1
|
Lusiani N, Pavlova E, Hoogenboom R, Sedlacek O. Cationic Ring-Opening Polymerization-Induced Self-Assembly (CROPISA) of 2-Oxazolines: From Block Copolymers to One-Step Gradient Copolymer Nanoparticles. Angew Chem Int Ed Engl 2025; 64:e202416106. [PMID: 39612372 DOI: 10.1002/anie.202416106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
In recent years, polymerization-induced self-assembly (PISA) has emerged as a powerful method for the straightforward synthesis of polymer nanoparticles at high concentration. In this study, we describe for the first time the synthesis of poly(2-oxazoline) nanoparticles by dispersion cationic ring-opening polymerization-induced self-assembly (CROPISA) in n-dodecane. Specifically, a n-dodecane-soluble aliphatic poly(2-(3-ethylheptyl)-2-oxazoline) (PEHOx) block was chain-extended with poly(2-phenyl-2-oxazoline) (PPhOx). While the PhOx monomer is soluble in n-dodecane, its polymerization leads to n-dodecane-insoluble PPhOx, which leads to in situ self-assembly of the formed PEHOx-b-PPhOx copolymers. The polymerization kinetics and micellization upon second block formation were studied, and diverse nanoparticle dispersions were prepared, featuring varying block lengths and polymer concentrations, leading to dispersions with distinctive morphologies and physical properties. Finally, we developed a single-step protocol for the synthesis of polymer nanoparticles directly from monomers via gradient copolymerization CROPISA, which exploits the significantly greater reactivity of EHOx compared to that of PhOx during the statistical copolymerization of both monomers. Notably, this approach provides access to formulations with monomer compositions otherwise unattainable through the block copolymerization method. Given the synthetic versatility and application potential of poly(2-oxazolines), the developed CROPISA method can pave the way for advanced nanomaterials with favorable properties as demonstrated by using the obtained nanoparticles for stabilization of Pickering emulsions.
Collapse
Affiliation(s)
- Niccolò Lusiani
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic
| | - Ewa Pavlova
- Institute of Macromolecular Chemistry, v.v.i, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06, Prague 6, Czech Republic
| | - Richard Hoogenboom
- Department of Organic and Macromolecular Chemistry, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000, Ghent, Belgium
| | - Ondrej Sedlacek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 40, Prague 2, Czech Republic
| |
Collapse
|
2
|
Wang P, Ren Y, Chen W. Exploration of Fusion and Fission of Molecular Assemblies in Aqueous Solution through a Dynamic Clustering Approach. J Phys Chem A 2025; 129:373-384. [PMID: 39729043 DOI: 10.1021/acs.jpca.4c06582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
To understand the mechanism of self-assembly and to predict the evolutionary pattern of the fusion-fission system over a long period of time, studying the dynamics of these processes is of great significance. The trajectories from molecular dynamics (MD) simulations of self-assembly processes contain numerous latent fusion and fission events. To analyze the fusion and fission events from the simulated trajectory, in this article, a dynamic clustering approach was developed by comparing the changes of monomer composition within clusters over simulated time. The rates of fusion and fission events obtained from dynamic clustering analysis were further coupled with the population balance model (PBM), and the evolution of the molecular assemblies calculated is reasonably consistent with the corresponding MD simulation results. This approach provides a new idea to analyze the big data of molecular self-assembly dynamics obtained from MD simulations, and it offers a computationally achievable approach to connect discrete events at the molecular scale with continuum equations such as the PBM at the macroscale.
