlement-relieved Zn anodes, unleashing the potential of high-index plane textures for advanced Zn batteries.
Collapse
Affiliation(s)
- Yuhan Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yongbiao Mu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liang Xu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Changpeng Qiao
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Ziang Chen
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Wenyi Guo
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Jiaxi Gu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yiwen Su
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Lin Zeng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
7
|
Wu F, Zhang J, Ma L, Ruan P, Chen Y, Meng S, Yin R, Shi W, Liu W, Zhou J, Cao X. Directing Zn Growth with Biased Adsorption of Straight-chain Molecules for Superior Zn Anode Stability. Angew Chem Int Ed Engl 2024:e202421787. [PMID: 39659171 DOI: 10.1002/anie.202421787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Aqueous zinc ion batteries (AZIBs), which have attracted attentions in the field of energy storage, is affected by dendrites and side reactions of Zn anode, resulting in an unsatisfactory performance of AZIBs. Herein, we propose a biased adsorption strategy mediated by straight-chain molecule (Scm) for stabilizing Zn anode. The dual polar termini of Scms guaranties securely anchor themselves in a parallel orientation upon the Zn anode surface. This provides a comprehensive coverage, effectively sequestering water molecules from the Zn anode and precipitating the formation of a water-depleted electric double layer (EDL). Furthermore, the Scms selectively adsorb along the crystallographic planes, guiding the deposition of Zn2+. Consequently, the incorporation of these Scms successfully mitigates anode corrosion, HER, and dendrites. The Zn||Zn, Zn||Cu and Zn||V6O13 cells with Scms display significantly enhanced electrochemical performance, especially at elevated temperature of 60 °C. This work highlights the potential of cost-effective, straight-chain electrolyte additives for enhancing Zn anode stability.
Collapse
Affiliation(s)
- Fangfang Wu
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Junkang Zhang
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Lu Ma
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Pengchao Ruan
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, P. R. China
| | - Yulong Chen
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Shibo Meng
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Ruilian Yin
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Wenhui Shi
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Wenxian Liu
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, P. R. China
| | - Xiehong Cao
- College of Materials Science and Engineering, Science and Education Integration College of Energy and Carbon Neutrality, College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, P. R. China
| |
Collapse
|
8
|
Ye J, Tian W, Du Y, Linghu S, Wang K, Yuan L, Li H, Ji J. Synergistic Gradient Anodes for Long-Term Stability in Aqueous Zinc-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405891. [PMID: 39344564 DOI: 10.1002/smll.202405891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Indexed: 10/01/2024]
Abstract
The stability of aqueous zinc metal anodes is still constrained by their severe dendrite growth. Optimizing electric field distribution and crystallography to modulate the diffusion and deposition behavior of zinc ions can effectively suppress dendrite growth. However, the fabrication strategy to directly endow specific textured zinc anodes with gradient electric field distribution is still lacking. Herein, a strategy combining crystal reconstruction of commercial zinc foil with graphene oxide (GO) protective layer is proposed to construct an in situ gradient electric field-enhanced strong (002) textured GO@ZnO/Zn(002) anode. Based on the experimental and theoretical results, the GO protective layer can regulate a wide-range homogeneous Zn2+ ions flow, while the dense and uniform ZnO/Zn(002) nanoneedles /nanoparticles can enhance localized polarized electric field to accelerate rapid localized transfer of Zn2+ ions and guide them toward directional deposition along (002) plane. Therefore, the hierarchical GO@ZnO/Zn(002) anode enables the symmetric cell to operate continuously and stably for 5700 and 4200 h at 2 and 4 mA cm-2, respectively, which is comparable to or better than most high-end Zn anodes. This work presents new insights into the zinc foil reconstruction and gradient electric field fabrication strategy, offering a scalable approach for the development of long-term stable metal anodes.
Collapse
Affiliation(s)
- Jiahui Ye
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuping Du
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shaoyong Linghu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kaixiang Wang
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Li Yuan
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongjiao Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Chang L, Li J, Sun Q, Liu X, Lu X, Cheng H. Innovative Zinc Anodes: Advancing Metallurgy Methods to Battery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2408124. [PMID: 39428824 DOI: 10.1002/smll.202408124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Aqueous zinc metal batteries (AZMBs) are emerging as a powerful contender in the realm of large-scale intermittent energy storage systems, presenting a compelling alternative to existing ion battery technologies. They harness the benefits of metal zinc's high safety, natural abundance, and favorable electrochemical potential (-0.762 V vs Standard hydrogen electrode, SHE), alongside an impressive theoretical capacity (820 mAh g-1 and 5655 mAh cm-3). However, the electrochemical performance of ZMBs is impeded by several challenges, including poor compatibility with high-loading cathodes and persistent side reactions. These issues are intricately linked to the inherent physicochemical properties of the zinc metal anodes (ZMAs). Here, this review delves into the traditional methods of ZMAs production, encompassing extraction, electrodeposition, and rolling processes. The discussion then progresses to an exploration of cutting-edge methodologies designed to enhance the electrochemical performance of ZMAs. These methods are categorized into alloying, pre-treatment of substrate, advanced electrodeposition techniques, and the development of composite anodes utilizing zinc powder. The review offers a comparative analysis of the merits and drawbacks of various optimization strategies, highlighting the beneficial outcomes achieved. It aspires to inspire novel concepts for the advancement and innovation of next-generation zinc-based energy storage solutions.
Collapse
Affiliation(s)
- Linhui Chang
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Jiamin Li
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Qiangchao Sun
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Xijun Liu
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Xionggang Lu
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongwei Cheng
- School of Materials Science and Engineering & State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
10
|
Han W, Tan Y, Ni L, Sun X, Li K, Lu L, Zhang H. Sn Penetrated Zincophilic Interface Design in Porous Zn Substrate for High Performance Zn-Ion Battery. SMALL METHODS 2024:e2401499. [PMID: 39511856 DOI: 10.1002/smtd.202401499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Rechargeable zinc-ion batteries are considered an ideal energy storage system due to their low cost and nonflammable aqueous electrolyte. However, dendrite growth, hydrogen evolution reaction, and self-corrosion of zinc anode brought about serious safety risks including short circuits and electrode expansion. Therefore, a modified host-design strategy with a 3D porous structure and bulk-phase penetrated zincophilic interface is proposed to boost the stability and lifetime of the Zn anode. The porous Zn substrate is constructed by universal HCl etching and the uniform and tight Sn-penetrated zincophilic interface is formed by effective electron beam evaporation (EBE). The porous substrate can uniform zinc ion flux and the Sn coating could effectively improve zinc ion deposition behavior, thus inhibiting the risk of dendrites growth and side reaction. As a result, the 3D Zn substrate with Sn interface (3D Zn@Sn) exhibits prolonged galvanostatic cycling performance up to 4500 h with a low polarization of ≈25 mV (1 mA cm-2, 1 mAh cm-2) in the symmetric cell. The full cell assembled with KVOH@Ti could maintain a high specific capacity of 148.6 mAh g-1 after 500 galvanostatic cycles (10 A g-1). This work proposed an improved electrode design to realize the high performance of zinc ion batteries.
Collapse
Affiliation(s)
- Wangyang Han
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Yihong Tan
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liping Ni
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Ximei Sun
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Kunzhen Li
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Leilei Lu
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
11
|
Wang J, Jiao L, Yi C, Bai H, Liu Q, Fu Y, Liu J, Wang C, Lei Y, Zhang T, Wen J, Yang L, Shu D, Yang S, Li C, Li H, Zhang W, Cheng B. Molecular Chain Rearrangement of Natural Cellulose-Based Artificial Interphase for Ultra-Stable Zn Metal Anodes. Angew Chem Int Ed Engl 2024:e202418992. [PMID: 39502026 DOI: 10.1002/anie.202418992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Indexed: 11/21/2024]
Abstract
The unstable electrolyte-anode interface, plagued by parasitic side reactions and uncontrollable dendrite growth, severely hampers the practical implementation of aqueous zinc-ion batteries. To address these challenges, we developed a regenerated cellulose-based artificial interphase with synergistically optimized structure and surface chemistry on the Zn anode (RC@Zn), using a facile molecular chain rearrangement strategy. This RC interphase features a drastically increased amorphous region and more exposed active hydroxyl groups, facilitating rapid Zn2+ diffusion and homogeneous Zn2+ interface distribution, thereby enabling dendrite-free Zn deposition. Additionally, the compact texture and abundant negatively charged surface of the RC interphase effectively shield water molecules and harmful anions, completely preventing H2 evolution and Zn corrosion. The superior mechanical strength and adhesion of the RC interphase also accommodate the substantial volume changes of Zn anodes even under deep cycling conditions. Consequently, the RC@Zn electrode demonstrates an outstanding cycling lifespan of over 8000 hours at a high current density of 10 mA cm-2. Significantly, the electrode maintains stable cycling even at a 90 % depth of discharge and ensures stable operation of full cells with a low negative/positive capacity ratio of 1.6. This study provides new solution to construct highly stable and deep cycling Zn metal anodes through interface engineering.
