1
|
Seidler Y, Rimbach G, Lüersen K, Vinderola G, Ipharraguerre IR. The postbiotic potential of Aspergillus oryzae - a narrative review. Front Microbiol 2024; 15:1452725. [PMID: 39507340 PMCID: PMC11538067 DOI: 10.3389/fmicb.2024.1452725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
The filamentous fungus Aspergillus oryzae has a long tradition in East Asian food processing. It is therefore not surprising that in recent years fermentation products of A. oryzae have attracted attention in the emerging field of postbiotics. This review aims to provide a comprehensive summary of the potential postbiotic effects of fermentation products from A. oryzae, by discussing possible mechanisms of action against the background of the molecular composition determined so far. In particular, cell wall constituents, enzymes, extracellular polymeric substances, and various metabolites found in A. oryzae fermentation preparations are described in detail. With reference to the generally assumed key targets of postbiotics, their putative beneficial bioactivities in modulating the microbiota, improving epithelial barrier function, influencing immune responses, metabolic reactions and signaling through the nervous system are assessed. Drawing on existing literature and case studies, we highlight A. oryzae as a promising source of postbiotics, particularly in the context of animal health and nutrition. Challenges and opportunities in quality control are also addressed, with a focus on the necessity for standardized methods to fully harness the potential of fungal-based postbiotics. Overall, this article sheds light on the emerging field of A. oryzae-derived postbiotics and emphasizes the need for further research to fully realize their therapeutic potential.
Collapse
Affiliation(s)
- Yvonne Seidler
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| | - Gabriel Vinderola
- Instituto de Lactología Industrial (CONICET-UNL), Faculty of Chemical Engineering, National University of Litoral, Santa Fe, Argentina
| | - Ignacio R. Ipharraguerre
- Institute of Human Nutrition and Food Science, Division of Food Science, Faculty of Agricultural and Nutritional Sciences, University of Kiel, Kiel, Germany
| |
Collapse
|
2
|
Cui J, Wang Y, Zhou A, He S, Mao Z, Cao T, Wang N, Yuan Y. Cloning, Expression, Purification, and Characterization of a Novel β-Galactosidase/α-L-Arabinopyranosidase from Paenibacillus polymyxa KF-1. Molecules 2023; 28:7464. [PMID: 38005185 PMCID: PMC10673005 DOI: 10.3390/molecules28227464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Glycosidases are essential for the industrial production of functional oligosaccharides and many biotech applications. A novel β-galactosidase/α-L-arabinopyranosidase (PpBGal42A) of the glycoside hydrolase family 42 (GH42) from Paenibacillus polymyxa KF-1 was identified and functionally characterized. Using pNPG as a substrate, the recombinant PpBGal42A (77.16 kD) was shown to have an optimal temperature and pH of 30 °C and 6.0. Using pNPαArap as a substrate, the optimal temperature and pH were 40 °C and 7.0. PpBGal42A has good temperature and pH stability. Furthermore, Na+, K+, Li+, and Ca2+ (5 mmol/L) enhanced the enzymatic activity, whereas Mn2+, Cu2+, Zn2+, and Hg2+ significantly reduced the enzymatic activity. PpBGal42A hydrolyzed pNP-β-D-galactoside and pNP-α-L-arabinopyranoside. PpBGal42A liberated galactose from β-1,3/4/6-galactobiose and galactan. PpBGal42A hydrolyzed arabinopyranose at C20 of ginsenoside Rb2, but could not cleave arabinofuranose at C20 of ginsenoside Rc. Meanwhile, the molecular docking results revealed that PpBGal42A efficiently recognized and catalyzed lactose. PpBGal42A hydrolyzes lactose to galactose and glucose. PpBGal42A exhibits significant degradative activity towards citrus pectin when combined with pectinase. Our findings suggest that PpBGal42A is a novel bifunctional enzyme that is active as a β-galactosidase and α-L-arabinopyranosidase. This study expands on the diversity of bifunctional enzymes and provides a potentially effective tool for the food industry.
