1
|
Keri RS, Budagumpi S, Adimule V. Quinoline Synthesis: Nanocatalyzed Green Protocols-An Overview. ACS OMEGA 2024; 9:42630-42667. [PMID: 39464456 PMCID: PMC11500387 DOI: 10.1021/acsomega.4c07011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/29/2024]
Abstract
Heterocyclic compounds are of great interest in our daily lives. They are widely distributed in nature and are synthesized in laboratories. Heterocycles play an important role in the metabolism of all living cells, including vitamins and coenzyme precursors like thiamine and riboflavin. Furthermore, heterocyclic systems are essential building blocks for creating innovative materials with intriguing electrical, mechanical, and biological properties. Also, more than 85% of all biologically active chemical entities comprise a heterocycle. As a result, heterocycle synthesis piqued researchers' curiosity, and in recent decades, chemists have concentrated more on nitrogen-containing cyclic nuclei in structures. Quinoline and its derivatives exhibit several biological functions, including antimicrobial, anticancer, antimalarial, anti-inflammatory, antihypertensive, and antiasthmatic effects. In addition, over a hundred quinoline-based drugs are available to treat a variety of disorders. Because of its biological importance, researchers developed one-pot synthetic methods employing effective acid/base catalysts (Lewis acids, Brønsted acids, and ionic liquids), reagents, and transition-metal-based catalysts. These methods have some downsides, including longer reaction times, harsher reaction conditions, creation of byproducts, costly catalysts, use of hazardous solvents, an unacceptable economic yield, and catalyst recovery. Researchers' focus has switched to creating environmentally friendly and effective methods for the synthesis of quinoline derivatives as a result of these methodologic shortcomings. Because of its special qualities, the use of nanocatalysts or nanocomposites offers an option for the effective synthesis of quinolines. This review focuses on the published research articles on nanocatalysts to synthesize substituted quinoline derivatives. This review covers all contributions until May 2024, focusing on quinoline ring building and mechanistic issues. With the aid of this review, we anticipate that synthetic chemists will be able to develop more effective methods of synthesizing quinolines.
Collapse
Affiliation(s)
- Rangappa S. Keri
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Srinivasa Budagumpi
- Centre
for Nano and Material Sciences, Jain (Deemed-to-be
University), Jain Global Campus, Kanakapura, Bangalore, Karnataka 562112, India
| | - Vinayak Adimule
- Angadi
Institute of Technology and Management (AITM), Savagaon Road, Belagavi, Karnataka 5800321, India
| |
Collapse
|
2
|
Berhe MG, Gebreslassie YT. Biomedical Applications of Biosynthesized Nickel Oxide Nanoparticles. Int J Nanomedicine 2023; 18:4229-4251. [PMID: 37534055 PMCID: PMC10390717 DOI: 10.2147/ijn.s410668] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Nickel oxide nanoparticles have gained tremendous attention recently in a variety of scientific domains thanks to their characteristic chemical, physical, optical, and biological properties. Due to the diversity of applications in various fields, different physicochemical methods have been used to synthesize nickel oxide nanoparticles. However, most conventional methods use hazardous chemicals during synthesis and become liable for potential health risks, while others are expensive and require a lot of energy to synthesize nanoparticles. As a result, the nanoparticles become less biocompatible and biologically inefficient. Biogenic synthesis of nanoparticles is currently proposed as a valuable alternative to the physical and chemical methods, as it is a simple, non-toxic, cheap, green and facile approach. This synthetic method uses biological substrates such as plant extracts, microorganisms, and other biological products to synthesize nickel oxide nanoparticles. The various phytochemicals from plant extracts, enzymes or proteins from microorganisms, and other biological derivatives play as reducing, stabilizing, and capping agents to provide bioactive and biocompatible nickel oxide nanoscale material. This review discusses current findings and trends in the biogenic synthesis of nickel oxide nanoparticles and their biological activities such as antibacterial, antifungal, antileishmanial, and anticancer, with an emphasis on antimicrobial and anticancer activity along with their mechanistic elucidation. Overall, this thorough study provides insight into the possibilities for the future development of green nickel oxide nanoparticles as therapeutic agents for a variety of ailments.