Collapse
Affiliation(s)
- Peicheng Wang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Science s, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Ren
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Science s, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Chen
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Science s, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Chohan P, György C, Mykhaylyk OO, Prentice GM, Filip SV, Payne MJ, Manna G, Armes SP. RAFT Dispersion Polymerization of 2-Hydroxyethyl Methacrylate in Non-polar Media. Macromolecules 2024; 57:11738-11752. [PMID: 39741961 PMCID: PMC11684172 DOI: 10.1021/acs.macromol.4c02016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025]
Abstract
We report the reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxyethyl methacrylate (HEMA) in n-dodecane using a poly(lauryl methacrylate) (PLMA) precursor at 90 °C. This formulation is an example of polymerization-induced self-assembly (PISA), which leads to the formation of a colloidal dispersion of spherical PLMA-PHEMA nanoparticles at 10-20% w/w solids. PISA syntheses involving polar monomers in non-polar media have been previously reported but this particular system offers some unexpected and interesting challenges in terms of both synthesis and characterization. First, GPC analysis requires chemical derivatization of the pendent hydroxyl groups in the PHEMA block using excess acetyl chloride to ensure that both blocks are fully soluble in chloroform. Second, DLS, TEM and 1H NMR spectroscopy studies of the periodically sampled polymerizing mixture indicate the transient formation of anomalously large, colloidally unstable aggregates at around 50% conversion, which approximately corresponds to the maximum rate of polymerization. Remarkably, such aggregates immediately break up to form well-defined nanoparticles, which remain colloidally stable at the end of the HEMA polymerization. Moreover, depending on the target degree of polymerization (DP) for the PHEMA block, TEM studies typically indicate bimodal particle size distributions for PLMA-PHEMA nanoparticles prepared using a one-shot batch protocol. This is attributed to a side-reaction between HEMA monomer and the dithiobenzoate-based RAFT agent. Fortunately, this problem can be prevented by conducting such PISA syntheses under monomer-starved conditions by continuous addition of the HEMA monomer using a syringe pump. Alternatively, unimodal spheres can also be produced via adding HEMA in multiple batches. This PISA formulation has been optimized to produce monomodal particle size distributions while targeting a PHEMA DP of up to 1000 at the maximum possible copolymer concentration. Finally, time-resolved small-angle X-ray scattering (SAXS) studies indicate the rapid formation of well-defined near-monodisperse spheres when targeting PLMA14-PHEMA50 nanoparticles.
Collapse
Affiliation(s)
- Priyanka Chohan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Csilla György
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Oleksandr O. Mykhaylyk
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Giles M. Prentice
- Applied
Sciences, BP Technology Centre, Whitchurch Hill, Reading RG8 7QR, U.K.
| | - Sorin V. Filip
- Applied
Sciences, BP Technology Centre, Whitchurch Hill, Reading RG8 7QR, U.K.
| | - Marc J. Payne
- Applied
Sciences, BP Technology Centre, Whitchurch Hill, Reading RG8 7QR, U.K.
| | - Gouranga Manna
- European
Synchrotron Radiation Facility, 6 rue Jules Horowitz, Grenoble 38000, France
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
4
|
Guo M, Lin R, Xu W, Xu L, Liu M, Huang X, Zhang J, Li X, Ma Y, Yuan M, Li Q, Dong Q, Li X, Zhao T, Zhao D. Replenishing Cation-π Interactions for the Fabrication of Mesoporous Levodopa Nanoformulations for Parkinson Remission. ACS NANO 2024; 18:30605-30615. [PMID: 39436831 DOI: 10.1021/acsnano.4c09326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Directly assembling drugs into mesoporous nanoformulations will be greatly favored due to the combination of enhanced drug delivery efficiency and mesostructure-enabled nanobio interactions. However, such an approach is hindered due to the lack of understanding of polymer nanoparticles' formation mechanism, especially the relationship between polymerization, self-assembly, and the nucleation process. Here, by investigating the levodopa and dopamine polymerization process, we identify π-cation interaction as pivotal in the self-assembly and nucleation control of dopa molecules. Thus, through manipulation of the π-cation interaction, we present the direct assembly of a commercial drug, levodopa, into mesoporous nanoformulations. The synthesized nanospheres, approximately 200 nm in diameter, exhibit uniform mesopores of around 8 nm. These nanoformulations, abundant in mesopores, enhance chiral phenylalanine interaction with α-synuclein (Syn), curbing aggregation, safeguarding neurons, and alleviating Parkinson's pathology. When combating α-synuclein, the nanoformulation achieved ∼100% inhibition of protein aggregation and sustained neuron viability up to 300%. We believe that this study may advance mesoscale self-assembly knowledge, guiding future nanopharmaceutical developments.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Runfeng Lin
