1
|
Zhang L, Pei L, Li D, Bian H. Theoretical Insights into Regulation of Red/Blue-Shifting Hydrogen Bonds Through Cooperativity with Regium Bonds. J Phys Chem A 2024; 128:6898-6907. [PMID: 39138147 DOI: 10.1021/acs.jpca.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
To deeply understand the characteristics and regulation of red/blue-shifting hydrogen bonds (HBs), a theoretical investigation was conducted to explore the cooperativity between regium bonds and HBs in the complexes of Y···MCN···HCX3 (M = Cu, Ag, Au; Y = H2O, HCN, NH3; X = F, Cl). When MCN formed a hydrogen bonding dimer with CHF3 or CHCl3, the blue shift of C-H vibration frequency v(C-H) decreases as the following sequence Au > Cu > Ag, and the red shift decreases following the order Ag > Cu > Au. Upon the formation of ternary complexes, the presence of regium bonding interactions exerts a positive synergistic effect, resulting in the strengthening of the HBs. This, in turn, leads to noticeable changes in the red and blue shifts of v(C-H). In CHF3 complexes, v(C-H) undergoes a decrease in the blue shift, whereas that in CHCl3 exhibits an increase in the red shift. Especially, a transition from blue to red shift is observed within the AuCN···HCCl3 complex. As the strength of the regium bond increases, the trend of shifting from blue to red becomes more pronounced. For a given MCN, the changes occur in the order of NH3 > HCN > H2O. The interplay between two interactions was revealed by the molecular electrostatic potentials (MEP), the atoms in the molecule (AIM), and natural bond orbitals (NBO) analysis. It is revealed that Δv(C-H) is linearly correlated with a series of configuration and energy parameters. We explain the red- and blue-shifting HBs and their changes from the perspective of hyperconjugation and rehybridization. The presence of the positive synergistic effect enhances the hyperconjugation effect, thereby leading to a reduction in the blue shift and an increase in the red shift of v(C-H) within the complexes. This study enriches previous mechanisms regarding red- and blue-shifting HBs and introduces a novel idea to manipulate the characteristics of HBs, with the potential to impact the functioning of intricate systems.
Collapse
Affiliation(s)
- Lijuan Zhang
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - Ling Pei
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - Dazhi Li
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| | - He Bian
- College of Chemical Engineering and Safety Engineering, Shandong University of Aeronautics, Binzhou, Shandong 256600, China
| |
Collapse
|
2
|
Brzeski J. Can H 2 be Superacidic? A Computational Study of Triel-Bonded Brønsted Acids. J Phys Chem A 2024; 128:5009-5020. [PMID: 38869476 PMCID: PMC11215784 DOI: 10.1021/acs.jpca.4c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
The abundance of XIII group element compounds in science and industry together with their electron-deficient character gives rise to their influence on properties of the systems they interact with. This paper is an attempt to assess the strength, nature, and effect of formation of a triel bond on acidity. A wide set of Brønsted acids among others comprising hydrocarbons, halogen hydrides, and amines bonded with B, Al, and Ga trifluorides forming HX/TF3 was selected for the research. Various computational approaches (e.g., MP2, GFN2-xTB, SAPT2 + 3(CCD)δMP2, quantum theory of atoms in molecules analysis, and density overlap regions indicator) are used to describe the triel-bonded systems. Among other things, it was found that the electrostatics may not be the dominant contribution to the triel binding in some cases. Additionally, it was established that even weak Brønsted acids such as C2H2 or H2 may be superacidic if bonded to a Lewis acid (TF3) that is strong enough. The calculations indicate a significant covalent character of some of the studied HX/TF3 triel-bonded systems. Moreover, the effect of solvation of HX with TF3 as well as that of the reverse process on the acidity of the resulting system is thoroughly described.
Collapse
Affiliation(s)
- Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk 80-308, Poland
| |
Collapse
|
3
|
Movafagh SS, Salehzadeh S. Can we quantitatively evaluate the mutual impacts of intramolecular metal-ligand bonds the same as intermolecular noncovalent bonds? Phys Chem Chem Phys 2024; 26:15005-15017. [PMID: 38742255 DOI: 10.1039/d4cp01343c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
In this paper, we have reviewed several equations for calculating the cooperative energy of two chemical bonds between three fragments/species, regardless of whether they are atoms, ions or molecules, and whether the bonds between them are intra- or intermolecular. It is emphasized that two chemical bonds upon cooperation in a new compound change the bond dissociation energy of each other exactly by the same quantitative value, their cooperative energy, regardless of the nature of the bonds or whether one bond is very weak and another one is very strong. However, the final benefit/drawback of weak bonds from this cooperation can be considerably larger than that of strong bonds. The above statements are supported by a computational study on the various types of inter- and intramolecular chemical bonds.