Collapse
Affiliation(s)
- Mearg Gidey Berhe
- Department of Physics, College of Natural and Computational Science, Adigrat University, Adigrat, Ethiopia
| | - Yemane Tadesse Gebreslassie
- Department of Chemistry, College of Natural and Computational Science, Adigrat University, Adigrat, Ethiopia
| |
Collapse
|
3
|
Exploring Physical Characterization and Different Bio-Applications of Elaeagnus angustifolia Orchestrated Nickel Oxide Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020654. [PMID: 36677716 PMCID: PMC9864018 DOI: 10.3390/molecules28020654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023]
Abstract
Elaeagnus angustifolia (EA) mediated green chemistry route was used for the biofabrication of NiONPs without the provision of additional surfactants and capping agents. The formation of NiONPs was confirmed using advanced different characterization techniques such as Scanning electron microscopy, UV, Fourier transmission-infrared, RAMAN, and energy dispersal spectroscopic and dynamic light scattering techniques. Further, different biological activities of EA-NiONPs were studied. Antibacterial activities were performed using five different bacterial strains using disc-diffusion assays and have shown significant results as compared to standard Oxytetracycline discs. Further, NiONPs exhibited excellent antifungal performance against different pathogenic fungal strains. The biocompatibility test was performed using human RBCs, which further confirmed that NiONPs are more biocompatible at the concentration of 7.51-31.25 µg/mL. The antioxidant activities of NiONPs were investigated using DPPH free radical scavenging assay. The NiONPs were demonstrated to have much better antioxidant potentials in terms of % DPPH scavenging (93.5%) and total antioxidant capacity (81%). Anticancer activity was also performed using HUH7 and HEP-G2 cancer cell lines and has shown significant potential with IC50 values of 18.45 μg/mL and 14.84 μg/mL, respectively. Further, the NiONPs were evaluated against Lesihmania tropica parasites and have shown strong antileishmanial potentials. The EA-NiONPs also showed excellent enzyme inhibition activities; protein kinase (19.4 mm) and alpha-amylase (51%). In conclusion, NiONPs have shown significant results against different biological assays. In the future, we suggest various in vivo activities for EA-NiONPs using different animal models to further unveil the biological and biomedical potentials.
Collapse
|
4
|
Biogenic synthesis of nickel oxide nanoparticles using Averrhoa bilimbi and investigation of its antibacterial, antidiabetic and cytotoxic properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Khashaei M, Kafi-Ahmadi L, Khademinia S, Poursattar Marjani A, Nozad E. A facile hydrothermal synthesis of high-efficient NiO nanocatalyst for preparation of 3,4-dihydropyrimidin-2(1H)-ones. Sci Rep 2022; 12:8585. [PMID: 35595795 PMCID: PMC9122962 DOI: 10.1038/s41598-022-12589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
The present work introduces a one-step and facile hydrothermal procedure as a green process for the first time to synthesize nickel(II) oxide (NiO) nanoparticles. The as-prepared nanomaterials were used as high efficient, low toxic and cost catalyst for the synthesis of some organic compounds. Ni(NO3)2 and some natural extract were used as a surfactant for the first time to synthesis NiO nanomaterials. A high synthesis yield (91%) was obtained for S2. Rietveld analysis affirmed the cubic crystal system of the obtained NiO nanocatalyst. The morphology studies were carried out with the FESEM method and the images revealed a change from non-homogenous to homogenous spherical particles when the Barberryas was used instead of orange blossom surfactant. Besides, the images revealed that the particle size distribution was in the range of 20 to 60 nm. The synthesized catalysts were used for the first time in Biginelli multicomponent reactions (MCRs) for the preparation of 3,4-dihydropyrimidin-2(1H)-ones (DHPMs) under the present facile reaction conditions. High yield (97%) of the final product was achieved at the optimum condensation reaction conditions (Catalyst: 60 mg; temperature: 90 °C and time: 90 min) when ethyl acetoacetate/methyl acetoacetate (1 mmol), benzaldehyde (1 mmol) and urea (1.2 mmol) were used. A kinetic study affirmed pseudo-first-order model for Biginelli reactions followed the pseudo-first-order model.