Collapse
Affiliation(s)
- Jing Cui
- Institute of Innovation Science & Technology, Central Laboratory, Changchun Normal University, Changchun 130031, China;
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Yibing Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Andong Zhou
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Shuhui He
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Zihan Mao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Ting Cao
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Nan Wang
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| | - Ye Yuan
- Engineering Research Center of Glycoconjugates Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (Y.W.); (A.Z.); (S.H.); (Z.M.); (N.W.)
| |
Collapse
|
3
|
Patterson AT, Styczynski MP. Rapid and Finely-Tuned Expression for Deployable Sensing Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:141-161. [PMID: 37316621 DOI: 10.1007/10_2023_223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organisms from across the tree of life have evolved highly efficient mechanisms for sensing molecules of interest using biomolecular machinery that can in turn be quite valuable for the development of biosensors. However, purification of such machinery for use in in vitro biosensors is costly, while the use of whole cells as in vivo biosensors often leads to long sensor response times and unacceptable sensitivity to the chemical makeup of the sample. Cell-free expression systems overcome these weaknesses by removing the requirements associated with maintaining living sensor cells, allowing for increased function in toxic environments and rapid sensor readout at a production cost that is often more reasonable than purification. Here, we focus on the challenge of implementing cell-free protein expression systems that meet the stringent criteria required for them to serve as the basis for field-deployable biosensors. Fine-tuning expression to meet these requirements can be achieved through careful selection of the sensing and output elements, as well as through optimization of reaction conditions via tuning of DNA/RNA concentrations, lysate preparation methods, and buffer conditions. Through careful sensor engineering, cell-free systems can continue to be successfully used for the production of tightly regulated, rapidly expressing genetic circuits for biosensors.
Collapse
Affiliation(s)
- Alexandra T Patterson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark P Styczynski
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Videira-Quintela D, Guillén F, Prazeres SF, Montalvo G. Immobilization of Kluyveromyces lactis β-Galactosidase on Meso-macroporous Silica: Use of Infrared Spectroscopy to Rationalize the Catalytic Efficiency. Chempluschem 2022; 87:e202200340. [PMID: 36515233 PMCID: PMC10369856 DOI: 10.1002/cplu.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Enzyme immobilization on adequate carriers is a challenging strategy. Understanding the enzyme-carrier interactions and their effects on enzyme conformation and bioactivity is critical. In this study, a meso-macropores silica (MMS) was used to immobilize β-galactosidase from the yeast Kluyveromyces lactis (β-gal-KL) by physical adsorption. The bioactivity of the immobilized β-gal-KL was altered, evidenced by the increased Km , decreased Vmax and kcat , and increased activity at alkaline values. By performing infrared spectroscopy analysis and subsequent secondary structure assessment from the amide I band, the immobilized β-gal-KL suffered a β-sheet (∼31-35 %) to α-helix (∼15-19 %) transition with increased turns (∼21-22 %) with respect to the free β-gal-KL having ∼12 % α-helix, ∼42 % β-sheet, and ∼17 % turns. These findings led us to correlate the observed bioactivity performance to structural alterations to a non-native conformation. The presented line of thought can lead to a better understanding of the reasons causing bioactivity alterations upon enzyme immobilization.