Collapse
Affiliation(s)
- Jizhen Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Long Jiao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chao Yi
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hongyuan Bai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiaoyun Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yusen Fu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiajia Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chuang Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yechen Lei
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Jiaqi Wen
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Leixin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Dengkun Shu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chenyang Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
12
|
Chen Z, Wang Y, Wu Q, Wang C, He Q, Hu T, Han X, Chen J, Zhang Y, Chen J, Yang L, Wang X, Ma Y, Zhao J. Grain Boundary Filling Empowers (002)-Textured Zn Metal Anodes with Superior Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411004. [PMID: 39300904 DOI: 10.1002/adma.202411004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/05/2024] [Indexed: 09/22/2024]
Abstract
Aqueous Zn battery is promising for grid-level energy storage due to its high safety and low cost, but dendrite growth and side reactions at the Zn metal anode hinder its development. Designing Zn with (002) orientation improves the stability of the Zn anode, yet grain boundaries remain susceptible to corrosion and dendrite growth. Addressing these intergranular issues is crucial for enhancing the electrochemical performance of (002)-textured Zn. Here, a strategy based on grain boundary wetting to fill intergranular regions and mitigate these issues is reported. By systematically investigating boundary fillers and filling conditions, In metal is chosen as the filler, and one-step annealing is used to synergistically convert commercial Zn foils into single (002)-textured Zn while filling In into the boundaries. The inter-crystalline-modified (002)-textured Zn (IM(002) Zn) effectively inhibits corrosion and dendrite growth, resulting in excellent stability in batteries. This work offers new insights into Zn anode protection and the development of high-energy Zn batteries.
Collapse
Affiliation(s)
- Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qiang Wu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Cheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Qian He
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Tao Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Xuran Han
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jialu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Yu Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Lijun Yang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures (NLSSM), Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yanwen Ma
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Suzhou Vocational Institute of Industrial Technology, Suzhou, 215104, P. R. China
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Zhang Z, Wang Y, Sun J, Dang L, Li Q, He X, Liu Z, Lei Z. N-Doped Ti 3C 2T x Interfacial Layer Enabling Uniform Zn Deposition along (002) Plane for Stable Aqueous Zinc-Ion Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402636. [PMID: 39082412 DOI: 10.1002/smll.202402636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Indexed: 11/21/2024]
Abstract
Aqueous zinc-ion batteries hold great potentials for large-scale grid energy storage. However, the electrode corrosion, hydrogen evolution, and dendrite growth of Zn anode often lead to cell failure. Herein, N groups in Ti3C2Tx (NMXH) are introduced as interfacial layer through hydrothermal treatment of Ti3C2Tx with urea. The experimental analysis and density functional theory calculation indicate that N groups in Ti3C2Tx can homogenize electric field distribution, promote adsorption of Zn2+ on N groups, and strength interactions between N groups and Zn atoms on (002) plane. Thereby, the use of NMXH interfacial layer can effectively suppress the side reactions and realize uniform Zn deposition along the (002) plane. As a consequence, the NMXH─Zn//Zn cell exhibits an ultralow nucleation overpotential (1 mA cm-2, 18.9 mV) and can stably operate for 1400 h at 1 mA cm-2 (1 mAh cm-2) and 110 h at 40 mA cm-2 (1 mAh cm-2). A full battery with V2O5 nanowires as cathode displays a discharge capacity of 219 mAh g-1 (1.0 A g-1), along with a decent rate capability and cyclability. The significant role of N groups reported in this work offers a promising avenue to improve the cycling stability of Zn anodes of aqueous zinc batteries.
Collapse
Affiliation(s)
- Zhanrui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Yao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Liqin Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
14
|
Huang W, Huang Y, Huang X, Shao F, Liu W, Kang F. 3D Leaf-Like Copper-Zinc Alloy Enables Dendrite-Free Zinc Anode for Ultra-Long Life Aqueous Zinc Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404294. [PMID: 39148221 DOI: 10.1002/smll.202404294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/11/2024] [Indexed: 08/17/2024]
Abstract
Metallic zinc exhibits immense potential as an anode material for aqueous rechargeable zinc batteries due to its high theoretical capacity, low redox potential, and inherent safety. However, practical applications are hindered by dendrite formation and poor cycling stability. Herein, a facile substitution reaction method is presented to fabricate a 3D leaf-like Cu@Zn composite anode. This unique architecture, featuring a 3D network of leaf-like Cu on a Zn foil surface, significantly reduces nucleation overpotential and facilitates uniform Zn plating/stripping, effectively suppressing dendrite growth. Notably, an alloy layer of CuZn5 forms in situ on the 3D Cu layer during cycling. DFT calculations reveal that this CuZn5 alloy possesses a lower Zn binding energy compared to both Cu and Zn metal, further promoting Zn plating/stripping and enhancing electrochemical kinetics. Consequently, the symmetric Cu@Zn electrode exhibits remarkable cycling stability, surpassing 1300 h at 0.5 mA cm-2 with negligible dendrite formation. Furthermore, full cells comprising Cu@Zn||VO2 exhibit superior capacity and rate performance compared to bare Zn anodes. This work provides a promising strategy for constructing highly stable and efficient Zn anodes for next-generation aqueous zinc batteries.
Collapse
Affiliation(s)
- Wenting Huang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongfeng Huang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xudong Huang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Shao
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wenbao Liu
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, China
| | - Feiyu Kang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Huang Y, Guo R, Li Z, Zhang J, Liu W, Kang F. Ultra-Stable Aqueous Zinc Anodes: Enabling High-Performance Zinc-Ion Batteries via a ZnSiF 6-Derived Protective Interphase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407201. [PMID: 39373706 PMCID: PMC11600264 DOI: 10.1002/advs.202407201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/14/2024] [Indexed: 10/08/2024]
Abstract
Zinc-ion batteries (ZIBs) hold immense promise as next-generation energy storage solutions, however, the practical application of zinc anodes is hindered by dendrite formation and parasitic side reactions. Engineering a stable solid- eletrolyte interphase (SEI) is crucial for addressing these issues. This study proposes a novel strategy to enhance Zn anode performance by incorporating a ZnSiF6 additive into a standard ZnSO4 (ZSO) electrolyte. The ZnSiF6 additive facilitates the formation of a stable, fluorine-rich SEI on the Zn anode surface. Characterization reveals a hierarchical SEI structure, primarily composed of porous alkali zinc sulfate (ZHS) with embedded ZnF2. This unique architecture promotes rapid zinc ion desolvation and efficient transport, enhances corrosion resistance, and mitigates hydrogen evolution. Consequently, ZnSiF6-modified cells exhibit exceptional cycling stability, exceeding 3000 hours at 0.5 mA cm-2 and 560 hours at 10 mA cm-2, significantly outperforming ZSO-based cells. The modified cells also achieve high areal capacities (10 mAh cm-2), indicating superior zinc utilization. This work provides key insights for designing stable electrode/electrolyte interfaces, contributing to the development of high-performance aqueous ZIBs.
Collapse
Affiliation(s)
- Yongfeng Huang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
- School of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| | - Rongsheng Guo
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Zejian Li
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Jiajia Zhang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| | - Wenbao Liu
- School of Environmental and Materials EngineeringYantai UniversityYantai264005China
| | - Feiyu Kang
- Institute of Materials ResearchTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
- School of Materials Science and EngineeringTsinghua UniversityBeijing100084China
| |
Collapse
|
16
|
Miao L, Jia W, Jiao L. Effects of current density on Zn reversibility. Chem Sci 2024:d4sc06319h. [PMID: 39479158 PMCID: PMC11514206 DOI: 10.1039/d4sc06319h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024] Open
Abstract
Aqueous zinc (Zn) batteries (AZBs) exhibit potential as viable candidates for stationary energy storage. Improvements in the plating/stripping efficiency and lifespan of Zn anodes at high applied current density (j) render AZBs attractive for rapid charge and discharge scenarios. However, the existing literature presents inconsistent experimental results and interpretations regarding the impact of j on Zn reversibility. While some studies indicate that increasing j reduces Zn reversibility, others argue the opposite. In this perspective, we delve into this conflicting phenomenon with a specific focus on the fundamentals of Zn electrodeposition, nucleation-growth models and theories related to j, and future development. Our stance supports the notion that an increase in j leads to a volcano-shaped pattern in the reversibility of Zn plating and stripping, and such a relationship lies in the dual and contradictory roles that high j plays in thermodynamics and interfacial kinetics. Our in-depth discussion provides valuable insights for accurate data interpretation and holds significant promise for advancing high-power AZBs.
Collapse
Affiliation(s)
- Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Wenqi Jia
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
17
|
Liu G, Tang Y, Wei Y, Li H, Yan J, Feng Z, Du W, Yang Q, Ye M, Zhang Y, Wen Z, Liu X, Li CC. Hydrophobic Ion Barrier-Enabled Ultradurable Zn (002) Plane Orientation towards Long-Life Anode-Less Zn Batteries. Angew Chem Int Ed Engl 2024; 63:e202407639. [PMID: 38976402 DOI: 10.1002/anie.202407639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024]
Abstract
Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4 ⋅ 2H2O full cells with a low N/P ratio (2 : 1) show a high energy density of 75.2 Wh kg-1 full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.