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Li Xu
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zhang
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Xingjin Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yanming Ma
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Minjia Yuan
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Qi Li
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, P. R. China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Chang ZX, Hong CY, Zhang WJ. Polymerization-Induced Self-Assembly Providing PEG-Gels with Dynamic Micelle-Crosslinked Hierarchical Structures and Overall Improvement of Their Comprehensive Performances. Macromol Rapid Commun 2024:e2400681. [PMID: 39427340 DOI: 10.1002/marc.202400681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Polymer gels are fascinating soft materials and have become excellent candidates for wearable electronics, biomedicine, sensors, etc. Synthetic gels usually suffer from poor mechanical properties, and integrating good mechanical properties, adhesiveness, stability, and self-healing performances in one gel is more difficult. Herein, polymerization-induced self-assembly (PISA) providing PEG-gels with an overall improvement in their comprehensive performances is reported. PISA synthesis is carried out in PEG (solvent) to efficiently produce various nanoparticles, which are used as the nanofillers in the subsequent synthesis of PEG-gels with dynamic micelle-crosslinked hierarchical structures. Compared to hydrogels, PEG-gels show excellent long-term stability due to the nonvolatile feature of PEG solvent. The hierarchical PEG-gels (with nanofillers) exhibit better mechanical and adhesive properties than the homogeneous-gels (without nanofillers). The energy dissipation mechanism of the PEG-gels is analyzed via stress relaxation and cyclic mechanical tests. High-density hydrogen bonds between the micelles and PAA matrix can be broken and reformed, endowing better self-healing properties of the dynamic micelle-crosslinked PEG gels. This work provides a simple strategy for producing hierarchical structural gels with enhanced properties, which offers fundamentals and inspirations for the designing of various advanced functional materials.
Collapse
Affiliation(s)
- Zi-Xuan Chang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chun-Yan Hong
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wen-Jian Zhang
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
6
|
Deng Z, Sun Y, Chen A. Light-Triggered Reversible Swelling of Azobenzene-Containing Block Copolymer Worms via Confined Deformation Prepared by Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2024; 45:e2400372. [PMID: 38885423 DOI: 10.1002/marc.202400372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Stimuli-responsive block copolymer nanoparticles (NPs) have received close attention in recent years owing to their tremendous application potential in smart materials. Azobenzene-containing NPs are widely studied due to the advantages of light as a stimulus and fast reversible trans-cis isomerization of azobenzene chromophores. However, the inefficient preparation process and difficult reversible transformation of morphologies limit their development. Herein it is demonstrated that the light-triggered reversible swelling behavior of wormlike NPs with high azobenzene content could be realized via confined deformation. These worms are prepared in large quantities via polymerization-induced self-assembly based on the copolymerization of 11-(4-(4-butylphenylazo)phenoxy)undecyl methacrylate (MAAz) and N-(methacryloxy)succinimide (NMAS) monomers. Upon UV/visible light irradiation, the reversible deformation of worms is achieved when the feed molar ratio of NMAS/MAAz is relatively high or via crosslinking using diamines, which leads to the reduction of the photoisomerization efficiency. The diameter variation of the worms is influenced by the amount and types of crosslinkers. Moreover, the scalability of this strategy is further proved by the fabrication of photo- and reductant-responsive crosslinked worms. It is expected that this study not only provides a new route to affording reversible photoresponsive NPs but also offers a unique insight into the reversible photodeformation mechanism of azobenzene-containing NPs.