Collapse
Affiliation(s)
- Diogo Videira-Quintela
- Facultad de Farmacia, Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - Francisco Guillén
- Facultad de Farmacia, Departamento de Biomedicina y Biotecnología, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - Sofia F Prazeres
- Facultad de Farmacia, Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain
| | - Gemma Montalvo
- Facultad de Farmacia, Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Ctra. Madrid-Barcelona km 33.6, 28871 Alcalá de Henares, Madrid, Spain.,Instituto Universitario de Investigación en Ciencias Policiales, Universidad de Alcalá, Libreros 27, 28801, Madrid, Spain
| |
Collapse
|
5
|
Cloning, Expression, Purification and Characterization of the β-galactosidase PoβGal35A from Penicillium oxalicum. Mol Biotechnol 2022:10.1007/s12033-022-00620-y. [DOI: 10.1007/s12033-022-00620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
|
6
|
Effects of Bifidobacterium longum CCFM5871 as an adjunct starter culture on the production of fermented milk. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Singh RV, Sambyal K. β-galactosidase as an industrial enzyme: production and potential. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02507-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Cao J, Yu Z, Zhang Q, Yu L, Zhao J, Zhang H, Chen W, Zhai Q. Effects of Bacillus coagulans GBI-30, 6086 as an adjunct starter culture on the production of yogurt. Food Res Int 2022; 160:111398. [DOI: 10.1016/j.foodres.2022.111398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/04/2022]
|
9
|
Cao J, Yu L, Zhao J, Zhang H, Chen W, Zhai Q. Genomic analysis of B. coagulans ATCC 7050T reveals its adaption to fermented milk as an adjunct starter culture for yogurt. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Ryazantseva K, Agarkova E, Fedotova O. Continuous hydrolysis of milk proteins in membrane reactors of various configurations. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-271-281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. The article provides a review of technologies for membrane fractionation of various hydrolyzed food substrates in membrane bioreactors (MBR). In food industry, MBRs are popular in functional food production, especially in the processing of whey, which is a very promising raw material due to its physicochemical composition.
Study objects and methods. The research was based on a direct validated analysis of scientific publications and featured domestic and foreign experience in MBR hydrolysis of protein raw material.
Results and discussion. The MBR hydrolysis of proteins combines various biocatalytic and membrane processes. This technology makes it possible to intensify the biocatalysis, optimize the use of the enzyme preparation, and regulate the molecular composition of hydrolysis products. The paper reviews MBRs based on batch or continuous stirring, gradient dilution, ceramic capillary, immobilized enzyme, etc. Immobilized enzymes reduce losses that occur during the production of fractionated peptides. Continuous MBRs are the most economically profitable type, as they are based on the difference in molecular weight between the enzyme and the hydrolysis products.
Conclusion. Continuous stirred tank membrane reactors have obvious advantages over other whey processing reactors. They provide prompt separation of hydrolysates with the required biological activity and make it possible to reuse enzymes.
Collapse
Affiliation(s)
| | | | - Olga Fedotova
- All-Russian Scientific Research Institute of the Dairy Industry
| |
Collapse
|
11
|
Li N, Liu Y, Wang C, Weng P, Wu Z, Zhu Y. Overexpression and characterization of a novel GH4 galactosidase with β-galactosidase activity from Bacillus velezensis SW5. J Dairy Sci 2021; 104:9465-9477. [PMID: 34127264 DOI: 10.3168/jds.2021-20258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
A novel galactosidase gene (gal3149) was identified from Bacillus velezensis SW5 and heterologously expressed in Escherichia coli BL21 (DE3). The novel galactosidase, Gal3149, encoded by gal3149 in an open reading frame of 1,299 bp, was 433 amino acids in length. Protein sequence analysis showed that Gal3149 belonged to family 4 of glycoside hydrolases (GH4). Gal3149 displayed higher enzyme activity for the substrate 2-nitrophenyl-β-d-galactopyranoside (oNPG) than for 4-nitrophenyl-α-d-galactopyranoside (pNPαG). This is the first time that an enzyme belonging to GH4 has been shown to exhibit β-galactosidase activity. Gal3149 showed optimal activity at pH 8.0 and 50°C, and exhibited excellent thermal stability, with retention of 50% relative activity after incubation at a temperature range of 0 to 50°C for 48 h. Gal3149 activity was significantly improved by K+ and Na+, and was strongly or completely inhibited by Ag+, Zn2+, Tween-80, Cu2+, carboxymethyl cellulose, and oleic acid. The rate of hydrolyzed lactose in 1 mL of milk by 1 U of Gal3149 reached about 50% after incubation for 4 h. These properties lay a solid foundation for Gal3149 in application of the lactose-reduced dairy industry.