Collapse
Affiliation(s)
- Guigui Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yongchao Tang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Yue Wei
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China
| | - Hongqing Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jianping Yan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Zhenfeng Feng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Wencheng Du
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang, 522000, P. R. China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Minghui Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Yufei Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Zhipeng Wen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Xiaoqing Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| | - Cheng Chao Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, P. R. China
| |
Collapse
|
18
|
Meng Y, Wang M, Wang J, Huang X, Zhou X, Sajid M, Xie Z, Luo R, Zhu Z, Zhang Z, Khan NA, Wang Y, Li Z, Chen W. Robust bilayer solid electrolyte interphase for Zn electrode with high utilization and efficiency. Nat Commun 2024; 15:8431. [PMID: 39343779 PMCID: PMC11439932 DOI: 10.1038/s41467-024-52611-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Construction of a solid electrolyte interphase (SEI) of zinc (Zn) electrode is an effective strategy to stabilize Zn electrode/electrolyte interface. However, single-layer SEIs of Zn electrodes undergo rupture and consequent failure during repeated Zn plating/stripping. Here, we propose the construction of a robust bilayer SEI that simultaneously achieves homogeneous Zn2+ transport and durable mechanical stability for high Zn utilization rate (ZUR) and Coulombic efficiency (CE) of Zn electrode by adding 1,3-Dimethyl-2-imidazolidinone as a representative electrolyte additive. This bilayer SEI on Zn surface consists of a crystalline ZnCO3-rich outer layer and an amorphous ZnS-rich inner layer. The ordered outer layer improves the mechanical stability during cycling, and the amorphous inner layer homogenizes Zn2+ transport for homogeneous, dense Zn deposition. As a result, the bilayer SEI enables reversible Zn plating/stripping for 4800 cycles with an average CE of 99.95% (± 0.06%). Meanwhile, Zn | |Zn symmetric cells show durable lifetime for over 550 h with a high ZUR of 98% under an areal capacity of 28.4 mAh cm-2. Furthermore, the Zn full cells based on the bilayer SEI functionalized Zn negative electrodes coupled with different positive electrodes all exhibit stable cycling performance under high ZUR.
Collapse
Affiliation(s)
- Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiazhi Wang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuehai Huang
- Center for Electron Microscopy, South China Advanced Institute for Soft Matter and Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Xiang Zhou
- Center for Electron Microscopy, South China Advanced Institute for Soft Matter and Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruihao Luo
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Zuodong Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Nawab Ali Khan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Wang
- Center for Electron Microscopy, South China Advanced Institute for Soft Matter and Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, China.
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
19
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Yao H, Li Y, Chen Z, Chen J, Du CF, Chen Y, Chen J, Wong MW, Zhao J, Yuan D. Anion Chemistry towards On-Site Construction of Solid-Electrolyte Interface for Highly Stable Metallic Zn Anode. Angew Chem Int Ed Engl 2024:e202411056. [PMID: 39245869 DOI: 10.1002/anie.202411056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/08/2024] [Indexed: 09/10/2024]
Abstract
Reversibility of metallic Zn anode serves as the corner stone for the development of aqueous Zn metal battery, which motivates scrutinizing the electrolyte-Zn interface. As the representative organic zinc salt, zinc trifluorosulfonate (Zn(OTf)2) facilitates a broad class of aqueous electrolytes, however, the stability issue of Zn anode remains crucial. The great challenge lies in the lack of Zn anode protection by the pristinely formed surface structure in aqueous Zn(OTf)2 electrolytes. Accordingly, an electrochemical route was developed to grow a uniform zinc trifluorosulfonate hydroxide (ZTH) layer on Zn anode as an artificial SEI, via regulation on metal dissolution and strong coordination ability of zinc ions. Co-precipitation was proposed to be the formation mechanism for the artificial SEI, where the reduction stability of OTf- anion and the low-symmetry layer structure of ZTH was unmasked. This artificial SEI favors interfacial kinetics, depresses side reactions, and well maintains its integrity during cycling, leading to a prolonged lifespan of Zn stripping/plating with a high DOD of ~85 %, and an improved cycling stability of ~92 % retention rate for V2O5/Zn cell at 1 A g-1. The unveiled role of anion on Zn anode drives the contemplation on the surface chemistry for the blooming aqueous rechargeable battery.
Collapse
Affiliation(s)
- Hong Yao
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), 410004, Changsha, Hunan, China
| | - Yuhang Li
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), 410004, Changsha, Hunan, China
| | - Zibo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Jianyu Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, 710072, Xi'an, Shaanxi, China
| | - Yingqian Chen
- Department of Chemistry, National University of Singapore, Block S8, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Junze Chen
- College of Materials Science and Engineering, Sichuan University, 610065, Chengdu, Sichuan, China
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, Block S8, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jin Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, 210023, Nanjing, Jiangsu, China
| | - Du Yuan
- College of Materials Science and Engineering, Changsha University of Science and Technology, 960, 2nd Section, Wanjiali RD (S), 410004, Changsha, Hunan, China
| |
Collapse
|
21
|
Bao Z, Wang Y, Sun L, Luo B, Duan G, Zheng S, Ye Z, Huang J. Molecular Filter Net Synergy with Regulation in Ion Percolation for High-Performance Zn Metal Batteries. ACS NANO 2024; 18:24350-24363. [PMID: 39163088 DOI: 10.1021/acsnano.4c06588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The uncontrollable dendrite growth and complex parasitic reactions of Zn metal anodes cause short cycle lives and low Coulombic efficiency, which seriously affect their applications. To address these issues, this research proposes an efficient ion percolating interface constituted by a hydrogen-bonded organic framework (HND) for a highly stable and reversible Zn anode. The hydrogen-bonded skeleton acts as a molecular filter net, capturing water molecules by forming targeted hydrogen-bonding systems with them, sufficiently inhibiting parasitic reactions. Additionally, the interaction of the rich-N and -O electrochemically active sites with Zn2+ effectively regulates its percolation, which greatly enhances the diffusion kinetics of Zn2+, thus facilitating rapid and uniform migration of Zn2+ at the anode surface. Through the above synergistic effect, dendrite-free anodes with highly reversible Zn plating/stripping behaviors can be achieved. Hence, the modified Zn anode (HND@Zn) performs a steady cycling time of more than 1700 h at 1 mA cm-2. Moreover, the HND@Cu||Zn asymmetric cell exhibits a stable charge/discharge process of over 1600 cycles with an average Coulombic efficiency of up to 99.6% at 5 mA cm-2. This work provides some conceptions for the evolution and application of high-performance Zn metal batteries.
Collapse
Affiliation(s)
- Zhean Bao
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Yang Wang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Leilei Sun
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Bin Luo
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Guosheng Duan
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Sinan Zheng
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zhizhen Ye
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Jingyun Huang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, P. R. China
- Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| |
Collapse
|
22
|
Wang Y, Zhang Z, Wang L, Wang J, Meng W, Sun J, Li Q, He X, Liu Z, Lei Z. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43026-43037. [PMID: 39093713 DOI: 10.1021/acsami.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The aqueous zinc-ion batteries (ZIBs) have gained increasing attention because of their high specific capacity, low cost, and good safety. However, side reactions, hydrogen evolution reaction, and uncontrolled zinc dendrites accompanying the Zn metal anodes have impeded the applications of ZIBs in grid-scale energy storage. Herein, the poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires as an interfacial layer on the Zn anode (Zn-PEDOT) are reported to address the above issues. Our experimental results and density functional theory simulation reveal that the interactions between the Zn2+ and S atoms in thiophene rings of PEDOT not only facilitate the desolvation of hydrated Zn2+ but also can regulate the diffusion of Zn2+ along the thiophene molecular chains and induce the dendrite-free deposition of Zn along the (002) surface. Consequently, the Zn||Cu-PEDOT half-cell exhibits highly reversible plating/stripping behavior with an average Coulombic efficiency of 99.7% over 2500 cycles at 1 mA cm-2 and a capacity of 0.5 mAh cm-2. A symmetric Zn-PEDOT cell can steadily operate over 1100 h at 1 mA cm-2 (1 mAh cm-2) and 470 h at 10 mA cm-2 (2 mAh cm-2), outperforming the counterpart bare Zn anodes. Besides, a Zn-PEDOT||V2O5 full cell could deliver a specific capacity of 280 mAh g-1 at 1 A g-1 and exhibits a decent cycling stability, which are much superior to the bare Zn||V2O5 cell. Our results demonstrate that PEDOT nanowires are one of the promising interfacial layers for dendrite-free aqueous ZIBs.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhanrui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Liwen Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Jingxuan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Weijia Meng
- Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an 710061, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| |
Collapse
|
23
|
Palamadathil Kannattil H, Martinez Soria Gallo L, Harris KD, Limoges B, Balland V. Innovative Energy Storage Smart Windows Relying on Mild Aqueous Zn/MnO 2 Battery Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402369. [PMID: 38810148 PMCID: PMC11304267 DOI: 10.1002/advs.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Rechargeable mild aqueous Zn/MnO2 batteries are currently attracting great interest thanks to their appealing performance/cost ratio. Their operating principle relies on two complementary reversible electrodeposition reactions at the anode and cathode. Transposing this operating principle to transparent conductive windows remains an unexplored facet of this battery chemistry, which is proposed here to address with the development of an innovative bifunctional smart window, combining electrochromic and charge storage properties. The proof-of-concept of such bifunctional Zn/MnO2 smart window is provided using a mild buffered aqueous electrolyte and different architectures. To maximize the device's performance, transparent nanostructured ITO cathodes are used to reversibly electrodeposit a high load of MnO2 (up to 555 mA h m-2 with a CE of 99.5% over 200 cycles, allowing to retrieve an energy density as high as 860 mA h m-2 when coupled with a zinc metal frame), while flat transparent FTO anodes are used to reversibly electrodeposit an homogenous coating of zinc metal (up to ≈280 mA h m-2 with a CE > 95% over 50 cycles). The implementation of these two reversible electrodeposition processes in a single smart window has been successfully achieved, leading for the first time to a dual-tinting energy storage smart window with an optimized face-to-face architecture.