Collapse
Affiliation(s)
- Samaneh Sanei Movafagh
- Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| | - Sadegh Salehzadeh
- Department of Inorganic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
4
|
Rezaie F, Noorizadeh S. Theoretical investigation of tube-like supramolecular structures formed through bifurcated lithium bonds. Sci Rep 2023; 13:15260. [PMID: 37709798 PMCID: PMC10502010 DOI: 10.1038/s41598-023-41979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
The stability of three supramolecular naostructures, which are formed through the aggregation of identical belts of [12] arene containing p-nitrophenyllithium, 1,4-dilithiatedbenzene and 1,4-dinitrobenzene units, is investigated by density functional theory. The electrostatic potential calculations indicate the ability of these belts in forming bifurcated lithium bonds (BLBs) between the Li atoms of one belt and the oxygen atoms of the NO2 groups in the other belt, which is also confirmed by deformation density maps and quantum theory of atoms in molecules (QTAIM) analysis. Topological analysis and natural bond analysis (NBO) imply to ionic character for these BLBs with binding energies up to approximately - 60 kcal mol-1. The many-body interaction energy analysis shows the strong cooperativity belongs to the configuration with the highest symmetry (C4v) containing p-nitrophenyllithium fragments as the building unit. Therefore, it seems that this configuration could be a good candidate for designing a BLB-based supramolecular nanotube with infinite size in this study.
Collapse
Affiliation(s)
- Forough Rezaie
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Siamak Noorizadeh
- Chemistry Department, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| |
Collapse
|
5
|
Grabowski SJ. Ga···C Triel Bonds-Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures. Int J Mol Sci 2023; 24:12212. [PMID: 37569593 PMCID: PMC10418643 DOI: 10.3390/ijms241512212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Structures characterized by the trigonal coordination of the gallium center that interacts with electron rich carbon sites are described. These interactions may be classified as Ga···C triel bonds. Their properties are analyzed in this study since these interactions may be important in numerous chemical processes including catalytical activities; additionally, geometrical parameters of corresponding species are described. The Ga···C triel bonds discussed here, categorized also as the π-hole bonds, do not change the trigonal configuration of the gallium center into the tetrahedral one despite total interactions in dimers being strong; however, the main contribution to the stabilization of corresponding structures comes from the electrostatic forces. The systems analyzed theoretically here come from crystal structures since the Cambridge Structural Database, CSD, search was performed to find structures where the gallium center linked to CC bonds of Lewis base units occurs. The majority structures found in CSD are characterized by parallel, stacking-like arrangements of species containing the Ga-centers. The theoretical results show that interactions within dimers are not classified as the three-centers links as in a case of typical hydrogen bonds and numerous other interactions. The total interactions in dimers analyzed here consist of several local intermolecular atom-atom interactions; these are mainly the Ga···C links. The DFT results are supported in this study by calculations with the use of the quantum theory of atoms in molecules, QTAIM, the natural bond orbital, NBO, and the energy decomposition analysis, EDA, approaches.
Collapse
Affiliation(s)
- Sławomir J. Grabowski
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU & Donostia International Physics Center (DIPC) PK 1072, 20080 Donostia, Spain;
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
6
|
Niu Z, McDowell SAC, Li Q. Triel Bonds with Au Atoms as Electron Donors. Chemphyschem 2023; 24:e202200748. [PMID: 36448371 DOI: 10.1002/cphc.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The novel triel bonds of BX3 (X=H, F, Cl, Br, and I) and C5 H5 B as electron acceptors and AuR2 (R=Cl and CH3 ) as an electron donor were explored. The triel bond is a primary driving force for most complexes, while the contribution from a halogen-chlorine interaction in BX3 -AuCl2 (X=Cl, Br, and I) and an iodine-Au interaction in BI3 -Au(CH3 )3 is also very important. Interestingly, the positively charged Au atom of AuCl2 can attractively bind with the holes of BX3 and C5 H5 B. The interaction energy lies in the range of 1 and 80 kcal/mol, in the order X=F<H<Cl<Br<I. In most cases, the triel bond of C5 H5 B is stronger than the triel bond of BX3 . In the formation of B-Au triel bond, electrostatic energy is not dominant, while polarization energy including orbital interaction has the largest contribution for the strongly bonded complexes and dispersion energy for the weak triel bond.