Collapse
Affiliation(s)
- Na Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yang Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China; Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou 350003, People's Republic of China
| | - Changyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peifang Weng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Zufang Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, People's Republic of China.
| | - Yazhu Zhu
- Zhejiang International Maritime College, Zhoushan 316021, People's Republic of China
| |
Collapse
|
12
|
Abstract
During the last century, industrialization has grown very fast and as a result heavy metals have contaminated many water sources. Due to their high toxicity, these pollutants are hazardous for humans, fish, and aquatic flora. Traditional techniques for their removal are adsorption, electro-dialysis, precipitation, and ion exchange, but they all present various drawbacks. Membrane technology represents an exciting alternative to the traditional ones characterized by high efficiency, low energy consumption and waste production, mild operating conditions, and easy scale-up. In this review, the attention has been focused on applying driven-pressure membrane processes for heavy metal removal, highlighting each of the positive and negative aspects. Advantages and disadvantages, and recent progress on the production of nanocomposite membranes and electrospun nanofiber membranes for the adsorption of heavy metal ions have also been reported and critically discussed. Finally, future prospective research activities and the key steps required to make their use effective on an industrial scale have been presented
Collapse
|
13
|
Cheng D, Jiang C, Xu J, Liu Z, Mao X. Characteristics and applications of alginate lyases: A review. Int J Biol Macromol 2020; 164:1304-1320. [PMID: 32745554 DOI: 10.1016/j.ijbiomac.2020.07.199] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Brown algae, as the main source of alginate, are a type of marine biomass with a very high output. Alginate, a polysaccharide composed of β-D-mannuronic acid (M) and α-L-guluronic acid (G), has great potential for applications in the food, cosmetic and pharmaceutical industries. Alginate lyases (Alys) can degrade alginate polymers into oligosaccharides or monosaccharides, resulting in a broad application field. Alys can be used for both the production of alginate oligosaccharides and the biorefinery of brown algae. In view of their important functions, an increasing number of Alys have been isolated and characterized. For better application, a comprehensive understanding of Alys is essential. Therefore, in this paper, we summarized recently discovered Alys, discussed their characteristics, and introduced their structural properties, degradation patterns and biological roles in alginate-degrading organisms. In addition, applications of Alys have been illustrated with examples. This paper provides a relatively comprehensive description of Alys, which is significant for Alys exploration and application.
Collapse
Affiliation(s)
- Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jiachao Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Preparation and assessment of cross-linked enzyme aggregates (CLEAs) of β-galactosidase from Lactobacillus leichmannii 313. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Petrosino F, Hallez Y, De Luca G, Curcio S. Osmotic pressure and transport coefficient in ultrafiltration: A Monte Carlo study using quantum surface charges. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
de Jesus LFMC, Guimarães LHS. Production of β-galactosidase by Trichoderma sp. through solid-state fermentation targeting the recovery of galactooligosaccharides from whey cheese. J Appl Microbiol 2020; 130:865-877. [PMID: 32741059 DOI: 10.1111/jam.14805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 01/31/2023]
Abstract
AIMS Optimization of β-galactosidase production by Trichoderma sp. under solid-state fermentation using wheat bran as solid substrate through an experimental design and its application targeting the recovery of galactooligosaccharides (GOS) from whey cheese. METHODS AND RESULTS The β-galactosidase production by Trichoderma sp. increased 2·3-fold (2·67 U g-1 of substrate) culturing the fungus at 30°C for 187 h, at an inoculum of 105 spores per ml, and a 1 : 1·65 (w/v) ratio of wheat bran to tap water. The best enzyme activity was obtained at 55°C and pH 4·5. The catalytic activity was maintained for up to 180 min incubating at 35-45°C, and above 50% at acidic or alkaline pH for up to 24 h. It also presented resistance to chemical compounds. β-galactosidase catalysed the hydrolysis of the lactose and the transgalactosylation reaction leading to the production of GOS. CONCLUSION Trichoderma sp. produced β-galactosidase with transgalactosylation activity that may be used to recover GOS, products with high added value, from whey cheese. SIGNIFICANCE AND IMPACT OF THE STUDY β-galactosidases are used in different industrial sectors. Therefore, the Trichoderma β-galactosidase is a promising alternative for the production of GOS as prebiotic from the dairy effluents, contributing to the reduction in the environmental impact.