Collapse
Affiliation(s)
| | | | - Kenneth D. Harris
- National Research Council Canada – Nanotechnology Research CentreEdmontonABT6G 2M9Canada
- Department of Mechanical EngineeringUniversity of AlbertaEdmontonABT6G 2G8Canada
| | - Benoît Limoges
- Université Paris Cité, CNRSLaboratoire d'Electrochimie MoléculaireParisF‐75013France
| | - Véronique Balland
- Université Paris Cité, CNRSLaboratoire d'Electrochimie MoléculaireParisF‐75013France
| |
Collapse
|
24
|
Ma G, Yuan W, Li X, Bi T, Niu L, Wang Y, Liu M, Wang Y, Shen Z, Zhang N. Organic Cations Texture Zinc Metal Anodes for Deep Cycling Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408287. [PMID: 38967293 DOI: 10.1002/adma.202408287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Manipulating the crystallographic orientation of zinc (Zn) metal to expose more (002) planes is promising to stabilize Zn anodes in aqueous electrolytes. However, there remain challenges involving the non-epitaxial electrodeposition of highly (002) textured Zn metal and the maintenance of (002) texture under deep cycling conditions. Herein, a novel organic imidazolium cations-assisted non-epitaxial electrodeposition strategy to texture electrodeposited Zn metals is developed. Taking the 1-butyl-3-methylimidazolium cation (Bmim+) as a paradigm additive, the as-prepared Zn film ((002)-Zn) manifests a compact structure and a highly (002) texture without containing (100) signal. Mechanistic studies reveal that Bmim+ featuring oriented adsorption on the Zn-(002) plane can reduce the growth rate of (002) plane to render the final exposure of (002) texture, and homogenize Zn nucleation and suppress H2 evolution to enable the compact electrodeposition. In addition, the formulated Bmim+-containing ZnSO4 electrolyte effectively sustains the (002) texture even under deep cycling conditions. Consequently, the combination of (002) texture and Bmim+-containing electrolyte endows the (002)-Zn electrode with superior cycling stability over 350 h under 20 mAh cm-2 with 72.6% depth-of-discharge, and assures the stable operation of full Zn batteries with both coin-type and pouch-type configurations, significantly outperforming the (002)-Zn and commercial Zn-based batteries in Bmim+-free electrolytes.
Collapse
Affiliation(s)
- Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Tongqiang Bi
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Linhuan Niu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Mengyu Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Zhaoxi Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, P. R. China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China
| |
Collapse
|
25
|
Li Z, Yuan Y, Pu SD, Qi R, Ding S, Qin R, Kareer A, Bruce PG, Robertson AW. Achieving Planar Zn Electroplating in Aqueous Zinc Batteries with Cathode-Compatible Current Densities by Cycling under Pressure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401576. [PMID: 38838065 DOI: 10.1002/adma.202401576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/26/2024] [Indexed: 06/07/2024]
Abstract
The value of aqueous zinc-ion rechargeable batteries is held back by the degradation of the Zn metal anode with repeated cycling. While raising the operating current density is shown to alleviate this anode degradation, such high cycling rates are not compatible with full cells, as they cause Zn-host cathodes to undergo capacity decay. A simple approach that improves anode performance while using more modest cathode-compatible current densities is required. This work reports reversible planar Zn deposition under cathode-compatible current densities can instead be achieved by applying external pressure to the cell. Employing multiscale characterization, this work illustrates how cycling under pressure results in denser and more uniform Zn deposition, analogous to that achieved under high cycling rates, even at low areal current densities of 1 to 10 mA cm-2. Microstructural mechanical measurements reveal that Zn structures plated under lower current densities are particularly susceptible to pressure-induced compression. The ability to achieve planar Zn plating at cathode-compatible current densities holds significant promise for enabling high-capacity Zn-ion battery full cells.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Yi Yuan
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Shengda D Pu
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Rui Qi
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Shenghuan Ding
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Runzhi Qin
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Anna Kareer
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Peter G Bruce
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
26
|
Zhou X, Ruan T, Xu J, Li C, Huang S, Zhou J, Lu S, Song R, Li R. Host-design strategies of zinc anodes for aqueous zinc-ion batteries. RSC Adv 2024; 14:23023-23036. [PMID: 39040701 PMCID: PMC11261579 DOI: 10.1039/d4ra04353g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Aqueous zinc ion batteries (AZIBs) have garnered considerable interest as an eco-friendly, safe, and cost-effective energy storage solution. Although significant strides have been made in recent years, there remain technical hurdles to overcome. Herein, this review summarizes in detail the primary challenges confronting aqueous zinc ion batteries, including the rampant dendrite growth, and water-induced parasitic reactions, and proposes host-engineering modification strategies focusing on optimizing the structure design of the zinc anode substrates, involving three-dimensional structure design, zincophilicity regulation, and epitaxial-oriented modification, and comprehensively analyzes the structure-activity relationship between different modification strategies and battery performance. In addition, we highlight the research trends and prospects in future anode modification for aqueous zinc-ion batteries. This work offers valuable insights into advanced Zn anode constructions for further applications in high-performance AZIBs.
Collapse
Affiliation(s)
- Xuanyu Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Tingting Ruan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Jie Xu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Chenhao Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Shixuan Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Jianping Zhou
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Shengli Lu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology Hangzhou 310023 China
| | - Rensheng Song
- College of Environmental and Chemical Engineering, Dalian University Dalian 116622 China
| | - Ruhong Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University Hangzhou 311215 China
| |
Collapse
|
27
|
Wan S, Pang Z, Yao T, Niu X, Wang K, Li H. Regulating Desolvation Activation Energy and Zn Deposition via a CTAB-Intercalated Mg-Al-Layered Double-Hydroxide Protective Layer for Durable Zn Metal Anodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34923-34935. [PMID: 38935390 DOI: 10.1021/acsami.4c03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
While aqueous Zn-ion batteries (AZIBs) are widely considered as a promising energy storage system due to their merits of low cost, high specific capacity, and safety, the practical implementation has been hindered by the Zn dendrite growth and undesirable parasitic reactions. To address these issues, a unique hydrophobic-ion-conducting cetyltrimethylammonium bromide-intercalated Mg-Al-layered double-hydroxide protective layer was constructed on the Zn anode (OMALDH-Zn) to modulate the nucleation behavior and desolvation process. The hydrophobic cetyl group long chain can inhibit the hydrogen evolution reaction and Zn corrosion by repelling water molecules from the anode surface and reducing the desolvation activation energy. Meanwhile, the Mg-Al LDH with abundant zincophilic active sites can modulate the Zn2+ ion flux, enabling the dendrite-free Zn deposition. Benefiting from this interfacial synergy, a long cycle life (>2300 h) with low and stable overpotential (<18 mV at 1 mA cm-2) and excellent Coulombic efficiency (99.4%) for symmetrical and asymmetrical batteries were achieved. More impressively, excellent rate performance and long cyclic stability have been realized by OMALDH-Zn//MnO2 batteries in both coin-type and pouch-type devices. This low-cost, simple, and high-efficiency coordinated modulation method provides a reliable strategy for the practical application of AZIBs.
Collapse
Affiliation(s)
- Shenteng Wan
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Zengwei Pang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Tong Yao
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Xiaohui Niu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Kunjie Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongxia Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
28
|
Lu H, Hua W, Zhang Z, An X, Feng J, Xi B, Xiong S. Self-Zincophilic Dual Protection Host of 3D ZnO/Zn⊂CF to Enhance Zn Anode Cyclability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312187. [PMID: 38501874 DOI: 10.1002/smll.202312187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Indexed: 03/20/2024]
Abstract
Zn dendrite growth and side reactions restrict the practical use of Zn anode. Herein, the design of a novel 3D hierarchical structure is demonstrated with self-zincophilic dual-protection constructed by ZnO and Zn nanoparticles immobilized on carbon fibers (ZnO/Zn⊂CF) as a versatile host on the Zn surface. The unique 3D frameworks with abundant zinc nucleation storage sites can alleviate the structural stress during the plating/stripping process and overpower Zn dendrite growth by moderating Zn2+ flux. Moreover, given the dual protection design, it can reduce the contact area between active zinc and electrolyte, inhibiting hydrogen evolution reactions. Importantly, density functional theory calculations and experimental results confirm that the introduced O atoms in ZnO/Zn⊂CF enhance the interaction between Zn2+ and the host and reduce Zn nucleation overpotential. As expected, the ZnO/Zn⊂CF-Zn electrode exhibits stable Zn plating/stripping with low polarization for 4200 h at 0.2 mA cm-2 and 0.2 mAh cm-2. Furthermore, the symmetrical cell displays a significantly long cycling life of over 1800 h, even at 30 mA cm-2. The fabricated full cells also show impressive cycling performance when coupled with V2O3 cathodes.
Collapse
Affiliation(s)
- Huibing Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Weimin Hua
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhengchunyu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
29
|
Pan Y, Zuo Z, Jiao Y, Wu P. Constructing Lysozyme Protective Layer via Conformational Transition for Aqueous Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314144. [PMID: 38715517 DOI: 10.1002/adma.202314144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The practical applications for aqueous Zn ion batteries (ZIBs) are promising yet still impeded by the severe side reactions on Zn metal. Here, a lysozyme protective layer (LPL) is prepared on Zn metal surface by a simple and facile self-adsorption strategy. The LPL exhibits extremely strong adhesion on Zn metal to provide stable interface during long-term cycling. In addition, the self-adsorption strategy triggered by the hydrophobicity-induced aggregation effect endows the protective layer with a gap-free and compacted morphology which can reject free water for effective side reaction inhibition performance. More importantly, the lysozyme conformation is transformed from α-helix to β-sheet structure before layer formation, thus abundant functional groups are exposed to interact with Zn2+ for electrical double layer (EDL) modification, desolvation energy decrease, and ion diffusion kinetics acceleration. Consequently, the LPL renders the symmetrical Zn battery with ultra-long cycling performance for more than 1200 h under high Zn depth of discharge (DOD) for 77.7%, and the Zn/Zn0.25V2O5 pouch cell with low N/P ratio of 2.1 at high Zn utilization of 48% for over 300 cycles. This study proposes a facile and low-cost method for constructing a stable protective layer of Zn metal for high Zn utilization aqueous devices.