Collapse
Affiliation(s)
- Maryam Khashaei
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Leila Kafi-Ahmadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Shahin Khademinia
- Department of Inorganic Chemistry, Faculty of Chemistry, Semnan University, Semnan, Iran
| | | | - Ehsan Nozad
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
6
|
Ebube. Uwaya G, Wen Y, Bisetty K. A combined experimental-computational approach for electrocatalytic detection of epinephrine using nanocomposite sensor based on polyaniline/nickel oxide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Narender SS, Varma VS, Sai Srikar C, Ruchitha J, Adarsh Varma P, Praveen BVS. Nickel Oxide Nanoparticles: A Brief Review of Their Synthesis, Characterization, and Applications. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- S. Sai Narender
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - V. Siddhartha Varma
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - Ch. Sai Srikar
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - J. Ruchitha
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - P. Adarsh Varma
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| | - B. V. S. Praveen
- Department of Chemical Engineering B V Raju Institute of Technology Narsapur, Medak 502313 Telangana India
| |
Collapse
|
8
|
Sana SS, Singh RP, Sharma M, Srivastava AK, Manchanda G, Rai AR, Zhang ZJ. Biogenesis and Application of Nickel Nanoparticles: A Review. Curr Pharm Biotechnol 2021; 22:808-822. [PMID: 33397255 DOI: 10.2174/1389201022999210101235233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
Biogenic synthesis of Nanoparticles (NPs) is attractive due to their ecological benefits and cheap, rapid, and sustainable nature. Among them, Nickel Oxide NPs (NiO-NPs) are acquired for their varied catalytic and clinical applications, as they have antibacterial, antifungal, cytotoxic, anticancer, antioxidant, remediation, and enzyme inhibition properties. Though several chemical-dependent methods were applied for the fabrication of nanoparticles, due to their substantial disadvantages, mainly toxicity and higher cost synthesis methods, the more secure, greener, eco-friendly, cost-effective, and synthetic methods are in demand. Greener approaches can take away the arduousness and complications of physicochemical methods. The present review is aimed at displaying the recent advancement related to the catalytic activity, antimicrobial activity, cytotoxicity, and antioxidant application of green synthesized Nickle. In this study, nickle oxide nanoparticles have been highlighted along with their sustainable synthesis options.
Collapse
Affiliation(s)
- Siva S Sana
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Raghvendra P Singh
- Department of Research and Development, Uttaranchal University, Dehradun, India
| | - Minaxi Sharma
- Department of Food Technology, ACA, Eternal University, Baru Sahib, Himachal Pradesh-173101, India
| | - Atul K Srivastava
- Department of Research and Development, Uttaranchal University, Dehradun, India
| | - Geetanjali Manchanda
- Department of Botany and Environmental Studies, DAV University, Jalandhar, India
| | - Alok R Rai
- Department of Microbiology, SK Porwal College, Kamptee, Nagpur, India
| | - Zhi-Jun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| |
Collapse
|
9
|
Sina Abbasnejad, Banafsheh Norouzi. Biosynthesis of Nano Nickel Oxide Powder Using Malva sylvestris; Evaluation of Electrocatalytic Activity for Determination of Cephalexin in Real Samples. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193521050037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Drummer S, Madzimbamuto T, Chowdhury M. Green Synthesis of Transition-Metal Nanoparticles and Their Oxides: A Review. MATERIALS 2021; 14:ma14112700. [PMID: 34063800 PMCID: PMC8196554 DOI: 10.3390/ma14112700] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 01/02/2023]
Abstract
In recent years, many researchers have begun to shift their focus onto the synthesis of nanomaterials as this field possesses an immense potential that may provide incredible technological advances in the near future. The downside of conventional synthesis techniques, such as co-precipitation, sol-gel and hydrothermal methods, is that they necessitate toxic chemicals, produce harmful by-products and require a considerable amount of energy; therefore, more sustainable fabrication routes are sought-after. Biological molecules have been previously utilized as precursors for nanoparticle synthesis, thus eliminating the negative factors involved in traditional methods. In addition, transition-metal nanoparticles possess a broad scope of applications due to their multiple oxidation states and large surface areas, thereby allowing for a higher reactivity when compared to their bulk counterpart and rendering them an interesting research topic. However, this field is still relatively unknown and unpredictable as the biosynthesis of these nanostructures from fungi, bacteria and plants yield undesired diameters and morphologies, rendering them redundant compared to their chemically synthesized counterparts. Therefore, this review aims to obtain a better understanding on the plant-mediated synthesis process of the major transition-metal and transition-metal oxide nanoparticles, and how process parameters—concentration, temperature, contact time, pH level, and calcination temperature affect their unique properties such as particle size, morphologies, and crystallinity.
