1
|
Lancheros A, Goswami S, Zarate X, Schott E, Hupp JT. Nitrogen-enriched flexible metal-organic framework for CO 2 adsorption. Dalton Trans 2024; 53:14028-14036. [PMID: 39105635 DOI: 10.1039/d4dt01457j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A novel MOF named [Zn2(L)(DMF)] was synthesized using solvothermal methods from the reaction of the new linker (4,4',4''-(4,4',4''-(benzene-1,3,5-triyltris(methylene))tris(3,5-dimethyl-1H-pyrazole-4,1-diyl))tribenzoic acid) and Zn(NO3)2·6H2O. This new MOF was characterized by means of different techniques: powder X-ray diffraction, N2 adsorption and desorption isotherms, thermogravimetric analysis, and scanning electron microscopy. Furthermore, suitable crystals were obtained, which allowed us to perform the X-Ray structure determination of this MOF. The capability of these new MOF to adsorb CO2 at different temperatures was measured and its isosteric enthalpy of adsorption was calculated. The novel MOF shows an uncommon node composed of a Zn3(-COO)6(DMF)2, and the asymmetric unit contains one crystallographically independent linker, one DMF molecule, and two Zn atoms. The [Zn2(L)(DMF)] MOF is a microporous material with high crystallinity and stability up to 250 °C. The multiple nitrogenated pyrazole linkers in its framework enhance its CO2 adsorption capabilities. This material exhibits a low CO2 isosteric enthalpy of adsorption (Hads), comparable to previously reported values for similar nitrogenated materials. All the observed CO2 adsorption capacities were further supported by DFT calculations.
Collapse
Affiliation(s)
- Andrés Lancheros
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, UC Energy Center, Center for Research in Nanotechnology and Advanced Materials (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile.
- ANID - Millennium Science Initiative Program - Millennium Nuclei on Catalytic Process Towards Sustainable Chemistry (CSC), Chile
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Subhadip Goswami
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Ximena Zarate
- Institute of Applied Sciences, Faculty of Engineering, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Santiago, Chile
| | - Eduardo Schott
- Department of Inorganic Chemistry, Faculty of Chemistry and Pharmacy, UC Energy Center, Center for Research in Nanotechnology and Advanced Materials (CIEN-UC), Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile.
- ANID - Millennium Science Initiative Program - Millennium Nuclei on Catalytic Process Towards Sustainable Chemistry (CSC), Chile
| | - Joseph T Hupp
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| |
Collapse
|
2
|
Kaur M, Malik AK. Schiff base MOFs and their derivatives for sequestration and degradation of pollutants: present and future. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118801-118829. [PMID: 37922083 DOI: 10.1007/s11356-023-30711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Removal of contaminants via adsorption and catalysis have received a significant interest as energy and money-saving solutions for treating the world's wastewater. Metal-organic frameworks (MOFs), a newly discovered class of porous crystalline materials, have demonstrated tremendous promise in the removal and destruction of contaminants for water purification. In order to improve the interactions of MOFs with the target pollutants for their selective removal and degradation, the Schiff base functionalities emerged as promising active sites. Through pre- and post-synthetic alterations, Schiff base functionalities are integrated into the pore cages of MOF adsorbent materials. To understand the adsorptive/catalytic mechanism, potential interactions between the Schiff base sites and the target pollutants are discussed. Based on cutting-edge techniques for their synthesis, this paper examines current developments in the creation of Schiff base-functionalized MOFs as innovative materials for adsorptive removal and catalytic degradation of contaminants for water remediation.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
3
|
Hajighasemi Z, Nahipour A, Ghorbani-Choghamarani A, Taherinia Z. Efficient and biocompatible new palladium-supported boehmite nanoparticles: synthesis, characterization and application in Suzuki-Miura and Mizoroki-Heck coupling reactions. NANOSCALE ADVANCES 2023; 5:4925-4933. [PMID: 37705777 PMCID: PMC10496902 DOI: 10.1039/d3na00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023]
Abstract
Palladium complex-supported on boehmite (Pd(0)-SMTU-boehmite) nanoparticles were synthesized and characterized by using XRD, SEM, EDS, TGA, BET, ICP and FT-IR techniques. When applied as a new catalyst for C-C coupling reactions of Suzuki-Miyaura and Mizoroki-Heck in PEG-400 solvent, the Pd(0)-SMTU-boehmite nanoparticles showed excellent activity and recyclability. The study of palladium leaching by the ICP-OES technique and hot filtration led to the catalyst exhibiting excellent stability and recyclability.