Collapse
Affiliation(s)
- Yifan Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
30
|
Liu Z, Zhang X, Liu Z, Jiang Y, Wu D, Huang Y, Hu Z. Rescuing zinc anode-electrolyte interface: mechanisms, theoretical simulations and in situ characterizations. Chem Sci 2024; 15:7010-7033. [PMID: 38756795 PMCID: PMC11095385 DOI: 10.1039/d4sc00711e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024] Open
Abstract
The research interest in aqueous zinc-ion batteries (AZIBs) has been surging due to the advantages of safety, abundance, and high electrochemical performance. However, some technique issues, such as dendrites, hydrogen evolution reaction, and corrosion, severely prohibit the development of AZIBs in practical utilizations. The underlying mechanisms regarding electrochemical performance deterioration and structure degradation are too complex to understand, especially when it comes to zinc metal anode-electrolyte interface. Recently, theoretical simulations and in situ characterizations have played a crucial role in AZIBs and are exploited to guide the research on electrolyte engineering and solid electrolyte interphase. Herein, we present a comprehensive review of the current state of the fundamental mechanisms involved in the zinc plating/stripping process and underscore the importance of theoretical simulations and in situ characterizations in mechanism research. Finally, we summarize the challenges and opportunities for AZIBs in practical applications, especially as a stationary energy storage and conversion device in a smart grid.
Collapse
Affiliation(s)
- Zhenjie Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| | - Xiaofeng Zhang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| | - Zhiming Liu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| | - Yue Jiang
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust Nansha Guangzhou 511400 Guangdong P. R. China
| | - Dianlun Wu
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust Nansha Guangzhou 511400 Guangdong P. R. China
| | - Yang Huang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
- The Hong Kong University of Science and Technology (Guangzhou), Advanced Materials Thrust Nansha Guangzhou 511400 Guangdong P. R. China
| | - Zhe Hu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
31
|
Song Z, Miao L, Lv Y, Gan L, Liu M. Non-Metal Ion Storage in Zinc-Organic Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310319. [PMID: 38477446 PMCID: PMC11109623 DOI: 10.1002/advs.202310319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Indexed: 03/14/2024]
Abstract
Zinc-organic batteries (ZOBs) are receiving widespread attention as up-and-coming energy-storage systems due to their sustainability, operational safety and low cost. Charge carrier is one of the critical factors affecting the redox kinetics and electrochemical performances of ZOBs. Compared with conventional large-sized and sluggish Zn2+ storage, non-metallic charge carriers with small hydrated size and light weight show accelerated interfacial dehydration and fast reaction kinetics, enabling superior electrochemical metrics for ZOBs. Thus, it is valuable and ongoing works to build better ZOBs with non-metallic ion storage. In this review, versatile non-metallic cationic (H+, NH4 +) and anionic (Cl-, OH-, CF3SO3 -, SO4 2-) charge carriers of ZOBs are first categorized with a brief comparison of their respective physicochemical properties and chemical interactions with redox-active organic materials. Furthermore, this work highlights the implementation effectiveness of non-metallic ions in ZOBs, giving insights into the impact of ion types on the metrics (capacity, rate capability, operation voltage, and cycle life) of organic cathodes. Finally, the challenges and perspectives of non-metal-ion-based ZOBs are outlined to guild the future development of next-generation energy communities.
Collapse
Affiliation(s)
- Ziyang Song
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Yaokang Lv
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and SustainabilitySchool of Chemical Science and EngineeringTongji UniversityShanghai200092P. R. China
| |
Collapse
|
32
|
Zou Y, Wu Y, Wei W, Qiao C, Lu M, Su Y, Guo W, Yang X, Song Y, Tian M, Dou S, Liu Z, Sun J. Establishing Pinhole Deposition Mode of Zn via Scalable Monolayer Graphene Film. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313775. [PMID: 38324253 DOI: 10.1002/adma.202313775] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/25/2024] [Indexed: 02/08/2024]
Abstract
The uneven texture evolution of Zn during electrodeposition would adversely impact upon the lifespan of aqueous Zn metal batteries. To address this issue, tremendous endeavors are made to induce Zn(002) orientational deposition employing graphene and its derivatives. Nevertheless, the effect of prototype graphene film over Zn deposition behavior has garnered less attention. Here, it is attempted to solve such a puzzle via utilizing transferred high-quality graphene film with controllable layer numbers in a scalable manner on a Zn foil. The multilayer graphene fails to facilitate a Zn epitaxial deposition, whereas the monolayer film with slight breakages steers a unique pinhole deposition mode. In-depth electrochemical measurements and theoretical simulations discover that the transferred graphene film not only acts as an armor to inhibit side reactions but also serves as a buffer layer to homogenize initial Zn nucleation and decrease Zn migration barrier, accordingly enabling a smooth deposition layer with closely stacked polycrystalline domains. As a result, both assembled symmetric and full cells manage to deliver satisfactory electrochemical performances. This study proposes a concept of "pinhole deposition" to dictate Zn electrodeposition and broadens the horizons of graphene-modified Zn anodes.
Collapse
Affiliation(s)
- Yuhan Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yuzhu Wu
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wenze Wei
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Changpeng Qiao
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Miaoyu Lu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Yiwen Su
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Wenyi Guo
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuqing Song
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Meng Tian
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, 214443, P. R. China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhongfan Liu
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
33
|
Xiao J, Yuan C, Xiang L, Li X, Zhu L, Zhan X. Design Strategies toward High-Utilization Zinc Anodes for Practical Zinc-Metal Batteries. Chemistry 2024; 30:e202304149. [PMID: 38189550 DOI: 10.1002/chem.202304149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/09/2024]
Abstract
Aqueous Zn-metal batteries (AZMBs) hold a promise as the next-generation energy storage devices due to their low cost and high specific energy. However, the actual energy density falls far below the requirements of commercial AZMBs due to the use of excessive Zn as anode and the associated issues including dendritic growth and side reactions. Reducing the N/P ratio (negative capacity/positive capacity) is an effective approach to achieve high energy density. A significant amount of research has been devoted to increasing the cathode loading and specific capacity or tuning the Zn anode utilization to achieve low N/P ratio batteries. Nevertheless, there is currently a lack of comprehensive overview regarding how to enhance the utilization of the Zn anode to balance the cycle life and energy density of AZMBs. In this review, we summarize the challenges faced in achieving high-utilization Zn anodes and elaborate on the modifying strategies for the Zn anode to lower the N/P ratio. The current research status and future prospects for the practical application of high-performance AZMBs are proposed at the end of the review.
Collapse
Affiliation(s)
- Jin Xiao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Chenbo Yuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Le Xiang
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Xiutao Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Lingyun Zhu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| | - Xiaowen Zhan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Materials Science and Engineering, Anhui University, 230601, Hefei, Anhui, PR China)
| |
Collapse
|
34
|
Zhang D, Song Z, Miao L, Lv Y, Gan L, Liu M. In situ Nafion-nanofilm oriented (002) Zn electrodeposition for long-term zinc-ion batteries. Chem Sci 2024; 15:4322-4330. [PMID: 38516081 PMCID: PMC10952106 DOI: 10.1039/d3sc06935d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024] Open
Abstract
Dendrite growth and parasitic reactions of a Zn metal anode in aqueous media hinder the development of up-and-coming Zn-ion batteries. Optimizing the crystal growth after Zn nucleation is promising to enable stable cyclic performance of the anode, but directly regulating specific crystal plane growth for homogenized Zn electrodeposition remains highly challenging. Herein, a perfluoropolymer (Nafion) is introduced into an aqueous electrolyte to activate a thermodynamically ultrastable Zn/electrolyte interface for long-term Zn-ion batteries. The low adsorption energy (-2.09 eV) of Nafion molecules on Zn metal ensures the in situ formation of a Nafion-nanofilm during the first charge process. This ultrathin artificial solid electrolyte interface with zincophilic -SO3- groups guides the directional Zn2+ electrodeposition along the (002) crystal surface even at high current density, yielding a dendrite-free Zn anode. The synergic Zn/electrolyte interphase electrochemistry contributes an average coulombic efficiency of 99.71% after 4500 cycles for Zn‖Cu cells, and Zn‖Zn cells achieve an ultralong lifespan of over 7000 h at 5 mA cm-2. Besides, Zn‖MnO2 cells operate well over 3000 cycles. Even at -40 °C, Zn‖Zn cells achieve stable Zn2+ plating/stripping for 1200 h.