Collapse
Affiliation(s)
- Zichao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Yalan Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
7
|
Kim HJ, Ishizuka F, Kuchel RP, Chatani S, Niino H, Zetterlund PB. RAFT Dispersion PISA with Poly(methyl methacrylate) as Stabilizer Block in Alcohol/Water: Unconventional PISA Morphology Transitions. Biomacromolecules 2024; 25:6135-6145. [PMID: 39158737 DOI: 10.1021/acs.biomac.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization-induced self-assembly (PISA) was conducted in the presence of poly(methyl methacrylate) (PMMA) stabilizer in ethanol/water mixture (80/20 by volume). Two different systems were explored by utilizing (i) 2-ethylhexyl methacrylate (EHMA) and (ii) n-butyl methacrylate (BMA). The morphology transitions of these systems were investigated by varying the polymerization conditions, i.e., the presence of the solvophilic comonomer MMA, the solids content, and the target degree of polymerization (DP). As observed in conventional PISA, the presence of solvophilic comonomer, increase in solids content and target DP promoted the formation of high-order morphology. However, unusual morphology transitions were observed whereby the morphology transformed from high-order morphologies to a mixture of spherical nanoparticles, worms, and vesicles and finally to vesicles with increasing target DP. This unusual evolution may be attributed to the limited solubility of PMMA in the ethanol/water solvent mixture, whereby PMMA is soluble at the polymerization temperature but insoluble at lower temperatures.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima 739-0693, Japan
| | - Hiroshi Niino
- Polymer Laboratory, Science & Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-8502, Japan
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Yamanaka R, Sugawara-Narutaki A, Takahashi R. Microphase Separation and Gelation through Polymerization-Induced Self-Assembly Using Star Polyethylene Glycols. ACS Macro Lett 2024; 13:1050-1055. [PMID: 39083349 PMCID: PMC11340017 DOI: 10.1021/acsmacrolett.4c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/17/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
Polymerization-induced self-assembly (PISA) during the synthesis of diblock copolymers has garnered considerable interest; however, architectures beyond diblock copolymers have scarcely been explored. Here, we studied PISA using 4- and 8-arm star polyethylene glycol (PEG), as well as 2-arm (linear) PEG, wherein each terminus of PEG was functionalized with a chain-transfer agent, holding a constant molar mass for each arm. Styrene was polymerized from each PEG terminus through reversible addition-fragmentation chain-transfer (RAFT) polymerization in an ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM][PF6]), with a total solute concentration of 40 wt %. While the styrene monomer is soluble in [BMIM][PF6], polystyrene is not; thus, self-assembly and cross-linking (gelation) occur. Structural analysis by small-angle X-ray scattering revealed that a relatively ordered microphase-separated structure for PISA was observed. Two-arm PEG-PS formed hexagonally packed cylinders, whereas 4- and 8-arm PEG-PS exhibited hexagonal close-packed spheres and disordered spheres. The dynamics, studied by oscillatory rheology, were also influenced by the number of arms; the 4-arm star block copolymers showed the highest plateau modulus. This study demonstrates that the topology is an important factor in controlling the microphase-separated structure and mechanical properties when preparing gels through PISA.
Collapse
Affiliation(s)
- Riku Yamanaka
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ayae Sugawara-Narutaki
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- Institute
of Biomaterials and Bioengineering, Tokyo
Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Rintaro Takahashi
- Department
of Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
9
|
Tinajero-Díaz E, Judge N, Li B, Leigh T, Murphy RD, Topham PD, Derry MJ, Heise A. Poly(l-proline)-Stabilized Polypeptide Nanostructures via Ring-Opening Polymerization-Induced Self-Assembly (ROPISA). ACS Macro Lett 2024; 13:1031-1036. [PMID: 39074359 PMCID: PMC11340022 DOI: 10.1021/acsmacrolett.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Poly(proline) II helical motifs located at the protein-water interface stabilize the three-dimensional structures of natural proteins. Reported here is the first example of synthetic biomimetic poly(proline)-stabilized polypeptide nanostructures obtained by a straightforward ring-opening polymerization-induced self-assembly (ROPISA) process through consecutive N-carboxyanhydride (NCA) polymerization. It was found that the use of multifunctional 8-arm initiators is critical for the formation of nanoparticles. Worm-like micelles as well as spherical morphologies were obtained as confirmed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS). The loading of the nanostructures with dyes is demonstrated. This fast and open-vessel procedure gives access to amino acids-based nanomaterials with potential for applications in nanomedicine.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Nicola Judge
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Bo Li
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Thomas Leigh
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Robert D. Murphy
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
| | - Paul D. Topham
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Matthew J. Derry
- Aston
Institute
for Membrane Excellence, Aston University, B4 7ET Birmingham, U.K.