Collapse
Affiliation(s)
- Zahra Hajighasemi
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| | - Ali Nahipour
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| | | | - Zahrra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University Po. Box 69315-516 Ilam Iran
| |
Collapse
|
4
|
Mohammadi L, Taghavi R, Hosseinifard M, Vaezi MR, Rostamnia S. Stabilization of Pd NPs over the surface of β-cyclodextrin incorporated UiO-66-NH 2 for the C-C coupling reaction. RSC Adv 2023; 13:17143-17154. [PMID: 37293468 PMCID: PMC10246555 DOI: 10.1039/d2ra08347g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/01/2023] [Indexed: 06/10/2023] Open
Abstract
Here, we prepared UiO-66-NH2 and employed a post-synthesis modification method for its functionalization with a β-cyclodextrin (β-CD) organic compound. The resulting composite was employed as a support for the heterogenization of the Pd NPs. Various techniques, including FT-IR, XRD, SEM, TEM, EDS, and elemental mapping, were used to characterize UiO-66-NH2@β-CD/PdNPs, indicating its successful preparation. Three C-C coupling reactions, including the Suzuki, Heck, and Sonogashira coupling reactions, were promoted using the produced catalyst. As a result of the PSM, the proposed catalyst displays improved catalytic performance. In addition, the suggested catalyst was highly recyclable up to 6 times.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center Karaj Iran
| | - Reza Taghavi
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
| | | | - Mohammad Reza Vaezi
- Department of Nano Technology and Advanced Materials, Materials and Energy Research Center Karaj Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST) PO Box 16846-13114 Tehran Iran
| |
Collapse
|
5
|
Sambyal P, Mahato M, Taseer AK, Yoo H, Garai M, Nguyen VH, Ali SS, Oh IK. Magnetically and Electrically Responsive Soft Actuator Derived from Ferromagnetic Bimetallic Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207140. [PMID: 36908006 DOI: 10.1002/smll.202207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Indexed: 06/08/2023]
Abstract
The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.96 emu g-1 ) which allows its application to a dual functional material in both magnetoactive and electro-ionic actuations. The electro-ionic soft actuator, which is fabricated using NdFeMOFs@700 and PEDOT-PSS, demonstrates 4.5 times higher ionic charge storage capacity (68.21 mF cm-2 ) and has excellent cycle stability compared with the PEDOT-PSS based actuator. Under a low sinusoidal input voltage of 1 V, the dual-responsive actuator displays bending displacement of 15.46 mm and also generates deflection of 10 mm at 50 mT. Present results show that the ferromagnetic bimetallic organic frameworks can open a new way to make dual responsive soft actuators due to the hierarchically porous structures with its high redox activity, superior magnetic properties, and larger electrochemical capacitance. With the NdFeMOFs@700 based soft actuators, walking movement of a starfish robot is demonstrated by applying both the magnetic and electric fields.