Collapse
Affiliation(s)
- Da Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University Shanghai 200092 P. R. China
| |
Collapse
|
35
|
Roy K, Rana A, Heil JN, Tackett BM, Dick JE. For Zinc Metal Batteries, How Many Electrons go to Hydrogen Evolution? An Electrochemical Mass Spectrometry Study. Angew Chem Int Ed Engl 2024; 63:e202319010. [PMID: 38168077 DOI: 10.1002/anie.202319010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024]
Abstract
Despite the advantages of aqueous zinc (Zn) metal batteries (AZMB) like high specific capacity (820 mAh g-1 and 5,854 mAh cm-3 ), low redox potential (-0.76 V vs. the standard hydrogen electrode), low cost, water compatibility, and safety, the development of practically relevant batteries is plagued by several issues like unwanted hydrogen evolution reaction (HER), corrosion of Zn substrate (insulating ZnO, Zn(OH)2 , Zn(SO4 )x (OH)y , Zn(ClO4 )x (OH)y etc. passivation layer), and dendrite growth. Controlling and suppressing HER activity strongly correlates with the long-term cyclability of AZMBs. Therefore, a precise quantitative technique is needed to monitor the real-time dynamics of hydrogen evolution during Zn electrodeposition. In this study, we quantify hydrogen evolution using in situ electrochemical mass spectrometry (ECMS). This methodology enables us to determine a correction factor for the faradaic efficiency of this system with unmatched precision. For instance, during the electrodeposition of zinc on a copper substrate at a current density of 1.5 mA/cm2 for 600 seconds, 0.3 % of the total charge is attributed to HER, while the rest contributes to zinc electrodeposition. At first glance, this may seem like a small fraction, but it can be detrimental to the long-term cycling performance of AZMBs. Furthermore, our results provide insights into the correlation between HER and the porous morphology of the electrodeposited zinc, unravelling the presence of trapped H2 and Zn corrosion during the charging process. Overall, this study sets a platform to accurately determine the faradaic efficiency of Zn electrodeposition and provides a powerful tool for evaluating electrolyte additives, salts, and electrode modifications aimed at enhancing long-term stability and suppressing the HER in aqueous Zn batteries.
Collapse
Affiliation(s)
- Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph N Heil
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Brian M Tackett
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
36
|
Wang R, Wang W, Sun M, Hu Y, Wang G. Long-lifespan Zinc-ion Capacitors Enabled by Anodes Integrated with Interconnected Mesoporous Chitosan Membranes through Electrophoresis-driven Phase Separation. Angew Chem Int Ed Engl 2024; 63:e202317154. [PMID: 38236175 DOI: 10.1002/anie.202317154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The advancement of highly secure and inexpensive aqueous zinc ion energy storage devices is impeded by issues, including dendrite growth, hydrogen evolution and corrosion of zinc anodes. It is essential to modify the interface of zinc anodes that homogenizes ion flux and facilitates highly reversible zinc planarized deposition and stripping. Herein, by coupling zinc ion coordination with acid-base neutralization under the driving of electrophoresis, manageable mesoscopic phase separation for constructing chitosan frameworks was achieved, thereby fabricating interconnected mesoporous chitosan membranes based heterogeneous quasi-solid-state electrolytes integrated with anodes. The framework is constructed by twisted chitosan nanofiber bundles, forming a three-dimensional continuous spindle-shaped pore structure. With this framework, the electrolyte provides exceptional ion conductivity of 25.1 mS cm-1 , with a puncture resistance strength of 2.3 GPa. In addition, the amino groups of chitosan molecule can make the surface of the framework positively charged. Thus, reversible zinc planarized deposition is successfully induced by the synergistic effect of stress constraint and electrostatic modulation. As a result, as-assembled zinc ion capacitor has an excellent cycle life and sustains the capacity by over 95 % after 20000 cycles at a current density of 5 A g-1 . This research presents a constructive strategy for stable electrolytes-integrated zinc anodes.
Collapse
Affiliation(s)
- Ruoyu Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenqiang Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Sun
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanjie Hu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gengchao Wang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
37
|
Xiao K, Yang L, Peng M, Jiang X, Hu T, Yuan K, Chen Y. Unlocking the Effect of Chain Length and Terminal Group on Ethylene Glycol Ether Family Toward Advanced Aqueous Electrolytes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306808. [PMID: 37946662 DOI: 10.1002/smll.202306808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/19/2023] [Indexed: 11/12/2023]
Abstract
Constructing high-performance hybrid electrolyte is important to advanced aqueous electrochemical energy storage devices. However, due to the lack of in-depth understanding of how the molecule structures of cosolvent additives influence the properties of electrolytes significantly impeded the development of hybrid electrolytes. Herein, a series of hybrid electrolytes are prepared by using ethylene glycol ether with different chain lengths and terminal groups as additives. The optimized 2 m LiTFSI-90%DDm hybrid electrolyte prepared from diethylene glycol dimethyl ether (DDm) molecule showcases excellent comprehensive performance and significantly enhances the operating voltage of supercapacitors (SCs) to 2.5 V by suppressing the activity of water. Moreover, the SC with 2 m LiTFSI-90%DDm hybrid electrolyte supplies a long-term cycling life of 50 000 cycles at 1 A g-1 with 92.3% capacitance retention as well as excellent low temperature (-40 ºC) cycling performance (10 000 times at 0.2 A g-1). Universally, Zn//polyaniline full cell with 2 m Zn(OTf)2-90%DDm electrolyte manifests outstanding cycling performance in terms of 77.9% capacity retention after 2,000 cycles and a dendrite-free Zn anode. This work inspires new thinking of developing advanced hybrid electrolytes by cosolvent molecule design toward high-performance energy storage devices.
Collapse
Affiliation(s)
- Kang Xiao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Liming Yang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Mengke Peng
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xudong Jiang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC)/Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
38
|
Huang Y, Zhuang Y, Guo L, Lei C, Jiang Y, Liu Z, Zhao Y, Xing K, Wu X, Luo S, Chen G, Liu Z, Hu Z. Stabilizing Anode-Electrolyte Interface for Dendrite-Free Zn-Ion Batteries Through Orientational Plating with Zinc Aspartate Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306211. [PMID: 37875779 DOI: 10.1002/smll.202306211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Indexed: 10/26/2023]
Abstract
The stability of aqueous Zn-ion batteries (AZIBs) is detrimentally influenced by the formation of Zn dendrites and the occurrence of parasitic side reactions at the Zn metal anode (ZMA)-electrolyte interface. The strategic manipulation of the preferential crystal orientation during Zn2+ plating serves as an essential approach to mitigate this issue. Here, Zn aspartate (Zn-Asp), an electrolyte additive for AZIBs, is introduced not only to optimize the solvation structure of Zn2+ , but also to crucially promote preferential Zn2+ plating on the (002) crystal plane of ZMA. As a result, both side reactions and Zn dendrites are effectively inhibited, ensuring an anode surface free of both dendrites and by-products. The implementation of Zn-Asp leads to significant enhancements in both Zn||Zn symmetric and Zn||Ti batteries, which demonstrate robust cyclability of over 3200 h and high Coulombic efficiency of 99.29%, respectively. Additionally, the Zn||NaV3 O8 ·1.5H2 O full battery exhibits remarkable rate capability, realizing a high capacity of 240.77 mA h g-1 at 5 A g-1 , and retains 92.7% of its initial capacity after 1000 cycles. This research underscores the vital role of electrolyte additives in regulating the preferential crystal orientation of ZMA, thereby contributing to the development of high-performing AZIBs.
Collapse
Affiliation(s)
- Yang Huang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuexin Zhuang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Li Guo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Chongjia Lei
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yue Jiang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhenjie Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuzhen Zhao
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an, Shaanxi, 710123, P. R. China
| | - Kangqian Xing
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiangrong Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Shaojuan Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Guangming Chen
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhuoxin Liu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhe Hu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
39
|
Su Y, Xu L, Sun Y, Guo W, Yang X, Zou Y, Ding M, Zhang Q, Qiao C, Dou S, Cheng T, Sun J. A Holistic Additive Protocol Steers Dendrite-Free Zn(101) Orientational Electrodeposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308209. [PMID: 37880867 DOI: 10.1002/smll.202308209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Indexed: 10/27/2023]
Abstract
Orientation guidance has shown its cutting edges in electrodeposition modulation to promote Zn anode stability toward commercialized standards. Nevertheless, large-scale orientational deposition is handicapped by the competition between Zn-ion reduction and mass transfer. Herein, a holistic electrolyte additive protocol is put forward via incorporating bio-derived dextrin molecules into a zinc sulfate electrolyte bath. Electrochemical tests in combination with molecular dynamics simulations demonstrate the alleviation of concentration polarization throughout accelerating Zn2+ diffusion and retarding their reduction. The predominant (101) texture on inert current collectors (i.e., Cu, Ti, and stainless steel) and (101)/(002) textures on Zn foils afford homogeneous electrical field distribution, which is contributed by the work difference to form the 2D nucleus and the adsorption of dextrin molecules, respectively. Consequently, the symmetric cell harvests a longevous cycling lifespan of over 4000 h at 0.5 mA cm-2 /0.5 mAh cm-2 while the Zn@Cu electrode sustains for 240 h at a high depth of discharge of 40%.