| | - Andreas Heise
- Department
of Chemistry, RCSI University of Medicine
and Health Sciences, 123 St. Stephen’s Green, D02
YN77 Dublin, Ireland
- Science
Foundation Ireland (SFI) Centre for Research in Medical Devices (CURAM), D02 YN77 Dublin, Ireland
- AMBER, The
SFI Advanced Materials and Bioengineering Research Centre, D02 YN77 Dublin, Ireland
| |
Collapse
|
10
|
Morrell AH, Warren NJ, Thornton PD. The Production of Polysarcosine-Containing Nanoparticles by Ring-Opening Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2024; 45:e2400103. [PMID: 38597209 DOI: 10.1002/marc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Indexed: 04/11/2024]
Abstract
N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.
Collapse
Affiliation(s)
- Anna H Morrell
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Thornton
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
11
|
Sun H, Wang S, Dugas PY, D'Agosto F, Lansalot M. Peculiar Behavior of Methyl Methacrylate Emulsion Polymerization-Induced Self-Assembly Mediated by RAFT Using Poly(Methacrylic Acid) Macromolecular Chain Transfer Agent. Macromol Rapid Commun 2024; 45:e2400141. [PMID: 38695257 DOI: 10.1002/marc.202400141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization of methyl methacrylate (MMA) is successfully performed in water in the presence of a poly(methacrylic acid) (PMAA) macromolecular chain transfer agent (macroCTA) leading to the formation of self-stabilized PMAA-b-PMMA amphiphilic block copolymer particles. At pH 3.7, the reactions are well-controlled with narrow molar mass distributions. Increasing the initial pH, particularly above 5.6, results in a partial loss of reactivity of the PMAA macroCTA. The effect of the degree of polymerization (DPn) of the PMMA block, the solids content, the nature of the hydrophobic segment, and the pH on the morphology of the obtained diblock copolymer particles is then investigated. Worm-like micelles are formed for a DPn of PMMA of 20 (PMMA20), while "onion-like" particles and spherical vesicles are obtained for PMMA30 and PMMA50, respectively. In contrast, spherical particles are obtained for the DPns higher than 150. This unusual evolution of particle morphologies upon increasing the DPn of the PMMA block seems to be related to hydrogen bonds between hydrophilic MAA and hydrophobic MMA units.
Collapse
Affiliation(s)
- Huidi Sun
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne, F-69616, France
| | - Suren Wang
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne, F-69616, France
| | - Pierre-Yves Dugas
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne, F-69616, France
| | - Franck D'Agosto
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne, F-69616, France
| | - Muriel Lansalot
- Univ Lyon, Université Claude Bernard Lyon 1, CPE Lyon, CNRS, UMR 5128, Catalysis, Polymerization, Processes and Materials (CP2M), Villeurbanne, F-69616, France
| |
Collapse
|
12
|
György C, Wagstaff JS, Hunter SJ, Etim EU, Armes SP. Effect of Added Salt on the RAFT Polymerization of 2-Hydroxyethyl Methacrylate in Aqueous Media. Macromolecules 2024; 57:6816-6827. [PMID: 39071045 PMCID: PMC11271178 DOI: 10.1021/acs.macromol.4c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
We report the effect of added salt on the reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-hydroxyethyl methacrylate (HEMA) in aqueous media. More specifically, poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC26) was employed as a salt-tolerant water-soluble block for chain extension with HEMA targeting PHEMA DPs from 100 to 800 in the presence of NaCl. Increasing the salt concentration significantly reduces the aqueous solubility of both the HEMA monomer and the growing PHEMA chains. HEMA conversions of more than 99% could be achieved within 6 h at 70 °C regardless of the NaCl concentration when targeting PMPC26-PHEMA800 vesicles at 20% w/w solids. Significantly faster rates of polymerization were observed at higher salt concentration owing to the earlier onset of micellar nucleation. Transmission electron microscopy (TEM) was used to construct a pseudo-phase diagram for this polymerization-induced self-assembly (PISA) formulation. High-quality images required cross-linking of the PHEMA chains with glutaraldehyde prior to salt removal via dialysis. Block copolymer spheres, worms, or vesicles can be accessed at any salt concentration up to 2.5 M NaCl. However, only kinetically trapped spheres could be obtained in the presence of 3 M NaCl because the relatively low HEMA monomer solubility under such conditions leads to an aqueous emulsion polymerization rather than an aqueous dispersion polymerization. In this case, dynamic light scattering studies indicated a gradual increase in z-average diameter from 26 to 86 nm when adjusting the target PHEMA degree of polymerization from 200 to 800. When targeting PMPC26-PHEMA800 vesicles, increasing the salt content up to 2.5 M NaCl leads to a systematic reduction in the z-average diameter from 953 to 92 nm. Similarly, TEM analysis and dispersion viscosity measurements indicated a gradual reduction in worm contour length with increasing salt concentration for PMPC26-PHEMA600 worms. This new PISA formulation clearly illustrates the importance of added salt on aqueous monomer solubility and how this affects (i) the kinetics of polymerization, (ii) the morphology of the corresponding diblock copolymer nano-objects, and (iii) the mode of polymerization in aqueous media.