Collapse
Affiliation(s)
- Pradeep Sambyal
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ashhad Kamal Taseer
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mousumi Garai
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Syed Sheraz Ali
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Mohammadi L, Vaezi MR. Palladium Nanoparticle-Decorated Porous Metal-Organic-Framework (Zr)@Guanidine: Novel Efficient Catalyst in Cross-Coupling (Suzuki, Heck, and Sonogashira) Reactions and Carbonylative Sonogashira under Mild Conditions. ACS OMEGA 2023; 8:16395-16410. [PMID: 37179614 PMCID: PMC10173326 DOI: 10.1021/acsomega.3c01179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023]
Abstract
A novel heterogeneous Zr-based metal-organic framework containing an amino group functionalized with nitrogen-rich organic ligand (guanidine), through a step-by-step post synthesis modification approach, was successfully modified by the stabilization of palladium metal nanoparticles on the prepared UiO-66-NH2 support in order to synthesize the Suzuki-Murray, Mizoroki-Heck, and copper-free Sonogashira reactions and also the carbonylative Sonogashira reaction incorporating H2O as a green solvent under mild conditions. This newly synthesized highly efficient and reusable UiO-66-NH2@cyanuric chloride@guanidine/Pd-NPs reported catalyst has been utilized to increase anchoring palladium onto the substrate with the aim of altering the construction of the intended synthesis catalyst to form the C-C coupling derivatives. Several strategies, including X-ray diffraction, Fourier transform infrared, scanning electron microscopy, Brunauer-Emmett-Teller, transmission microscopy electron, thermogravimetric analysis, inductively coupled plasma, energy-dispersive X-ray, and elemental mapping analyzes, were used to indicate the successful preparation of the UiO-66-NH2@cyanuric chloride@guanidine/Pd-NPs. In these reactions, the UiO-66-NH2-supported Pd-NPs illustrated superior performances compared to their catalyst, revealing the benefits of providing nanocatalysts. As a result, the proposed catalyst is favorable in a green solvent, and also, the outputs are accomplished with good to excellent outputs. Furthermore, the suggested catalyst represented very good reusability with no remarkable loss in activity up nine sequential runs.
Collapse
|
7
|
Mohammadi L, Hosseinifard M, Vaezi MR. Stabilization of Palladium-Nanoparticle-Decorated Postsynthesis-Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in C-C Coupling Reaction. ACS OMEGA 2023; 8:8505-8518. [PMID: 36910943 PMCID: PMC9996586 DOI: 10.1021/acsomega.2c07661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Here we prepared a highly efficient and reusable catalyst by a step-by-step postsynthesis modification of UiO-66-NH2 metal-organic frameworks (MOFs) with nitrogen-rich organic ligands and used it as support for the preparation of UiO-66-NH2@cyanuric chloride@2-aminopyrimidine/PdNPs. The catalytic performance's results of UiO-66-NH2@cyanuric chloride@2-aminopyrimidine/PdNPs, UiO-66-NH2/PdNPs, and UiO-66-NH2@cyanuric chloride/PdNPs indicate high efficiency of the modulation of the microenvironment of the palladium NPs. The addition of N-rich organic ligands through postsynthesis modification caused a unique structure of the final composite in favor of the progress of the C-C coupling reaction. Various techniques, including FT-IR, XRD, SEM, TEM, EDS, and elemental mapping, were used to characterize UiO-66-NH2@cyanuric chloride@2-aminopyrimidine/PdNPs, indicating its successful preparation. Three C-C coupling reactions, including the Suzuki, Heck, and Sonogashira coupling reactions, were promoted using the produced catalyst. As a result of the postsynthesis modification (PSM), the proposed catalyst displays improved catalytic performance. In addition, the suggested catalyst was highly recyclable up to ten times without leaching of PdNPs.