Collapse
|
11
|
Abdel-Ghany HSM, Abdel-Shafy S, Abuowarda MM, El-Khateeb RM, Hoballah E, Hammam AMM, Fahmy MM. In vitro acaricidal activity of green synthesized nickel oxide nanoparticles against the camel tick, Hyalomma dromedarii (Ixodidae), and its toxicity on Swiss albino mice. EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:611-633. [PMID: 33713212 DOI: 10.1007/s10493-021-00596-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023]
Abstract
The green synthesized nanoparticles have been determined as a novel pesticide against arthropod pests. This study was designed to evaluate the in vitro acaricidal activity of green synthesized nickel oxide nanoparticles (NiO NPs) using aqueous extract of Melia azedarach ripened fruits against different developmental stages of the camel tick Hyalomma dromedarii in addition to their toxic effect on laboratory animals. The synthesized NiO NPs were characterized by UV-visible (UV-Vis) spectroscopy, Fourier transforms infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). The UV-Vis spectra of the NiO NPs showed an absorption peak at 307 nm. FTIR analysis showed the possible functional groups used for capping and stabilization of NiO NPs with strong bands at 3416.2 and 1626.6 cm-1. The SEM images of the NiO NPs exhibited a size ranging from 21 to 35 nm. The immersion test was used for the in vitro application of the synthesized NiO NPs on the various tick stages (egg, nymph, larva, and adult). Mortality percentages and LC50 values of each tick stage were calculated. The oviposition and hatchability of the engorged females were monitored for the survived tick after treatment. The LC50 values for NiO NPs on embryonated eggs, larvae, and engorged nymphs were 5.00, 7.15, and 1.90 mg/mL, respectively. The egg productive index (EPI), egg number, and hatchability (%) were lower in females treated with the NiO NPs than in control ticks. The toxicity of the NiO NPs on laboratory animals was also investigated using Swiss albino mice by oral dose of 500 mg/kg/day administration for five consecutive days. The hematological, biochemical, and histopathological changes were evaluated. The hematological analysis showed significant increase in the level of white blood cells (WBC) and hemoglobin (Hb). Biochemical analysis showed non-significant decrease in alkaline phosphatase (ALP) and alanine amino transferase (ALT). We concluded that NiO NPs have a significant acaricidal activity as demonstrated on eggs, larvae, engorged nymphs, and fully fed females of H. dromedarii. From a toxicological point of view further in vivo investigations are needed to determine the mechanism of toxic effect of NiO NPs.
Collapse
Affiliation(s)
- Hoda S M Abdel-Ghany
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Sobhy Abdel-Shafy
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Mai M Abuowarda
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rabab M El-Khateeb
- Department of Parasitology and Animal Diseases, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Essam Hoballah
- Department of Agriculture Microbiology, Agricultural and Biological Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Abdel Mohsen M Hammam
- Department of Animal Reproduction, Veterinary Research Division, National Research Centre, Dokki, Giza, Egypt
| | - Magdy M Fahmy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
12
|
Uddin S, Safdar LB, Iqbal J, Yaseen T, Laila S, Anwar S, Abbasi BA, Saif MS, Quraishi UM. Green synthesis of nickel oxide nanoparticles using leaf extract of Berberis balochistanica: Characterization, and diverse biological applications. Microsc Res Tech 2021; 84:2004-2016. [PMID: 33763916 DOI: 10.1002/jemt.23756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 11/06/2022]
Abstract
In current report, nickel oxide nanoparticles (NiONPs) were synthesized using leaf extract of Berberis balochistanica (BB) an endemic medicinal plant. The BB leaves extract act as a strong reducing, stabilizing, and capping agent in the synthesis of BB@NiONPs. Further, BB@NiONPs were characterized using Uv-visible spectroscopy (UV-vis), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and average size was calculated ~21.7 nm). Multiple in vitro biological activities were performed to determine their therapeutic potentials. The BB@NiONPs showed strong antioxidant activities in term of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and total antioxidant capacity (TAC) with scavenging potential of 69.98 and 59.59% at 200 μg/ml, respectively. The antibacterial and antifungal testes were examined using different bacterial and fungal strains and dose-dependent inhibition response was reported. Laterally, cytotoxic and phytotoxic activities were studied using brine shrimp and radish seeds. The result determined potential cytotoxic activity with LD50 value (49.10 μg/ml) and outstanding stimulatory effect of BB@NiONPs on seed germination at lower concentrations as compared to control. Overall, result concluded that biosynthesis of NiONPs using leaf extracts of Berberis balochistanica is cheap, easy, and safe method and could be used in biomedical and agriculture field as nanomedicine and nano fertilizer.