Collapse
Affiliation(s)
- Csilla György
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Jacob S. Wagstaff
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Saul J. Hunter
- Joseph
Banks Laboratories, School of Chemistry, University of Lincoln, Lincolnshire LN6 7TS, U.K.
| | - Esther U. Etim
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, Brook Hill, University of Sheffield, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
13
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
14
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
15
|
Gioldasis C, Gkamas A, Vlahos C. Impact of Copolymer Architecture on Demicellization and Cargo Release via Head-to-Tail Depolymerization of Hydrophobic Blocks or Branches. Polymers (Basel) 2024; 16:1127. [PMID: 38675046 PMCID: PMC11053811 DOI: 10.3390/polym16081127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Utilizing molecular dynamics simulations, we explored the demicellization and cargo release dynamics of linear and miktoarm copolymers, featuring one, two, and three hydrophobic blocks or branches, each capable of head-to-tail depolymerization. Our findings revealed that, under stoichiometric trigger molecule concentrations, miktoarms with three branches exhibited consistently faster depolymerization rates than those with two branches and linear copolymers. Conversely, at constant trigger molecule concentrations, the depolymerization rates of copolymers exhibited more complex behaviors influenced by two opposing factors: the excess of trigger molecules, which increased with a decrease in the number of hydrophobic branches or blocks, and simultaneous head-to-tail depolymerization, which intensified with an increasing number of branches. Our study elucidates the intricate interplay between copolymer architecture, trigger molecule concentrations, and depolymerization dynamics, providing valuable insights for the rational design of amphiphilic copolymers with tunable demicellization and cargo release properties.
Collapse
Affiliation(s)
| | | | - Costas Vlahos
- Chemistry Department, University of Ioannina, 45110 Ioannina, Greece; (C.G.); (A.G.)
| |
Collapse
|
16
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
17
|
Zheng Y, Niino H, Chatani S, Goto A. Preparation of Block Copolymer Self-Assemblies via Pisa in a Non-Polar Medium Based on RCMP. Macromol Rapid Commun 2024; 45:e2300635. [PMID: 38284465 DOI: 10.1002/marc.202300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Indexed: 01/30/2024]
Abstract
Polymerization-induced self-assembly (PISA) is conducted in a non-polar medium (n-dodecane) via reversible complexation-mediated polymerization (RCMP). Stearyl methacrylate (SMA) is used to synthesize a macroinitiator, and subsequent block polymerization of benzyl methacrylate (BzMA) from the macroinitiator in n-dodecane afforded a PSMA-PBzMA block copolymer, where PSMA is poly(stearyl methacrylate) and PBzMA is poly(benzyl methacrylate). Because PSMA is soluble but PBzMA is insoluble in n-dodecane, the block copolymer formed a self-assembly during the block polymerization (PISA). Spherical micelles, worms, and vesicles are obtained, depending on the degrees of polymerization of PSMA and PBzMA. "One-pot" PISA is also attained; namely, BzMA is directly added to the reaction mixture of the macroinitiator synthesis, and PISA is conducted in the same pot without purification of the macroinitiator. The spherical micelle and vesicle structures are also fixed using a crosslinkable monomer during PISA. RCMP-PISA is highly attractive as it is odorless and metal-free. The "one-pot" synthesis does not require the purification of the macroinitiator. RCMP-PISA can provide a practical approach to synthesize self-assemblies in non-polar media.