Collapse
Affiliation(s)
- Leila Mohammadi
- Department
of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | | | - Mohammad Reza Vaezi
- Department
of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| |
Collapse
|
8
|
Selective and sensitive detection of hydrogen sulphide using hydrolytically stable Cu-MOF. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Mella C, Pecchi G, Godard C, Claver C, Márquez A, Campos CH. Immobilized Pd metal‐complex on polymeric resin with high surface areas for recyclable catalyst: Effect of the immobilization method on nature of palladium species. J Appl Polym Sci 2023. [DOI: 10.1002/app.53608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Claudio Mella
- Departamento de Polímeros, Facultad de Ciencias Químicas Universidad de Concepción Concepción Chile
| | - Gina Pecchi
- Departamento de Polímeros, Facultad de Ciencias Químicas Universidad de Concepción Concepción Chile
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC) Santiago Chile
| | - Cyril Godard
- Department de Química Física i Inorgánica Universitat Rovira i Virgili Tarragona Spain
| | - Carmen Claver
- Department de Química Física i Inorgánica Universitat Rovira i Virgili Tarragona Spain
| | - Abdiel Márquez
- Centro de Nanociencias y Nanotecnología Universidad Nacional Autónoma de México Ensenada Baja California Mexico
| | - Cristian H. Campos
- Departamento de Polímeros, Facultad de Ciencias Químicas Universidad de Concepción Concepción Chile
| |
Collapse
|
10
|
Aalinejad M, Pesyan Noroozi N, Alamgholiloo H. Stabilization of Pd–Ni alloy nanoparticles on Kryptofix 23 modified SBA-15 for catalytic enhancement. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Rajmane A, Jadhav S, Kumbhar A. N, O-polydentate ligands for palladium-catalyzed cross-coupling reactions (Part III). J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Alamgholiloo H, Pesyan NN, Rostamnia S. A novel strategy for stabilization of sub-nanometric Pd colloids on kryptofix functionalized MCM-41: nanoengineered material for Stille coupling transformation. Sci Rep 2021; 11:18417. [PMID: 34531483 PMCID: PMC8446008 DOI: 10.1038/s41598-021-97914-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/21/2021] [Indexed: 11/09/2022] Open
Abstract
The stabilization of sub-nanometric metal particles (< 1 nm) with suitable distribution remained challenging in the catalytic arena. Herein, an intelligent strategy was described to anchoring and stabilizing sub-nanometric Pd colloids with an average size of 0.88 nm onto Kryptofix 23 functionalized MCM-41. Then, the catalytic activity of Pd@Kryf/MCM-41 was developed in Stille coupling reaction with a turnover frequency (TOF) value of 247 h-1. The findings demonstrate that porous MCM-41 structure and high-affinity Kryptofix 23 ligand toward adsorption of Pd colloids has a vital role in stabilizing the sub-nanometric particles and subsequent catalytic activity. Overall, these results suggest that Pd@Kryf/MCM-41 is a greener, more suitable option for large-scale applications and provides new insights into the stabilization of sub-nanometric metal particles.
Collapse
Affiliation(s)
- Hassan Alamgholiloo
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159, Urmia, Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, 57159, Urmia, Iran.
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
| |
Collapse
|
13
|
Wu Y, Li Y, Chen X, Li G, Huang H, Jia L. Schiff Base Conjugated Carbon Nitride-Supported PdCoNi Nanoparticles for Enhanced Formic Acid Dehydrogenation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Yiru Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yawen Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiaofen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Guifang Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Hongyuan Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Lishan Jia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
14
|
Fathalla SK, El-Ghamry HA, Gaber M. Ru(III) complexes of triazole based Schiff base and azo dye ligands: An insight into the molecular structure and catalytic role in oxidative dimerization of 2-aminophenol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
16
|
Kargar H, Ardakani AA, Tahir MN, Ashfaq M, Munawar KS. Synthesis, spectral characterization, crystal structure and antibacterial activity of nickel(II), copper(II) and zinc(II) complexes containing ONNO donor Schiff base ligands. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Xiao J, Zhang H, Ejike AC, Wang L, Tao M, Zhang W. Phenanthroline functionalized polyacrylonitrile fiber with Pd(0) nanoparticles as a highly active catalyst for the Heck reaction. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104843] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Sepehrmansourie H, Zarei M, Zolfigol MA, Babaee S, Rostamnia S. Application of novel nanomagnetic metal-organic frameworks as a catalyst for the synthesis of new pyridines and 1,4-dihydropyridines via a cooperative vinylogous anomeric based oxidation. Sci Rep 2021; 11:5279. [PMID: 33674662 PMCID: PMC7935861 DOI: 10.1038/s41598-021-84005-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Herein, a new magnetic metal-organic frameworks based on Fe3O4 (NMMOFs) with porous and high surface area materials were synthesized. Then, NMMOFs were characterized by FT-IR, XRD, SEM, elemental mapping, energy dispersive X-ray (EDS), TG, DTG, VSM, and N2 adsorption-desorption isotherms (BET). Fe3O4@Co(BDC)-NH2 as a magnetic porous catalyst was applied for synthesis of novel fused pyridines and 1,4-dihydropyridines with pyrazole and pyrimidine moieties as suitable drug candidates under ultrasonic irradiation. The significant advantages of the presented methodology are mild, facile workup, high yields, short reaction times, high thermal stability, and reusability of the described NMMOFs catalyst.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran.
| | - Saeed Babaee
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, 6517838683, Hamedan, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box, 16846-13114, Tehran, Iran.