Collapse
Affiliation(s)
- Zhihao Niu
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Sean A C McDowell
- Department of Biological and Chemical Sciences, The University of the West Indies, Cave Hill Campus, Barbados
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
7
|
Wang X, Li B, Wang H, Song Q, Ni Y, Wang H. Strong σ-hole triel-bond between C5H5Tr (Tr B, Al, Ga) and N‐base (N‐base NCH, NH3, NC−): Cooperativity and solvation effects. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Piña MDLN, Burguera S, Buils J, Crespí MÀ, Morales JE, Pons J, Bauzá A, Frontera A. Substituent effects in π-hole regium bonding interactions between Au(p-X-Py)2 complexes and Lewis bases: an ab initio study. Chemphyschem 2022; 23:e202200010. [PMID: 35191571 DOI: 10.1002/cphc.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/09/2022] [Indexed: 11/10/2022]
Abstract
For the first time, long range substituent effects in regium bonding interactions involving Au(I) linear complexes are investigated. The Au(I) atom is coordinated to two para -substituted pyridine ligands. The interaction energy (RI-MP2/def2-TZVP level of theory) of the π-hole regium bonding assemblies is affected by the pyridine substitution. The Hammett's plot representations for several sets of Lewis bases have been carried out and, in all cases, good regression plots have been obtained (interaction energies vs. Hammett's σ parameter). The Bader's theory of "atoms-in-molecules" has been used to evidence that the electron density computed at the bond critical point that connects the Au-atom to the electron donor can be used as a measure of bond order in regium bonding. Several X-ray structures retrieved from the Cambridge Structural Database (CSD) provide some experimental support to the existence of regium π-hole bonding in [Au(Py) 2 ] + derivatives.
Collapse
Affiliation(s)
| | | | - Jordi Buils
- Universitat de les Illes Balears, Chemistry, SPAIN
| | | | | | - Jordi Pons
- Universitat de les Illes Balears, Chemistry, SPAIN
| | | | - Antonio Frontera
- Universitat Illes Balears, Chemistry, Crta de Valldemossa km 7.5, 07122, Palma de Mallorca, SPAIN
| |
Collapse
|
9
|
Yang Q, Li Q, Scheiner S. Diboron Bonds Between BX 3 (X=H, F, CH 3 ) and BYZ 2 (Y=H, F; Z=CO, N 2 , CNH). Chemphyschem 2021; 22:1461-1469. [PMID: 34089563 DOI: 10.1002/cphc.202100332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Indexed: 11/12/2022]
Abstract
The ability of B atoms on two different molecules to engage with one another in a noncovalent diboron bond is studied by ab initio calculations. Due to electron donation from its substituents, the trivalent B atom of BYZ2 (Z=CO, N2 , and CNH; Y=H and F) has the ability to in turn donate charge to the B of a BX3 molecule (X=H, F, and CH3 ), thus forming a B⋅⋅⋅B diboron bond. These bonds are of two different strengths and character. BH(CO)2 and BH(CNH)2 , and their fluorosubstituted analogues BF(CO)2 and BF(CNH)2 , engage in a typical noncovalent bond with B(CH3 )3 and BF3 , with interaction energies in the 3-8 kcal/mol range. Certain other combinations result in a much stronger diboron bond, in the 26-44 kcal/mol range, and with a high degree of covalent character. Bonds of this type occur when BH3 is added to BH(CO)2 , BH(CNH)2 , BH(N2 )2 , and BF(CO)2 , or in the complexes of BH(N2 )2 with B(CH3 )3 and BF3 . The weaker noncovalent bonds are held together by roughly equal electrostatic and dispersion components, complemented by smaller polarization energy, while polarization is primarily responsible for the stronger ones.