Collapse
Affiliation(s)
- Siraj Uddin
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Faculty of Agriculture and Environment, Plant Breeding Institute, University of Sydney, Sydney, Australia
| | - Luqman Bin Safdar
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire, UK
| | - Javed Iqbal
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Sabiha Laila
- Department of Botany, Sardar Bahadur Khan Women's University, Quetta, Pakistan
| | - Saeed Anwar
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Banzeer Ahsan Abbasi
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Saqib Saif
- Department of Biochemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Umar Masood Quraishi
- Faculty of Biological Sciences, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
13
|
Salimi M, Sandaroos R, Esmaeli-nasrabadi F. Efficient synthesis of spirooxindole derivatives by magnetic and recyclable CaFe2O4@MgAl-LDH. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02017-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Isa khan M, Nawaz M, Bilal Tahir M, Iqbal T, Pervaiz M, Rafique M, Aziz F, Younas U, Alrobei H. Synthesis, characterization and antibacterial activity of NiO NPs against pathogen. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108300] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Biosynthesis of NiO Nanoparticles Using Soursop (Annona muricata L.) Fruit Peel Green Waste and Their Photocatalytic Performance on Crystal Violet Dye. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01859-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Structural studies of bio-mediated NiO nanoparticles for photocatalytic and antibacterial activities. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107755] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Biosynthesis of Nickel oxide Nanoparticles from Euphorbia heterophylla (L.) and their biological application. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.11.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
18
|
Anticancerous Activity of Transition Metal Oxide Nanoparticles. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
19
|
Hemmat K, Nasseri MA, Allahresani A, Ghiami S. CoFe2O4@SiO2: A magnetically recyclable heterogeneous catalyst for the synthesis of spirooxindole derivatives. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of
Rhamnus virgata
and their potential biological applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4950] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Javed Iqbal
- Department of Plant Sciences Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | | | - Tariq Mahmood
- Department of Plant Sciences Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Safia Hameed
- Department of Biotechnology Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Akhtar Munir
- Department of Chemistry and Chemical Engineering SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), DHA Lahore Pakistan
| | - Sobia Kanwal
- Department of Zoology University of Gujrat, Sub‐Campus Rawalpindi Pakistan
| |
Collapse
|
21
|
Eco-Friendly Biosynthesis of Nickel Oxide Nanoparticles Mediated by Okra Plant Extract and Investigation of Their Photocatalytic, Magnetic, Cytotoxicity, and Antibacterial Properties. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01584-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Nasseri MA, Hemmat K, Allahresani A. Synthesis and characterization of Co (III) salen complex immobilized on cobalt ferrite‐silica nanoparticle and their application in the synthesis of spirooxindoles. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad A. Nasseri
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | - Kaveh Hemmat
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| | - Ali Allahresani
- Department of Chemistry, College of SciencesUniversity of Birjand Birjand 97175‐615 Iran
| |
Collapse
|
23
|
Shinde B, Kamble SB, Jadhav HS, Karale BK, Kanade KG, Burungale AS. The Calotropis proceraTransformed Green NiO and Fe‐NiO Nanoparticles for Diaryl Pyrimidinones Synthesis in Hydrotropic Medium at Room Temperature. ChemistrySelect 2018. [DOI: 10.1002/slct.201802374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bipin Shinde
- Department of ChemistryYashavantrao Chavan Institute of Science, Satara Maharashtra 415001 India
| | - Santosh B. Kamble
- Department of ChemistryYashavantrao Chavan Institute of Science, Satara Maharashtra 415001 India
| | - Harsharaj S. Jadhav
- Department of Energy Science and TechnologyMyongji University Yongin-si Gyeonggi-Do 449–728 Republic of Korea
| | | | - Kaluram G. Kanade
- Department of ChemistryYashavantrao Chavan Institute of Science, Satara Maharashtra 415001 India
| | - Arvind S. Burungale
- Department of ChemistryYashavantrao Chavan Institute of Science, Satara Maharashtra 415001 India
- Department of ChemistryS.M. Joshi College, Hadpsar, Pune Maharashtra 411028 India
| |
Collapse
|
24
|
Sabouri Z, Akbari A, Hosseini HA, Darroudi M. Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.07.063] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Khalil AT, Ovais M, Ullah I, Ali M, Shinwari ZK, Hassan D, Maaza M. Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:838-852. [DOI: 10.1080/21691401.2017.1345928] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ikram Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Dilawar Hassan
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| | - Malik Maaza
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation Somerset West, Western Cape, South Africa
- UNESCO-UNISA Africa chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
| |
Collapse
|