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of Science, University of Maragheh, PO Box, 55181-83111, Maragheh, Iran.
| |
Collapse
|
19
|
Rouzifar M, Sobhani S, Farrokhi A, Sansano JM. Fe-MIL-101 modified by isatin-Schiff-base-Co: a heterogeneous catalyst for C–C, C–O, C–N, and C–P cross coupling reactions. NEW J CHEM 2021. [DOI: 10.1039/d1nj03468e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fe-MIL-101-isatin-Schiff-base-Co was synthesized and applied as a catalyst for Ullmann-type, Buchwald–Hartwig, Hirao, Hiyama and Mizoroki–Heck cross-coupling reactions of aryl halides.
Collapse
Affiliation(s)
- Majid Rouzifar
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Alireza Farrokhi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080-Alicante, Spain
| |
Collapse
|
20
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Ramezani S, Nakhaei A. Synthesis, absorption, and adsorption properties, and DFT calculations of two new palladium(II) complexes of new fluorescence imidazo[4′,5′:3,4]benzo[1,2- c]isoxazole-based Schiff-bases. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1799402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Shirin Ramezani
- Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ahmad Nakhaei
- Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
22
|
Synthesis and Structural Elucidation for New Schiff Base Complexes; Conductance, Conformational, MOE-Docking and Biological Studies. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01505-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Facile Ultrasonic Synthesis of Zirconium Based Porphyrinic MOFs for Enhanced Adsorption Performance Towards Anionic and Mixed Dye Solutions. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01704-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Pakvojoud S, Hatefi Ardakani M, Saeednia S, Heydari-Bafrooei E. Efficient, selective and mild oxidation of sulfides and oxidative coupling of thiols catalyzed by Pd(II)-isatin Schiff base complex immobilized into three-dimensional mesoporous silica KIT-6. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1769095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeedeh Pakvojoud
- Faculty of Science, Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mehdi Hatefi Ardakani
- Faculty of Science, Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Samira Saeednia
- Faculty of Science, Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Esmaeil Heydari-Bafrooei
- Faculty of Science, Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
25
|
Palladium(II) complexes comprising naphthylamine and biphenylamine based Schiff base ligands: Synthesis, structure and catalytic activity in Suzuki coupling reactions. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121220] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Ghasemzadeh MA, Ghaffarian F. Preparation of core/shell/shell CoFe
2
O
4
/OCMC/Cu (BDC) nanostructure as a magnetically heterogeneous catalyst for the synthesis of substituted xanthenes, quinazolines and acridines under ultrasonic irradiation. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Fatemeh Ghaffarian
- Department of Chemistry, Qom BranchIslamic Azad University Qom Islamic Republic of Iran
| |
Collapse
|
27
|
Alamgholiloo H, Rostamnia S, Noroozi Pesyan N. Extended architectures constructed of thiourea‐modified SBA‐15 nanoreactor: A versatile new support for the fabrication of palladium pre‐catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5452] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hassan Alamgholiloo
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of ScienceUniversity of Maragheh PO Box 55181‐83111 Maragheh Iran
- Department of Organic Chemistry, Faculty of ChemistryUrmia University 57159 Urmia Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of ScienceUniversity of Maragheh PO Box 55181‐83111 Maragheh Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of ChemistryUrmia University 57159 Urmia Iran
| |
Collapse
|
28
|
Pd/Cu-Free Heck and C–N Coupling Reactions Using Two Modified Magnetic Chitosan Cobalt Catalysts: Efficient, Inexpensive and Green Heterogeneous Catalysts. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-019-01397-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
29
|
Taher A, Susan MABH, Begum N, Lee IM. Amine-functionalized metal–organic framework-based Pd nanoparticles: highly efficient multifunctional catalysts for base-free aerobic oxidation of different alcohols. NEW J CHEM 2020. [DOI: 10.1039/d0nj04138f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic framework-based palladium nanoparticles are found to be highly efficient multifunctional catalysts for the base-free aerobic oxidation of different aliphatic, aromatic and hetero-aromatic alcohols.