Collapse
Affiliation(s)
- Yiwen Su
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Liang Xu
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Yingjie Sun
- Key Laboratory of Photoelectric Control on Surface and Interface of Hebei Province, College of Science, Hebei University of Science and Technology, Shijiazhuang, 050018, P. R. China
| | - Wenyi Guo
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuhan Zou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Meng Ding
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, P. R. China
| | - Qihui Zhang
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Changpeng Qiao
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Tao Cheng
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, 215123, P. R. China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, P. R. China
- Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
40
|
Yuan Y, Pu SD, Pérez-Osorio MA, Li Z, Zhang S, Yang S, Liu B, Gong C, Menon AS, Piper LFJ, Gao X, Bruce PG, Robertson AW. Diagnosing the Electrostatic Shielding Mechanism for Dendrite Suppression in Aqueous Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307708. [PMID: 37879760 DOI: 10.1002/adma.202307708] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Aqueous zinc electrolytes offer the potential for cheaper rechargeable batteries due to their safe compatibility with the high capacity metal anode; yet, they are stymied by irregular zinc deposition and consequent dendrite growth. Suppressing dendrite formation by tailoring the electrolyte is a proven approach from lithium batteries; yet, the underlying mechanistic understanding that guides such tailoring does not necessarily directly translate from one system to the other. Here, it is shown that the electrostatic shielding mechanism, a fundamental concept in electrolyte engineering for stable metal anodes, has different consequences for the plating morphology in aqueous zinc batteries. Operando electrochemical transmission electron microscopy is used to directly observe the zinc nucleation and growth under different electrolyte compositions and reveal that electrostatic shielding additive suppresses dendrites by inhibiting secondary zinc nucleation along the (100) edges of existing primary deposits and encouraging preferential deposition on the (002) faces, leading to a dense and block-like zinc morphology. The strong influence of the crystallography of Zn on the electrostatic shielding mechanism is further confirmed with Zn||Ti cells and density functional theory modeling. This work demonstrates the importance of considering the unique aspects of the aqueous zinc battery system when using concepts from other battery chemistries.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Shengda D Pu
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | | | - Zixuan Li
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Shengming Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Sixie Yang
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Boyang Liu
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | - Chen Gong
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
| | | | | | - Xiangwen Gao
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Peter G Bruce
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Alex W Robertson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
41
|
Ren K, Li M, Wang Q, Liu B, Sun C, Yuan B, Lai C, Jiao L, Wang C. Thioacetamide Additive Homogenizing Zn Deposition Revealed by In Situ Digital Holography for Advanced Zn Ion Batteries. NANO-MICRO LETTERS 2024; 16:117. [PMID: 38358566 PMCID: PMC10869330 DOI: 10.1007/s40820-023-01310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/30/2023] [Indexed: 02/16/2024]
Abstract
Zinc ion batteries are considered as potential energy storage devices due to their advantages of low-cost, high-safety, and high theoretical capacity. However, dendrite growth and chemical corrosion occurring on Zn anode limit their commercialization. These problems can be tackled through the optimization of the electrolyte. However, the screening of electrolyte additives using normal electrochemical methods is time-consuming and labor-intensive. Herein, a fast and simple method based on the digital holography is developed. It can realize the in situ monitoring of electrode/electrolyte interface and provide direct information concerning ion concentration evolution of the diffusion layer. It is effective and time-saving in estimating the homogeneity of the deposition layer and predicting the tendency of dendrite growth, thus able to value the applicability of electrolyte additives. The feasibility of this method is further validated by the forecast and evaluation of thioacetamide additive. Based on systematic characterization, it is proved that the introduction of thioacetamide can not only regulate the interficial ion flux to induce dendrite-free Zn deposition, but also construct adsorption molecule layers to inhibit side reactions of Zn anode. Being easy to operate, capable of in situ observation, and able to endure harsh conditions, digital holography method will be a promising approach for the interfacial investigation of other battery systems.
Collapse
Affiliation(s)
- Kaixin Ren
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Min Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Qinghong Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Baohua Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Chuang Sun
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Boyu Yuan
- Jiangsu Key Laboratory of Advanced Laser Materials and Devices, School of, Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| | - Chao Lai
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, 300071, Tianjin, People's Republic of China
| | - Chao Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, People's Republic of China.
| |
Collapse
|
42
|
Liu Z, Guo Z, Fan L, Zhao C, Chen A, Wang M, Li M, Lu X, Zhang J, Zhang Y, Zhang N. Construct Robust Epitaxial Growth of (101) Textured Zinc Metal Anode for Long Life and High Capacity in Mild Aqueous Zinc-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305988. [PMID: 37994230 DOI: 10.1002/adma.202305988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/10/2023] [Indexed: 11/24/2023]
Abstract
Aqueous zinc-metal batteries are considered to have the potential for energy storage due to their high safety and low cost. However, the practical applications of zinc batteries are limited by dendrite growth and side reactions. Epitaxial growth is considered an effective method for stabilizing Zn anode, especially for manipulating the (002) plane of deposited zinc. However, (002) texture zinc is difficult to achieve stable cycle at high capacity due to its large lattice distortion and uneven electric field distribution. Here, a novel zinc anode with highly (101) texture (denoted as (101)-Zn) is constructed. Due to unique directional guidance and strong bonding effect, (101)-Zn can achieve dense vertical electroepitaxy in near-neutral electrolytes. In addition, the low grain boundary area inhibits the occurrence of side reactions. The resultant (101)-Zn symmetric cells exhibit excellent stability over 5300 h (4 mA cm-2 for 2 mAh cm-2 ) and 330 h (15 mA cm-2 for 10 mAh cm-2 ). Meanwhile, the cycle life of Zn//MnO2 full cell is meaningfully improved over 1000 cycles.
Collapse
Affiliation(s)
- Zeping Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhikun Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lishuang Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chenyang Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Aosai Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ming Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Meng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingyuan Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiachi Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yu Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Naiqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
43
|
Shin C, Yao L, Jeong SY, Ng TN. Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors. SCIENCE ADVANCES 2024; 10:eadf9951. [PMID: 38170781 PMCID: PMC10796115 DOI: 10.1126/sciadv.adf9951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
The main bottlenecks that hinder the performance of rechargeable zinc electrochemical cells are their limited cycle lifetime and energy density. To overcome these limitations, this work studied the mechanism of a dual-ion Zn-Cu electrolyte to suppress dendritic formation and extend the device cycle life while concurrently enhancing the utilization ratio of zinc and thereby increasing the energy density of zinc ion capacitors (ZICs). The ZICs achieved a best-in-class energy density of 41 watt hour per kilogram with a negative-to-positive (n/p) electrode capacity ratio of 3.10. At the n/p ratio of 5.93, the device showed a remarkable cycle life of 22,000 full charge-discharge cycles, which was equivalent to 557 hours of discharge. The cumulative capacity reached ~581 ampere hour per gram, surpassing the benchmarks of lithium and sodium ion capacitors and highlighting the promise of the dual-ion electrolyte for delivering high-performance, low-maintenance electrochemical energy supplies.
Collapse
Affiliation(s)
- Chanho Shin
- Program in Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lulu Yao
- Program in Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Seong-Yong Jeong
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Division of Advanced Materials Engineering, Kongju National University, Chungnam, 31080, Republic of Korea
| | - Tse Nga Ng
- Program in Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
44
|
Han M, Li TC, Chen X, Yang HY. Electrolyte Modulation Strategies for Low-Temperature Zn Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304901. [PMID: 37695085 DOI: 10.1002/smll.202304901] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/31/2023] [Indexed: 09/12/2023]
Abstract
Aqueous rechargeable Zn metal batteries (ARZBs) are extensively studied recently because of their low-cost, high-safety, long lifespan, and other unique merits. However, the terrible ion conductivity and insufficient interfacial redox dynamics at low temperatures restrict their extended applications under harsh environments such as polar inspections, deep sea exploration, and daily use in cold regions. Electrolyte modulation is considered to be an effective way to achieve low-temperature operation for ARZBs. In this review, first, the fundamentals of the liquid-solid transition of water at low temperatures are revealed, and an in-depth understanding of the critical factors for inferior performance at low temperatures is given. Furthermore, the electrolyte modulation strategies are categorized into anion/concentration regulation, organic co-solvent/additive introduction, anti-freezing hydrogels construction, and eutectic mixture design strategies, and emphasize the recent progress of these strategies in low-temperature Zn batteries. Finally, promising design principles for better electrolytes are recommended and future research directions about high-performance ARZBs at low temperatures are provided.
Collapse
Affiliation(s)
- Mingming Han
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, China
| | - Tian Chen Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Xiang Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| |
Collapse
|
45
|
Zhu Q, Sun G, Qiao S, Wang D, Cui Z, Zhang W, Liu J. Selective Shielding of the (002) Plane Enabling Vertically Oriented Zinc Plating for Dendrite-Free Zinc Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308577. [PMID: 38091607 DOI: 10.1002/adma.202308577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Uncontrolled growth of Zn dendrites hinders the future development of aqueous Zn-ion batteries. Despite that the (100) plane possesses better zincophilic ability and fast kinetics, dendrites are generally suppressed via (002) plane-oriented Zn deposition in previous reports; the ordered (100) plane-dominant Zn deposition, especially under high current density has not yet been realized. Herein, vertically-oriented Zn plating with preferential growth of (100) plane is reported using disodium lauryl phosphate (DLP) as an electrolyte additive. DLP is preferentially anchored on the Zn (002) crystal plane via the polar phosphate group, then the deposition of Zn atoms on the (002) plane is retarded by the long alkyl chain, finally promoting the preferred growth of the (100) plane. This unique growth pattern results in ultrastable Zn plating/stripping at a super-high current density of 50 mA cm-2 , with a cumulative capacity of 8500 mAh cm-2 . The Zn//Zn symmetric cell also cycles steadily for 700 h with a large areal capacity of 10 mAh cm-2 at a current density of 10 mA cm-2 . This study provides new insights into the realization of dendrite-free Zn anodes by crystal plane modulation.