Collapse
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, 84322-0300, USA
| |
Collapse
|
10
|
Iribarren I, Sánchez-Sanz G, Alkorta I, Elguero J, Trujillo C. Evaluation of Electron Density Shifts in Noncovalent Interactions. J Phys Chem A 2021; 125:4741-4749. [PMID: 34061527 PMCID: PMC8279648 DOI: 10.1021/acs.jpca.1c00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Indexed: 12/12/2022]
Abstract
In the present paper, we report the quantitative evaluation of the electron density shift (EDS) maps within different complexes. Values associated with the total EDS maps exhibited good correlation with different quantities such as interaction energies, Eint, intermolecular distances, bond critical points, and LMOEDA energy decomposition terms. Besides, EDS maps at different cutoffs were also evaluated and related with the interaction energies values. Finally, EDS maps and their corresponding values are found to correlate with Eint within systems with cooperative effects. To our knowledge, this is the first time that the EDS has been quanitatively evaluated.
Collapse
Affiliation(s)
- Iñigo Iribarren
- Trinity
Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin, Dublin 2, Ireland
| | - Goar Sánchez-Sanz
- Irish
Centre For High-End Computing, 7 Floor, The Tower, Grand Canal Quay, Dublin 2 D02 HP83, Ireland
| | - Ibon Alkorta
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - José Elguero
- Instituto
de Química Médica (IQM-CSIC), Juan de la Cierva, 3, 28006 Madrid, Spain
| | - Cristina Trujillo
- Trinity
Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin, Dublin 2, Ireland
| |
Collapse
|
11
|
Wang X, Li Y, Wang H, Ni Y, Wang H. Which triel bond is stronger? TrHX⋯H2Y versus TrH2X⋯H2Y (Tr = Ga, In; X = F, Cl, Br, I; Y = O, S). Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02790-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Zierkiewicz W, Grabarz A, Michalczyk M, Scheiner S. Competition between Inter and Intramolecular Tetrel Bonds: Theoretical Studies Complemented by CSD Survey. Chemphyschem 2021; 22:924-934. [PMID: 33876515 DOI: 10.1002/cphc.202100157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Indexed: 01/02/2023]
Abstract
Crystal structures document the ability of a TF3 group (T=Si, Ge, Sn, Pb) situated on a naphthalene system to engage in an intramolecular tetrel bond (TB) with an amino group on the adjoining ring. Ab initio calculations evaluate the strength of this bond and evaluate whether it can influence the ability of the T atom to engage in a second, intermolecular TB with another nucleophile. A very strong CN- anionic base can approach the T either along the extension of a T-C or T-F bond and form a strong TB with an interaction energy approaching 100 kcal/mol, although this bond is weakened a bit by the presence of the internal T⋅⋅⋅N bond. The much less potent NCH base engages in a correspondingly longer and weaker TB, less than 10 kcal/mol. Such an intermolecular TB is weakened by the presence of the internal TB, to the point that it only occurs for the two heavier tetrel atoms Sn and Pb.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Anna Grabarz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Utah, 84322-0300, USA
| |
Collapse
|
13
|
Yang Q, Zhou B, Li Q, Scheiner S. Weak σ‐Hole Triel Bond between C
5
H
5
Tr (Tr=B, Al, Ga) and Haloethyne: Substituent and Cooperativity Effects. Chemphyschem 2021; 22:481-487. [DOI: 10.1002/cphc.202000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/13/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Qingqing Yang
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering Yantai University 264005 Yantai China
| | - Bohua Zhou
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering Yantai University 264005 Yantai China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry and School of Chemistry and Chemical Engineering Yantai University 264005 Yantai China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University 84322-0300 Logan UT USA
| |
Collapse
|
14
|
Suryaprasad B, Chandra S, Ramanathan N, Sundararajan K. Pentavalent P…π phosphorus bonding with associated Cl…π halogen bonding in influencing the geometry of POCl3-Phenylacetylene heterodimers: Evidence from matrix isolation infrared spectroscopy and ab initio computations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Berski S, Gordon AJ. In the search for ditriel B⋯Al non-covalent bonding. NEW J CHEM 2021. [DOI: 10.1039/d1nj01963e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ditriel B⋯Al interaction has been characterised using SAPT, AIM and ELF.