Collapse
Affiliation(s)
- L F M C de Jesus
- Instituto de Química de Araraquara-UNESP, Araraquara, São Paulo, Brazil
| | - L H S Guimarães
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Ureta MM, Martins GN, Figueira O, Pires PF, Castilho PC, Gomez-Zavaglia A. Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Crit Rev Food Sci Nutr 2020; 61:2659-2690. [PMID: 32590905 DOI: 10.1080/10408398.2020.1783639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: β-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of β-galactosidases and fructosyltransferases, but there is still great place for innovative developments.
Collapse
Affiliation(s)
- Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | | | - Onofre Figueira
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Filipe Pires
- CQM - Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | | | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
18
|
Rasheed A, Ghous T, Mumtaz S, Zafar MN, Akhter K, Shabir R, Shafqat SS. Immobilization of Pseudomonas aeruginosa static biomass on eggshell powder for on-line preconcentration and determination of Cr (VI). OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn the present work, a novel continuous flow system (CFS) is developed for the preconcentration and determination of Cr (VI) usingPseudomonas aeruginosastatic biomass immobilized onto an effective and low-cost solid support of powdered eggshells. A mini glass column packed with the immobilized biosorbent is incorporated in a CFS for the preconcentration and determination of Cr (VI) from aqueous solutions. The method is based on preconcentration, washing and elution steps followed by colorimetric detection with 1,5-diphenyl carbazide in sulphuric acid. The effects of several variables such as pH, retention time, flow rate, eluent concentration and loaded volume are studied. Under optimal conditions, the CFS method has a linear range between 10 and 100 μg L-1and a detection limit of 6.25 μg L-1for the determination of Cr (VI). The sampling frequency is 10 samples per hour with a preconcentration time of 5 mins. Furthermore, after washing with a 0.1 M buffer (pH 3.0), the activity of the biosorbent is regenerated and remained comparable for more than 200 cycles. Scanning electron microscopy reveals a successful immobilization of biomass on eggshells powder and precipitation of Cr (VI) on the bacterial cell surface. The proposed method proves highly sensitive and could be suitable for the determination of Cr (VI) at an ultra-trace level.
Collapse
Affiliation(s)
- Aamir Rasheed
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
- Department of Chemistry, University of Kotli Azad Jammu and Kashmir, Kotli, 11100Pakistan
| | - Tahseen Ghous
- Department of Chemistry, Mirpur University of Science and Technology, Mirpur, Pakistan
| | - Sumaira Mumtaz
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | - Kalsoom Akhter
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Rabia Shabir
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | | | | |
Collapse
|
19
|
Characterization of three novel β-galactosidases from Akkermansia muciniphila involved in mucin degradation. Int J Biol Macromol 2020; 149:331-340. [PMID: 31991210 DOI: 10.1016/j.ijbiomac.2020.01.246] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/04/2023]
Abstract
The gut microbe Akkermansia (A.) muciniphila becomes increasingly important as its prevalence is inversely correlated with different human metabolic disorders and diseases. This organism is a highly potent degrader of intestinal mucins and the hydrolyzed glycan compounds can then serve as carbon sources for the organism itself or other members of the gut microbiota via cross-feeding. Despite its importance for the hosts' health and microbiota composition, exact mucin degrading mechanisms are still mostly unclear. In this study, we identified and characterized three extracellular β-galactosidases (Amuc_0771, Amuc_0824, and Amuc_1666) from A. muciniphila ATCC BAA-835. The substrate spectrum of all three enzymes was analyzed and the results indicated a preference for different galactosidic linkages for each hydrolase. All preferred target structures are prevalent within mucins of the colonic habitat of A. muciniphila. To check a potential function of the enzymes for the degradation of mucosal glycan structures, porcine stomach mucin was applied as a model substrate. In summary, we could confirm the involvement of all three β-galactosidases from A. muciniphila in the complex mucin degradation machinery of this important gut microbe. These findings could contribute to the understanding of the molecular interactions between A. muciniphila and its host on a molecular level.