Collapse
Affiliation(s)
- Qiancheng Zhu
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Guobing Sun
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Shizhe Qiao
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Dengke Wang
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Ziyang Cui
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Wenming Zhang
- National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China
| | - Jinping Liu
- School of Chemistry, Chemical Engineering and Life Science and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
46
|
Lee S, Han IK, Jeon NG, Lee Y, Son HB, Han DY, Nam S, Chung T, Kwak MJ, Kim YS, Park S. Promoting Homogeneous Zinc-Ion Transfer Through Preferential Ion Coordination Effect in Gel Electrolyte for Stable Zinc Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304915. [PMID: 37870210 DOI: 10.1002/advs.202304915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Indexed: 10/24/2023]
Abstract
Aqueous zinc metal batteries (AZMBs) are emerging energy storage systems that are poised to replace conventional lithium-ion batteries owing to their intrinsic safety, facile manufacturing process, economic benefits, and superior ionic conductivity. However, the issues of inferior anode reversibility and dendritic plating during operation remain challenging for the practical use of AZMBs. Herein, a gel electrolyte based on zwitterionic poly(sulfobetaine methacrylate) (poly(SBMA)) dissolved with different concentrations of ZnSO4 is proposed. Two-dimensional correlation spectroscopy based on Raman analysis reveals an enhanced interaction priority between the polar groups in SBMA and the dissolved ions as electrolyte concentration increases, which establishes a robust interaction and renders homogeneous ion distribution. Attributable to the modified coordination, zwitterionic gel polymer electrolyte with 5 mol kg-1 of ZnSO4 (ZGPE-5) facilitates stable zinc deposition and improves anode reversibility. By taking advantage of preferential coordination, a symmetrical cell evaluation employing ZGPE-5 demonstrates a cycle life over 3600 h, where ZGPE-5 also exerts a beneficial effect on the full cell cycling when assembled with Zn0.25 V2 O5 cathode. This study elucidates changes in the internal ion behavior that are dependent on electrolyte concentrations and pave the way for durable AZMBs.
Collapse
Affiliation(s)
- Sangyeop Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Na Gyeong Jeon
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yubin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Hye Bin Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dong-Yeob Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Seoha Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Myung-Jun Kwak
- Advanced Batteries Research Center (ABRC), Korea Electronics Technology Institute (KETI), 25 Saenari-ro, Bundang-gu, Seongnam, 13509, Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Soojin Park
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
47
|
Li Q, Hong H, Zhu J, Wu Z, Li C, Wang D, Li P, Zhao Y, Hou Y, Liang G, Mo F, Cui H, Zhi C. Crystal Orientation Engineering of Perfectly Matched Heterogeneous Textured ZnSe for an Enhanced Interfacial Kinetic Zn Anode. ACS NANO 2023. [PMID: 38033247 DOI: 10.1021/acsnano.3c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Uncontrollable dendrite formation in the Zn anode is the bottleneck of the commercialization of rechargeable aqueous zinc-based batteries (RAZBs). Interface, the location of the charge transfer process occuring, can significantly affect the further morphology evolution in ways that have not yet been fully comprehended, for example, the crystal facet and orientation of the coating layer. In this study, we demonstrated that the morphology and kinetics of the Zn anode could be tuned by the crystal facet. The fabricated textured ZnSe (T-ZnSe) layer can significantly enhance the reaction kinetics and induce uniform (0002)Zn deposition. In stark contrast, the polycrystalline P-ZnSe coating hinders the charge transfer process at the interface. With this T-ZnSe@Zn as the anode, the full cell with an I2 cathode and a practical areal capacity (2 mAh cm-2) can work well for 900 cycles. The effectiveness of this anode has also been testified by a pouch cell with an overall capacity of 150 mAh. This research contributes to the understanding of the interface and the feasible strategy for the practical application of the Zn anode.
Collapse
Affiliation(s)
- Qing Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Zhuoxi Wu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chuan Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Donghong Wang
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong 999077, China
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yuwei Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yue Hou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Funian Mo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
48
|
Yuan W, Nie X, Wang Y, Li X, Ma G, Wang Y, Shen S, Zhang N. Orientational Electrodeposition of Highly (002)-Textured Zinc Metal Anodes Enabled by Iodide Ions for Stable Aqueous Zinc Batteries. ACS NANO 2023. [PMID: 37967020 DOI: 10.1021/acsnano.3c08095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Regulating the crystallographic texture of the zinc (Zn) metal anode is promising to promote Zn reversibility in aqueous electrolytes, but the direct fabrication of specific textured Zn still remains challenging. Herein, we report a facile iodide ion (I-)-assisted electrodeposition strategy that can scalably fabricate highly (002) crystal plane-textured Zn metal anode (H-(002)-Zn). Theoretical and experimental characterizations demonstrate that the presence of I- additives can significantly elevate the growth rate of the Zn (100) plane, homogenize the Zn nucleation, and promote the plating kinetics, thus enabling the uniform H-(002)-Zn electrodeposition. Taking the electrolytic cell with the conventional ZnSO4-based electrolyte and commercial Cu substrate as a model system, the Zn texture gradually transforms from (101) to (002) as the increase of NaI additive concentration. In the optimized 1 M ZnSO4 + 0.8 M NaI electrolyte, the as-prepared H-(002)-Zn features a compact structure and an ultrahigh intensity ratio of (002) to (101) signal without containing the (100) signal. The free-standing H-(002)-Zn electrode manifests stronger resistance to interfacial side reactions than the conventional (101)-textured Zn electrode, thus delivering a high efficiency of 99.88% over 400 cycles and ultralong cycling lifespan over 6700 h (>9 months at 1 mA cm-2) and assuring the stable operation of full Zn batteries. This work will enlighten the efficient electrosynthesis of high-performance Zn anodes for practical aqueous Zn batteries.
Collapse
Affiliation(s)
- Wentao Yuan
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xueyu Nie
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xiaotong Li
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Guoqiang Ma
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yue Wang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shigang Shen
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Ning Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
49
|
Shi Z, Yang M, Ren Y, Wang Y, Guo J, Yin J, Lai F, Zhang W, Chen S, Alshareef HN, Liu T. Highly Reversible Zn Anodes Achieved by Enhancing Ion-Transport Kinetics and Modulating Zn (002) Deposition. ACS NANO 2023; 17:21893-21904. [PMID: 37897736 DOI: 10.1021/acsnano.3c08197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Uncontrolled dendrite growth and water-related side reactions in mild electrolytes are the main causes of poor cycling stability of zinc anodes, resulting in the deterioration of aqueous zinc-based batteries. Herein, a multifunctional fluorapatite (Ca5(PO4)3F) aerogel (FAG) interface layer is proposed to realize highly stable zinc anodes via the integrated regulation of Zn2+ migration kinetics and Zn (002) orientation deposition. Owing to the well-defined aerogel nanochannels and the rich Zn2+ adsorption sites resulting from the ion exchange between Ca2+ and Zn2+, the FAG interface layer could significantly accelerate the Zn2+ migration and effectively homogenize the Zn2+ flux and nucleation sites, thus promoting rapid and uniform Zn2+ migration at the electrode/electrolyte interface. Additionally, during the cycling process, the F atoms from FAG promote the in situ generation of ZnF2, which facilitates the manipulation of the preferred Zn (002) orientation deposition, thus efficiently suppressing dendrite growth and side reactions by combining with the above synergistic effects. Consequently, the FAG-modified Zn anode displays a stable cycle life of over 4000 h at 1 mA cm-2 and exhibits highly reversible Zn plating/stripping behavior. Meanwhile, the Zn||MnO2 full cells exhibit improved cycle stability over 2000 cycles compared with that of the bare Zn, highlighting the virtues of the FAG protective layer for highly reversible Zn anodes. Our work brings the insight in to stabilize Zn anodes and power the commercial applications of aqueous zinc-based batteries.
Collapse
Affiliation(s)
- Zhenhai Shi
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Meng Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yufeng Ren
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Junhong Guo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Feili Lai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, Massachusetts, United States
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Suli Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Tianxi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
50
|
Ouyang K, Chen S, Ling W, Cui M, Ma Q, Zhang K, Zhang P, Huang Y. Synergistic Modulation of In-Situ Hybrid Interface Construction and pH Buffering Enabled Ultra-Stable Zinc Anode at High Current Density and Areal Capacity. Angew Chem Int Ed Engl 2023; 62:e202311988. [PMID: 37743256 DOI: 10.1002/anie.202311988] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
In aqueous electrolytes, the uncontrollable interfacial evolution caused by a series of factors such as pH variation and unregulated Zn2+ diffusion would usually result in the rapid failure of metallic Zn anode. Considering the high correlation among various triggers that induce the anode deterioration, a synergistic modulation strategy based on electrolyte modification is developed. Benefitting from the unique pH buffer mechanism of the electrolyte additive and its capability to in situ construct a zincophilic solid interface, this synergistic effect can comprehensively manage the thermodynamic and kinetic properties of Zn anode by inhibiting the pH variation and parasitic side reactions, accelerating de-solvation of hydrated Zn2+ , and regulating the diffusion behavior of Zn2+ to realize uniform Zn deposition. Thus, the modified Zn anode can achieve an impressive lifespan at ultra-high current density and areal capacity, operating stably for 609 and 209 hours at 20 mA cm-2 , 20 mAh cm-2 and 40 mA cm-2 , 20 mAh cm-2 , respectively. Based on this exceptional performance, high loading Zn||NH4 V4 O10 batteries can achieve excellent cycle stability and rate performance. Compared with those previously reported single pH buffer strategies, the synergistic modulation concept is expected to provide a new approach for highly stable Zn anode in aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Kefeng Ouyang
- Sauvage Laboratory for Smart Materials, State Key Laboratory of Advanced Welding and Joining, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Sheng Chen
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Wei Ling
- Sauvage Laboratory for Smart Materials, State Key Laboratory of Advanced Welding and Joining, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Mangwei Cui
- Sauvage Laboratory for Smart Materials, State Key Laboratory of Advanced Welding and Joining, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Qing Ma
- Education Center of Experiments and Innovation, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Kun Zhang
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, China
| | - Peixin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yan Huang
- Sauvage Laboratory for Smart Materials, State Key Laboratory of Advanced Welding and Joining, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|