Collapse
Affiliation(s)
- Abu Taher
- Department of Industrial and Production Engineering
- European University of Bangladesh
- Mirpur
- Bangladesh
- Department of Chemistry
| | | | - Noorjahan Begum
- Department of Agricultural Chemistry
- Sher-e-Bangla Agricultural University
- Dhaka
- Bangladesh
| | - Ik-Mo Lee
- Department of Chemistry
- Inha University
- Incheon 402-751
- South Korea
| |
Collapse
|
30
|
Mella C, Torres CC, Pecchi G, Campos CH. Mesoporous Palladium N,N'-Bis(3-Allylsalicylidene)o-Phenylenediamine-Methyl Acrylate Resins as Heterogeneous Catalysts for the Heck Coupling Reaction. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12162612. [PMID: 31426313 PMCID: PMC6721152 DOI: 10.3390/ma12162612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Palladium N,N'-bis(3-allylsalicylidene)o-phenylenediamine complex (PdAS) immobilized onto mesoporous polymeric methyl acrylate (MA) based resins (PdAS(x)-MA, x = 1, 2, 5, or 10 wt.%) were successfully prepared as heterogeneous catalysts for the Heck reaction. The catalysts were synthesized via radical suspension polymerization using PdAS as a metal chelate monomer, divinylbenzene and MA as co-monomers. The effect of the PdAS(x) content on the physicochemical properties of the resins is also reported. The catalysts were characterized by using a range of analytical techniques. The large surface area (>580 m2·g-1) and thermal stability (up to 250 °C) of the PdAS(x)-MA materials allows their application as catalysts in the C-C coupling reaction between iodobenzene and MA in the presence of trimethylamine at 120 °C using DMF as the solvent. The PdAS(10)-MA catalyst exhibited the highest catalytic performance with no significant catalytic loss being observed after five reuses, thereby indicating excellent catalyst stability in the reaction medium.
Collapse
Affiliation(s)
- Claudio Mella
- Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
| | - Cecilia C Torres
- Depto. de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano 4300866, Chile
| | - Gina Pecchi
- Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile
- Millenium Nuclei on Catalytic Processes towards Sustainable Chemistry (CSC), Santiago 8340518, Chile
| | - Cristian H Campos
- Depto. Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción 4070371, Chile.
| |
Collapse
|
31
|
Pal CK, Sahu S, Sahu RK, Singh RK, Jena AK. Magnetically recyclable palladium nanoparticles (Fe
3
O
4
‐Pd) for oxidative coupling between amides and olefins at room temperature. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chandan Kumar Pal
- Organic Synthesis and Nanocatalysis Laboratory, Department of ChemistryNorth Orissa University Baripada 757003 Odisha India
| | - Swagatika Sahu
- Organic Synthesis and Nanocatalysis Laboratory, Department of ChemistryNorth Orissa University Baripada 757003 Odisha India
- Betnoti College Betnoti 757025 Odisha India
| | | | - Rajesh Kumar Singh
- Organic Synthesis and Nanocatalysis Laboratory, Department of ChemistryNorth Orissa University Baripada 757003 Odisha India
| | - Ashis Kumar Jena
- Organic Synthesis and Nanocatalysis Laboratory, Department of ChemistryNorth Orissa University Baripada 757003 Odisha India
| |
Collapse
|
32
|
Evaluation of the Catalytic Activities of Some Synthesized Divalent and Trivalent Metal Complexes and Their Inhibition Efficiencies for the Corrosion of Mild Steel in Sulfuric Acid Medium. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|