Collapse
|
20
|
Simultaneous hydrolysis of cheese whey and lactulose production catalyzed by β-galactosidase from Kluyveromyces lactis NRRL Y1564. Bioprocess Biosyst Eng 2020; 43:711-722. [DOI: 10.1007/s00449-019-02270-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
|
21
|
Vera C, Guerrero C, Aburto C, Cordova A, Illanes A. Conventional and non-conventional applications of β-galactosidases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140271. [DOI: 10.1016/j.bbapap.2019.140271] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/30/2019] [Indexed: 02/04/2023]
|
22
|
Ji D, Oey I, Agyei D. Purification, characterization and thermal inactivation kinetics of β-galactosidase from Lactobacillus leichmannii 313. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Liu P, Xie J, Liu J, Ouyang J. A novel thermostable β-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. J Dairy Sci 2019; 102:9740-9748. [DOI: 10.3168/jds.2019-16654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 07/08/2019] [Indexed: 01/19/2023]
|
24
|
Katrolia P, Liu X, Li J, Kopparapu NK. Enhanced elimination of non-digestible oligosaccharides from soy milk by immobilized α-galactosidase: A comparative analysis. J Food Biochem 2019; 43:e13005. [PMID: 31393013 DOI: 10.1111/jfbc.13005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
This study compared two immobilization matrices like calcium-alginate and chitosan for immobilization of α-galactosidase and evaluated their potential for the removal of non-digestible raffinose family oligosaccharides from soy milk which cause abdominal discomfort. The pH optima of the free and immobilized enzymes were found to be similar at pH 4.0. The chitosan-immobilized α-galactosidase displayed higher optimal temperature (60°C) compared to alginate-immobilized enzyme (45°C) and free enzyme (50°C). The chitosan-immobilized and alginate-immobilized α-galactosidases displayed 93.7% and 97.6% hydrolysis of raffinose family oligosaccharides, respectively, while the free enzyme hydrolyzed only 30.3% oligosaccharides present in soy milk in 4 hr. Remarkably, both the immobilized enzymes showed complete removal of raffinose family oligosaccharides in 8 hr. Moreover, reusability studies indicate that even after five cycles of reuse, the chitosan and alginate-immobilized enzymes displayed 99% and 60% hydrolysis, respectively. PRACTICAL APPLICATIONS: In this study, we have used two inexpensive and non-toxic matrices for immobilizing α-galactosidase. We report that entrapment of α-galactosidase with chitosan significantly improved the optimal temperature of α-galactosidase, which is advantageous in food industry. The hydrolysis of raffinose family oligosaccharides in soy milk was also greatly enhanced after immobilization with chitosan and alginate. Thus, the results described in this study have relevance for development of safe, cost-effective and efficient method for removal of non-digestible soy oligosaccharides in food industry.