Collapse
Affiliation(s)
- Slawomir Berski
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383, Wroclaw, Poland
| | - Agnieszka J. Gordon
- Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383, Wroclaw, Poland
| |
Collapse
|
16
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
17
|
Wang R, Wang Z, Yu X, Li Q. Synergistic and Diminutive Effects between Regium and Aerogen Bonds. Chemphyschem 2020; 21:2426-2431. [PMID: 32889745 DOI: 10.1002/cphc.202000720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Indexed: 11/07/2022]
Abstract
The aerogen bond is formed in complexes of HCN-XeF2 O and C2 H4 -XeF2 O. The lone pair on the N atom of HCN is a better electron donor in the aerogen bond than the π electron on the C=C bond of C2 H4 . The coinage substitution strengthens the aerogen bond in MCN-XeF2 O (M=Cu, Ag, and Au) and its enhancing effect becomes larger in the Au<Cu<Ag pattern. The aerogen bond is further enhanced by the regium bond in C2 H2 -MCN-XeF2 O and C2 H4 -MCN-XeF2 O, but is weakened by the regium bond in MCN-C2 H4 -XeF2 O and C2 (CN)4 -MCN-XeF2 O. Simultaneously, the regium bond is also strengthened or weakened in these triads. The synergistic and diminutive effects between regium and aerogen bonds have been explained by means of charge transfer and electrostatic potentials.
Collapse
Affiliation(s)
- Ruijing Wang
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zheng Wang
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuefang Yu
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Qingzhong Li
- Laboratory of Theoretical and Computational Chemistry, and School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
18
|
Abstract
The regium-π interaction is an attractive noncovalent force between group 11 elements (Cu, Ag, and Au) acting as Lewis acids and aromatic surfaces. Herein, we report for the first time experimental (Protein Data Bank analysis) and theoretical (RI-MP2/def2-TZVP level of theory) evidence of regium-π bonds involving Au(I) and aromatic amino acids (Phe, Tyr, Trp, and His). These findings might be important in the field of drug design and for retrospectively understanding the role of gold in proteins.
Collapse
Affiliation(s)
- María de Las Nieves Piña
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| | - Antonio Bauzá
- Department of Chemistry, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares), Spain
| |
Collapse
|
19
|
Yang Q, Chi Z, Li Q, Scheiner S. Effect of carbon hybridization in C—F bond as an electron donor in triel bonds. J Chem Phys 2020; 153:074304. [DOI: 10.1063/5.0018950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Qingqing Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Zongqing Chi
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, People’s Republic of China
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
20
|
Abstract
In this review, we provide a consistent description of noncovalent interactions, covering most groups of the Periodic Table. Different types of bonds are discussed using their trivial names. Moreover, the new name “Spodium bonds” is proposed for group 12 since noncovalent interactions involving this group of elements as electron acceptors have not yet been named. Excluding hydrogen bonds, the following noncovalent interactions will be discussed: alkali, alkaline earth, regium, spodium, triel, tetrel, pnictogen, chalcogen, halogen, and aerogen, which almost covers the Periodic Table entirely. Other interactions, such as orthogonal interactions and π-π stacking, will also be considered. Research and applications of σ-hole and π-hole interactions involving the p-block element is growing exponentially. The important applications include supramolecular chemistry, crystal engineering, catalysis, enzymatic chemistry molecular machines, membrane ion transport, etc. Despite the fact that this review is not intended to be comprehensive, a number of representative works for each type of interaction is provided. The possibility of modeling the dissociation energies of the complexes using different models (HSAB, ECW, Alkorta-Legon) was analyzed. Finally, the extension of Cahn-Ingold-Prelog priority rules to noncovalent is proposed.
Collapse
|
21
|
Regium Bonds between Silver(I) Pyrazolates Dinuclear Complexes and Lewis Bases (N2, OH2, NCH, SH2, NH3, PH3, CO and CNH). CRYSTALS 2020. [DOI: 10.3390/cryst10020137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A theoretical study and Cambridge Structural Database (CSD) search of dinuclear Ag(I) pyrazolates interactions with Lewis bases were carried out and the effect of the substituents and ligands on the structure and on the aromaticity were analyzed. A relationship between the intramolecular Ag–Ag distance and stability was found in the unsubstituted system, which indicates a destabilization at longer distances compensated by ligands upon complexation. It was also observed that the asymmetrical interaction with phosphines as ligands increases the Ag–Ag distance. This increase is dramatically higher when two simultaneous PH3 ligands are taken into account. The calculated 109Ag chemical shielding shows variation up to 1200 ppm due to the complexation. Calculations showed that six-membered rings possessed non-aromatic character while pyrazole rings do not change their aromatic character significantly upon complexation.