Collapse
Affiliation(s)
- Yichao Zheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| | - Hiroshi Niino
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Shunsuke Chatani
- Hiroshima R&D Center, Mitsubishi Chemical Corporation, 20-1 Miyuki-cho, Otake, Hiroshima, 739-0693, Japan
| | - Atsushi Goto
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459
| |
Collapse
|
18
|
Astier S, Johnson EC, Norvilaite O, Varlas S, Brotherton EE, Sanderson G, Leggett GJ, Armes SP. Controlling Adsorption of Diblock Copolymer Nanoparticles onto an Aldehyde-Functionalized Hydrophilic Polymer Brush via pH Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38320303 PMCID: PMC10883040 DOI: 10.1021/acs.langmuir.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Sterically stabilized diblock copolymer nanoparticles with a well-defined spherical morphology and tunable diameter were prepared by RAFT aqueous emulsion polymerization of benzyl methacrylate at 70 °C. The steric stabilizer precursor used for these syntheses contained pendent cis-diol groups, which means that such nanoparticles can react with a suitable aldehyde-functional surface via acetal bond formation. This principle is examined herein by growing an aldehyde-functionalized polymer brush from a planar silicon wafer and studying the extent of nanoparticle adsorption onto this model substrate from aqueous solution at 25 °C using a quartz crystal microbalance (QCM). The adsorbed amount, Γ, depends on both the nanoparticle diameter and the solution pH, with minimal adsorption observed at pH 7 or 10 and substantial adsorption achieved at pH 4. Variable-temperature QCM studies provide strong evidence for chemical adsorption, while scanning electron microscopy images recorded for the nanoparticle-coated brush surface after drying indicate mean surface coverages of up to 62%. This fundamental study extends our understanding of the chemical adsorption of nanoparticles on soft substrates.
Collapse
Affiliation(s)
- Samuel Astier
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Edwin C Johnson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Oleta Norvilaite
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Spyridon Varlas
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - George Sanderson
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Graham J Leggett
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|
19
|
Jia S, Liu Y, Hao L, Ni J, Wang Y, Yang Y, Chen Y, Cheng P, Chen L, Zhang Z. A General Group-Protection Synthesis Strategy to Fabricate Covalent Organic Framework Gels. J Am Chem Soc 2023; 145:26266-26278. [PMID: 38011228 DOI: 10.1021/jacs.3c09284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fabricating insoluble and infusible porous materials into gels for advanced applications is of great importance but has formidable challenges. Here, we present a general, facile, and scalable protocol to fabricate covalent organic framework (COF) gels using a group-protection synthesis strategy. To prove the generality of this strategy, we successfully prepared 10 types of COF organohydrogels with high crystallinity, porosity, good mechanical properties, and excellent solvent and freezing resistance. Notably, these COF organohydrogels can easily transform into hydrogels, organogels, and aerogels, breaking the gaps between different types of COF gels. An in-depth mechanism investigation unveils that the group-protection strategy effectively slows down the formation rate and regulates the morphology of COFs, benefiting the formation of cross-linked nanofibers/nanosheets to produce COF gels. We also find that the hydrogen bond network formed by the organic/water binary solvent and functional groups in the COF skeletons plays a vital role in creating organohydrogels and maintaining frost resistance and solvent resistance. As an application demonstration, COF gels installed with photoresponsive azobenzene groups show excellent solar energy absorption, photothermal conversion, and water transmission performances, demonstrating great potential in solar desalination. This work enriches the synthesis toolboxes for COF gels and expands the application scope of COFs.
Collapse
Affiliation(s)
- Shuping Jia
- College of Chemistry, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Yujie Liu
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liqin Hao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiayu Ni
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanjie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yi Yang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Li Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|