Collapse
Affiliation(s)
- Priti Katrolia
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China.,College of Food Science, Southwest University, Chongqing, China
| | - Xiaolan Liu
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| | - Junzhong Li
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China
| | - Narasimha Kumar Kopparapu
- Heilongjiang Provincial Key University Laboratory of Processing Agricultural Products, College of Food and Bioengineering, Qiqihar University, Qiqihar, China.,College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Yao C, Sun J, Wang W, Zhuang Z, Liu J, Hao J. A novel cold-adapted β-galactosidase from Alteromonas sp. ML117 cleaves milk lactose effectively at low temperature. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Kittibunchakul S, Pham ML, Tran AM, Nguyen TH. β-Galactosidase from Lactobacillus helveticus DSM 20075: Biochemical Characterization and Recombinant Expression for Applications in Dairy Industry. Int J Mol Sci 2019; 20:ijms20040947. [PMID: 30813223 PMCID: PMC6412629 DOI: 10.3390/ijms20040947] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/29/2022] Open
Abstract
β-Galactosidase encoding genes lacLM from Lactobacillus helveticus DSM 20075 were cloned and successfully overexpressed in Escherichia coli and Lactobacillus plantarum using different expression systems. The highest recombinant β-galactosidase activity of ∼26 kU per L of medium was obtained when using an expression system based on the T7 RNA polymerase promoter in E. coli, which is more than 1000-fold or 28-fold higher than the production of native β-galactosidase from L. helveticus DSM 20075 when grown on glucose or lactose, respectively. The overexpression in L. plantarum using lactobacillal food-grade gene expression system resulted in ∼2.3 kU per L of medium, which is approximately 10-fold lower compared to the expression in E. coli. The recombinant β-galactosidase from L. helveticus overexpressed in E. coli was purified to apparent homogeneity and subsequently characterized. The Km and vmax values for lactose and o-nitrophenyl-β-d-galactopyranoside (oNPG) were 15.7 ± 1.3 mM, 11.1 ± 0.2 µmol D-glucose released per min per mg protein, and 1.4 ± 0.3 mM, 476 ± 66 µmol o-nitrophenol released per min per mg protein, respectively. The enzyme was inhibited by high concentrations of oNPG with Ki,s = 3.6 ± 0.8 mM. The optimum pH for hydrolysis of both substrates, lactose and oNPG, is pH 6.5 and optimum temperatures for these reactions are 60 and 55 °C, respectively. The formation of galacto-oligosaccharides (GOS) in discontinuous mode using both crude recombinant enzyme from L. plantarum and purified recombinant enzyme from E. coli revealed high transgalactosylation activity of β-galactosidases from L. helveticus; hence, this enzyme is an interesting candidate for applications in lactose conversion and GOS formation processes.
Collapse
Affiliation(s)
- Suwapat Kittibunchakul
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Mai-Lan Pham
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Anh-Minh Tran
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
- Department of Biology, Faculty of Fundamental Sciences, Ho Chi Minh City University of Medicine and Pharmacy, 217 Hong Bang, Ho Chi Minh City, Vietnam.
| | - Thu-Ha Nguyen
- Food Biotechnology Laboratory, BOKU University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
27
|
Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Yang X, Liu Z, Jiang C, Sun J, Xue C, Mao X. A novel agaro-oligosaccharide-lytic β-galactosidase from Agarivorans gilvus WH0801. Appl Microbiol Biotechnol 2018; 102:5165-5172. [PMID: 29682702 DOI: 10.1007/s00253-018-8999-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/30/2022]
Abstract
β-Galactosidases have a wide application in the food and pharmaceutical industries. Recently, β-galactosidase was also found to participate in agar degradation. In this study, the second reported agarolytic β-galactosidase was found in the marine bacterium Agarivorans gilvus WH0801 and characterized. The β-galactosidase named AgWH2A (83 kDa) exhibited good activities under optimal hydrolysis conditions of pH 8.0 and 40 °C. AgWH2A could cleave the first D-galactose of agarooligosaccharides from its nonreducing end to produce neoagarooligosaccharides, but could not act on the neoagarooligosaccharides. AgWH2A has great potential in the comprehensive utilization of marine red algae.
Collapse
Affiliation(s)
- Xiaoqing Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
29
|
Increase in an Intracellular β-Galactosidase Biosynthesis Using L. reuteri NRRL B-14171, Inducers and Alternative Low-Cost Nitrogen Sources under Submerged Cultivation. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2018. [DOI: 10.1515/ijfe-2017-0333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
AbstractThe aim of this study was to select among lactic acid bacteria (LAB) and yeast a potential β-galactosidase producer, based on bioprocess parameters. From the selected microorganism, different organic cheaper nitrogen sources (single and combined) with low cost for β-galactosidase production were evaluated. Lactobacillus reuteri B-14171 showed the highest enzymatic activity (1,286 U L−1), high productivity (28.78 U L h−1) and yield factor (82.32 U g−1), evidencing its potential for β-galactosidase production. All organic nitrogen sources tested were viable for the enzymatic production using L. reuteri B-14171. The MMRS casein (3.0 g L−1) + inactive beer yeast (3.0 g L−1) as nitrogen source increased the enzymatic activity (1269 U L−1) with 1.83 times lower production costs of culture medium when compared to MMRS-yeast extract B. The MMRS casein + inactive beer yeast has proved to be an innovative and cheaper nitrogen source for β-galactosidase production by L. reuteri B-14171.