Collapse
|
22
|
Zierkiewicz W, Michalczyk M, Scheiner S. Competition between Intra and Intermolecular Triel Bonds. Complexes between Naphthalene Derivatives and Neutral or Anionic Lewis Bases. Molecules 2020; 25:E635. [PMID: 32024163 PMCID: PMC7037318 DOI: 10.3390/molecules25030635] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
: A TrF2 group (Tr = B, Al, Ga, In, Tl) is placed on one of the α positions of naphthalene, and its ability to engage in a triel bond (TrB) with a weak (NCH) and strong (NC-) nucleophile is assessed by ab initio calculations. As a competitor, an NH2 group is placed on the neighboring Cα, from which point it forms an intramolecular TrB with the TrF2 group. The latter internal TrB reduces the intensity of the π-hole on the Tr atom, decreasing its ability to engage in a second external TrB. The intermolecular TrB is weakened by a factor of about two for the smaller Tr atoms but is less severe for the larger Tl. The external TrB can be quite strong nonetheless; it varies from a minimum of 8 kcal/mol for the weak NCH base, up to as much as 70 kcal/mol for CN-. Likewise, the appearance of an external TrB to a strong base like CN- lessens the ability of the Tr to engage in an internal TrB, to the point where such an intramolecular TrB becomes questionable.
Collapse
Affiliation(s)
- Wiktor Zierkiewicz
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Mariusz Michalczyk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| |
Collapse
|
23
|
Wang R, Yang S, Li Q. Coinage-Metal Bond between [1.1.1]Propellane and M 2/MCl/MCH 3 (M = Cu, Ag, and Au): Cooperativity and Substituents. Molecules 2019; 24:molecules24142601. [PMID: 31319542 PMCID: PMC6680963 DOI: 10.3390/molecules24142601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/25/2022] Open
Abstract
A coinage-metal bond has been predicted and characterized in the complexes of [1.1.1]propellane (P) and M2/MCl/MCH3 (M = Cu, Ag, and Au). The interaction energy varies between −16 and −47 kcal/mol, indicating that the bridgehead carbon atom of P has a good affinity for the coinage atom. The coinage-metal bond becomes stronger in the Ag < Cu < Au sequence. Relative to M2, both MCl and MCH3 engage in a stronger coinage-metal bond, both -Cl and -CH3 groups showing an electron-withdrawing property. The formation of coinage-metal bonding is mainly attributed to the donation orbital interactions from the occupied C-C orbital into the empty metal orbitals and a back-donation from the occupied d orbital of metal into the empty C-C anti-bonding orbital. In most complexes, the coinage-metal bond is dominated by electrostatic interaction, with moderate contribution of polarization. When P binds simultaneously with two coinage donors, negative cooperativity is found. Moreover, this cooperativity is prominent for the stronger coinage-metal bond.
Collapse
Affiliation(s)
- Ruijing Wang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Shubin Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Qingzhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
24
|
Zhou F, Liu Y, Wang Z, Lu T, Yang Q, Liu Y, Zheng B. A new type of halogen bond involving multivalent astatine: an ab initio study. Phys Chem Chem Phys 2019; 21:15310-15318. [PMID: 31241070 DOI: 10.1039/c9cp02406a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Theoretical studies on the dimers formed by CO with the halides of multivalent astatine as a Lewis-acid center are carried out to examine the typical characteristics of supervalent halogen bonds. Calculations at the MP2/aug-cc-pVTZ level reveal that the multiple nucleophilic sites of multivalent halide monomers can promote the formation of various types of halogen bonds, among which the most stable ones are At-halogen bond complexes with multivalent astatine as a Lewis acid center, followed by the π-halogen bond dimers, and the weakest ones are the X-halogen bonds. Compared with multivalent Cl-, Br-, and I-centers, At, as the heaviest halogen, exhibits the highest halogen-bond donating ability. We found that the electrostatic term and the dispersion term play an important role in the overall attractive interaction energy, and the smallest attraction term for all complexes is the polarization term (ΔEpol). Moreover, the tri and pentavalent halides analyzed here possess very "flexible" tautomerism in which the transformation occurs during the formation of the dimers. AIM theory and NBO analysis are also employed here.
Collapse
Affiliation(s)
- Fengxiang Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China. and Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China and Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuan Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China. and Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Zhaoxu Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China. and Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Tian Lu
- Beijing Kein Research Center for Natural Sciences, Beijing 100022, China
| | - Qingyuan Yang
- Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yi Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Baishu Zheng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|