Collapse
|
30
|
Cao L, Ren G, Qin Z, Huang X, Kong W, Wang Z, Liang W, Bi X, Liu Y. Improving the Secretion Yield of the β-Galactosidase Bgal1-3 in Pichia pastoris for Use as a Potential Catalyst in the Production of Prebiotic-Enriched Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10757-10766. [PMID: 29181978 DOI: 10.1021/acs.jafc.7b04694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, three kinds of milk were treated with the β-galactosidase Bgal1-3 (4 U/mL), resulting in 7.2-9.5 g/L galactooligosaccharides (GOS) at a lactose conversion of 90-95%. Then, Bgal1-3 was secreted from Pichia pastoris X33 under the direction of an α-factor signal peptide. After cultivation for 144 h in a flask culture with shaking, the extracellular activity of Bgal1-3 was 4.4 U/mL. Five more signal peptides (HFBI, apre, INU1A, MF4I, and W1) were employed to direct the secretion, giving rise to a more efficient signal peptide, W1 (11.2 U/mL). To further improve the secretion yield, recombinant strains harboring two copies of the bgal1-3 gene were constructed, improving the extracellular activity to 22.6 U/mL (about 440 mg/L). This study successfully constructed an engineered strain for the production of the β-galactosidase Bgal1-3, which is a promising catalyst in the preparation of prebiotic-enriched milk.
Collapse
Affiliation(s)
- Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Guanghui Ren
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Zhijun Wang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Weiqu Liang
- Dongguan Agricultural Research Center , Dongguan, Guangdong 523086, P. R. China
| | - Xiaogang Bi
- The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong 510630, P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| |
Collapse
|
31
|
Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices. Appl Biochem Biotechnol 2016; 179:1469-84. [DOI: 10.1007/s12010-016-2078-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/04/2016] [Indexed: 12/17/2022]
|
32
|
Biró E, Budugan D, Todea A, Péter F, Klébert S, Feczkó T. Recyclable solid-phase biocatalyst with improved stability by sol–gel entrapment of β-d-galactosidase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Kamran A, Bibi Z, Aman A, Qader SAU. Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Cold-Active β-Galactosidases: Sources, Biochemical Properties and Their Biotechnological Potential. BIOTECHNOLOGY OF EXTREMOPHILES: 2016. [DOI: 10.1007/978-3-319-13521-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
35
|
Microwave-assisted synthesis of butyl galactopyranoside catalyzed by β-galactosidase from Thermotoga naphthophila RKU-10. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Banjanac K, Carević M, Ćorović M, Milivojević A, Prlainović N, Marinković A, Bezbradica D. Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Adv 2016. [DOI: 10.1039/c6ra20409k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amino modified nonporous fumed nano-silica particles was used for the development of efficient nanobiocatalysts for application in the biosynthesis of bioactive galactosides, galacto-oligosaccharides (GOS).
Collapse
Affiliation(s)
- Katarina Banjanac
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Milica Carević
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Marija Ćorović
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Ana Milivojević
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Nevena Prlainović
- Department of Organic Chemistry
- Innovation Center of Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Aleksandar Marinković
- Department of Organic Chemistry
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Dejan Bezbradica
- Department of Biochemical Engineering and Biotechnology
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
37
|
Yang J, Di X, Wang M, Gao R. Gene clone and characterization of a novel thermostable β-galactosidase with transglycosylation activity from Thermotoga naphthophila RUK-10. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5032-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|